
Agile Architecting of Distributed Systems for

Flexible Industry 4.0

Henrik Bærbak Christensen

Computer Science

University of Aarhus

Aarhus, Denmark

Email: hbc@cs.au.dk

Sune Chung Jepsen, Torben Worm

Software Engineering

University of Southern Denmark

Odense, Denmark

Email: {sune, tow}@mmmi.sdu.dk

Abstract—Small and medium sized businesses within mechan-
ical manufacturing cannot benefit from Industry 4.0 automation
as small production batches are unable to pay for up-front robotic
configuration and programming costs. In this paper, we report
on early results from a project aiming at developing a software
architecture supporting fast, easy, and flexible reconfiguration of
a robotic manufacturing process, using an agile and prototyping
approach.

I. INTRODUCTION

ROBOTIC manufacturing is well adopted in for instance

the automotive industry. Such manufacturing is char-

acterized by production of large volumes of nearly identi-

cal products which can justify high cost of setting up the

production line and programming robots in the production-

line. However, small and medium-sized businesses (SMB) in

mechanical production often have low production volumes,

often just a single or less than 10 products. Thus, adopting

robotic manufacturing, Industry 4.0—the intelligent network-

ing of machines and processes for industry with the help of

information and communication technology [7], is challenging

for SMBs. In our project, we are exploring flexible produc-

tion, customization, and handling changing requirements in

collaboration with a number of Danish SMBs.

Our main contribution is early results from applying ar-

chitectural prototyping to formulate distributed architectures

for Industry 4.0 with an emphasis on flexibility as a central

quality attribute. A second contribution is early architectural

insights from this work, which adopts an agile and run-time

focus in contrast to prevalent work that achieves flexibility

through elaborate ontologies [8], [9] which in turn require

intensive up-front engineering efforts [3].

II. BACKGROUND

The project is a collaboration between three SMB within

the mechanical production area (machine shops) as well as

two Danish universities with competences within robotics and

software architecture.

The main research challenge is:

Design a distributed systems software architecture

that allows flexible production specification, adapt-

able to a small machine shop, providing high usabil-

ity by workers trained in mechanical production.

Ideally, a skilled worker (but with little prior computer

science training) should be able to set up individual machine

functions (metal cutting, shaping, drilling, assembling, pack-

aging, etc.) as well as workflow (process order, movement of

product between machines, etc.) fast and easy.

A schematic example is show in Figure 1 in which a worker

(1) defines a workflow plan to be handled by the platform,

which instructs transport robots (3 + 9), to move proper

materials from a raw warehouse (2) to specified production

cells/programmable robots (5 + 7) that do assembly, drilling,

cutting, etc. Production cells may also receive/deliver materials

using a magnetic track (4 + 6), before the final product is

delivered to a finished goods warehouse (10).

III. AGILE ARCHITECTURE DESIGN

Architecturally, a robotic machine shop is a distributed

system, having independent nodes with specialized capa-

bilities, adaptable by programming. The key challenge is

designing a software architecture that supports flexible

(re)configuration, ease of defining processes and workflow, as

well as efficient/cost-effective production.

As a research project, another goal is to experiment with

the architectural design space in a efficient manner in order

to allow stakeholders early and agile feedback. Architectural

prototyping [2], [4] matches these requirements, as it empha-

sizes architectural learning and exploring, using lightweight

development of executable demonstration systems.

Architectural prototyping is an incremental and iterative

process in which architectural design is postulated as a hy-

pothesis, programmed in an architectural prototype (AP), and

next validated for feasibility. Based upon the outcome, the

AP is either rejected or refined, similar to a scientific process.

This way the architectural design space is explored and refined,

more than rigorously designed and evaluated up-front.

We therefore hypothesized a software architecture for a

robotic machine shop, as exemplified in Figure 1, to be a

distributed system of programmable nodes (production cell,

transports, warehouses, etc.) orchestrated by the software

architecture pattern “Blackboard” [1].

In the Blackboard pattern, individual nodes, knowledge

sources, contribute data and events to the blackboard (i.e.

a repository) while a control plane actively monitors the

Proceedings of the 16
th Conference on Computer

Science and Intelligence Systems pp. 533±536

DOI: 10.15439/2021F17

ISSN 2300-5963 ACSIS, Vol. 25

IEEE Catalog Number: CFP2185N-ART ©2021, PTI 533



Fig. 1. Schematic Machine Shop [6]

TABLE I
DEVELOPED ARCHITECTURAL PROTOTYPES. SOURCE OF DATA IS A) DEVELOPER’S WORKING HOUR REGISTRATION, B) GIT LOG MESSAGE

TIMESTAMPS, AND C) GIT BLAME LOGS OF DEVELOPMENT DIARIES FOR EACH AP.

AP No. Goal Outcome Hour count

1 Establish Modelling and Blackboard Pattern Accept 9h
2 Demonstrator for stakeholders Accept 3.5h

3 Workflow. Insight: Carrier concept missing Accept 7h
4 Knowledge Engine (JESS) Learning Accept 3h
5 Carrier Introduced. JESS Integration Accept/Failure 10.5h
6 EasyFlow Learning Accept 1.5h
7 Workflow using EasyFlow. Demonstrator Cond Accept 10h

blackboard, picking up state changes and issues new actions

to be performed by nodes. To exemplify in a robotic machine

shop context, a production cell may notify the blackboard that

drilling a hole in a plate is finished, which trigger that the

control plane tells the transport robot to move the finished

plate to the assembly robot, etc.

Our first AP, see Table I, developed the core concepts

adhering to the blackboard architecture, with a strong emphasis

on modeling physical objects and processes with computa-

tional equivalents that support fast experimentation. Central

examples of “computational equivalents”, developed in our

APs are:

• Physical material: Modelled by strings. Example: A bolt

is just the string “B”, a metal plate of 100x20x10 mm is

just “P/100-20-10”, etc.

• Production cells: Modelled by threads/processes, that re-

ceive materials from an in-queue, perform a “Production

cell function” on the materials, before emitting it to its

out-queue.

• Production cell function: Modelled by Strategy pattern, an

algorithm to process material from one form to another.

Example: Drilling a 3mm hole in the above plate “P/100-

20-10” at position (10mm, 20mm) will return material

“drill/3-10-20(P/100-20-10)”. Note how the string just is

a recursive specification of functions applied. To simulate

time taken for a given function, delays are part of a cell

function’s execution.

• Transport of Materials: Also modelled by threads, but

their “function” is set to move material from the out-

queue of one production cell to the in-queue of the

another. Essentially, just copying strings from an out-

queue to an in-queue, with a delay.

• Warehouse: Again, just a thread, whose “function” is

either to provide (raw warehouse) or store (finished

goods) material. That is, it is just a collection of strings.

• Queues (at cells): To simplify we used a blocking queue

with just room for one material/string. Later changed to

contain Carrier objects, see below.

• Control plane: Initially, we hard-coded the simplest pos-

sible production scenario, we could think of—one cell

drills a hole in a plate, which is then moved to a second

cell that screws a nut+bolt through the hole in the plate.

That is, going from raw materials (P, B, N) to “screw(B,

N, drill(P))” (dimensions omitted for clarity).

Executing an AP simply produces log messages from each

thread outlining the actions taken by each transport (“Move-

Bot” in output below) or production cell (“Station” below), as

exemplified in Figure 2.

Note the efficiency of the approach in exploring the control

plane architectural aspects (Table 1): Only 9 hours was spent

to establish an architectural sketch, defined core concepts, and

their computational equivalents. A further 3½ hours was spent

to polish the AP into a form that allowed demonstration to the

project’s SMB stakeholders.

534 PROCEEDINGS OF THE FEDCSIS. ONLINE, 2021



[INFO] MoveBot :: MoveBot 1 - PICK UP material ’P/100-20-10’

[INFO] MoveBot :: MoveBot 1 - Start moving to Station ’Drill Station’

...

[INFO] MoveBot :: MoveBot 1 - DELIVER TO Drill Station

...

[INFO] Station :: Drilling 66%...

[INFO] Station :: Drilling 100% - producing ’drill/3-10-20(P/100-20-10)’

[INFO] Station :: -- Adding to OUT QUEUE

[INFO] MoveBot :: MoveBot 1 - retrieved job:

MoveJob{source=’Drill Station’, destination=’Assembly Station’}

Fig. 2. AP-2 demonstrates workflow and actions performed through log messages (. . . indicates portions omitted for brevity)

The conclusion of AP-1 and AP-2 was that stakehold-

ers judged that core modeling concepts were feasible, but

“programming the control plane was tedious”. The APs only

supported a single workflow scenario, and involved lots of

tedious and hand-coded handling of threads and queues.

Another outcome of the AP-2 demonstration session was the

need to introduce strong support for “state machines to model

workflows”.

APs 3–7, in Table 1, represent steps and sidesteps in explor-

ing implementing a flexible, usable, control plane based upon

state machines. AP-3’s focus was on introducing simple state-

machines, but quickly lead to the conclusion that a Carrier

concept was missing:

• Carrier: A physical tray, organizing a set of materials

in predefined positions for easy idenfication by a robot,

ala “Pick the nut in position 3”, see Figure 3. Our

computational equivalents was an array, indexing a set of

strings (representing materials), as well as the product’s

associated state machine.

• Control plane: Rewritten from the fixed workflow of AP-

1 into a listener on any state change (production cells or

transports finishing their tasks) which in turn leads to

deciding on next state transition.

Fig. 3. A carrier from the Robotic Lab, holding nuts and springs.

The carrier concepts was introduced and validated in AP-5.

Two APs were dedicated to exploring suitable libraries for pro-

graming state-machines (AP 4+6), before settling on EasyFlow

for the stakeholder demonstrator. The (so far) final AP-7

was demonstrated at a second workshop to stakeholders—

showing three workflows, producing two complex and one

simple product.

One key outcome was that the carrier besides holding

materials, also embody the state of the materials from its

journey from a set of raw materials to the final product. Alas,

the workflow statemachine is directly tied to the carrier. A

second outcome was how the Blackboard architecture auto-

matically optimizes the flow of material and processes in the

production line: As soon as a production cell has finished, its

carrier is available at the out-queue and the blackboard/control

plane is notified. The control plane makes the state transition

of the carrier’s state machine, typically finding an idling

transport robot to pick up the carrier; or selecting an available

production cell that can serve the manufactoring task at hand:

drilling, cutting, assembly, etc.

However, while our AP-7 validated the architectural design,

the definition of workflows via state machines was still requir-

ing low level programming, far from the required usability

requirements.

Never-the-less, only a total of 44.5 hours was spent to

establish a sound architectural basis validating an architec-

tural approach based upon the blackboard pattern, carriers

associated with product’s state machines, and central concept

implementations—as well as rejected several ideas, such as

using knowledge engines, with little wasted effort. Future work

focuses on bringing the state-machine programming into a user

friendly format, likely exploring visual tools for generating

state machines, like Visual Paradigm, SinelaboreRT, and of

course proof of concept of the architecture by letting it

control real manufacturing production cells and transports at

the Robotic Lab at University of Southern Denmark.

A. Preliminary Architecture

In Figure 4, our preliminary architecture is sketched, us-

ing UML class diagram notation: Associations are annotated

with essential behavior. Robot Units are general and repre-

sent independent processes such as the production cells, the

warehouses, and transports like magnetic track or transport

robots. The Blackboard controls them by upload programs,

“functions”, to them. Carriers contain the product as a set of

(partially processed) materials, as well as the state machine

representing the state of the partially processed product. Any

state transitions (like a cell finishing and moving the carrier

to its out queue) notify the Blackboard which determine next

actions which is always “moving” carrier from one unit’s out

queue to the next unit’s in queue. The actual sequence of units

to visit and functions to apply is determined by the particular

state machine of the product.

HENRIK BáRBAK CHRISTENSEN ET AL.: AGILE ARCHITECTING OF DISTRIBUTED SYSTEMS FOR FLEXIBLE INDUSTRY 4.0 535



*Robotic Unit

Concurrent Process
Robot

InQueue

OutQueue Material*

StateMachine
<<Strategy>>

Function

BlackBoard / Control Plane

*
arrives

departs

notify on transition

uploads function

supervise

Carrier

Fig. 4. UML Class diagram of preliminary architecture

We argue that even this preliminary architecture achieves

a degree of flexibility, as the input for any given product is

just the specification (set of functions, state sequence): that is,

define the set of processings (drilling, assembly, cutting, etc.)

as well as the ordering—drilling must be performed before

assembling, which again must be performed before storing in

the final warehouse, etc.

IV. CONCLUSION

In this paper, we have presented initial results on agile archi-

tecture development for distributed systems for SMB machine

shops, with an emphasis on flexible and easy reconfiguration

of manufacturing. We have presented results from early ar-

chitectural design work based upon architectural prototyping,

and shown how this technique provides fast feedback in the

architectural work, allowing us to establish a solid architectural

basis for further work in less than 45 hours of staff time.

Furthermore, we have presented our suggestions on how the

complex mechanical and distributed nature of a machine shop

can be translated into computational equivalents that allows a

fast and experimental development cycle in collaboration with

workers in mechanical production.

ACKNOWLEDGEMENTS

The authors wants to acknowledge the financial support of

InfinIT [5].

REFERENCES

[1] Paris Avgeriou and Uwe Zdun. Architectural Patterns Revisited—A
Pattern Language. In Proceedings of 10th European Conference on

Patterns Languages of Programming, 2005.
[2] J. E. Bardram, H. B. Christensen, and K. M. Hansen. Architectural

Prototyping: An Approach for Grounding Architectural Design and
Learning. In Proceedings. Fourth Working IEEE/IFIP Conference on

Software Architecture (WICSA 2004), pages 15–24, 2004.
[3] Haibo Cheng, Peng Zeng, Lingling Xue, Zhao Shi, Peng Wang, and

Haibin Yu. Manufacturing Ontology Development based on Industry 4.0
Demonstration Production Line. In 2016 Third International Conference

on Trustworthy Systems and their Applications (TSA), pages 42–47. IEEE,
2016.

[4] Henrik Bærbak Christensen and Klaus Marius Hansen. An Empirical
Investigation of Architectural Prototyping. Journal of Systems and

Software, 83(1):133–142, 2010.
[5] Infinit website. https://infinit.dk/om-infinit/, 2020.
[6] S. C. Jepsen, T. I. Mørk, J. Hviid, and T. Worm. A Pilot Study of Industry

4.0 Asset Interoperability Challenges in an Industry 4.0 Laboratory.
In 2020 IEEE International Conference on Industrial Engineering and

Engineering Management (IEEM), pages 571–575, 2020.
[7] Plattform Industrie 4.0. Plattform Industrie 4.0 - What is Indus-

trie 4.0? https://www.plattform-i40.de/PI40/Navigation/EN/Industrie40/
WhatIsIndustrie40/what-is-industrie40.htm. Accessed: 2020-11-24.

[8] Emanuel Trunzer, Ambra Calà, Paulo Leitão, Michael Gepp, Jakob
Kinghorst, Arndt Lüder, Hubertus Schauerte, Markus Reifferscheid, and
Birgit Vogel-Heuser. System architectures for Industrie 4.0 applications.
Production Engineering, 13(3-4):247–257, 2019.

[9] Jiafu Wan, Shenglong Tang, Di Li, Muhammad Imran, Chunhua Zhang,
Chengliang Liu, and Zhibo Pang. Reconfigurable Smart Factory for Drug
Packing in Healthcare Industry 4.0. IEEE Transactions on Industrial

Informatics, 15(1):507–516, 2018.

536 PROCEEDINGS OF THE FEDCSIS. ONLINE, 2021


