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Abstract—The local search procedure is a method for hy-
bridization and improvement of the main algorithm, when
complex problems are solved. It helps to avoid local optimums
and to find faster the global one. In this paper we apply
InterCriteria analysis (ICrA) on hybrid Ant Colony Optimization
(ACO) algorithm for Multiple Knapsack Problem (MKP). The
aim is to study the hybrid algorithm behavior comparing with
traditional ACO algorithm. Based on the obtained numerical
results and on the ICrA approach the efficiency and effectiveness
of the proposed hybrid ACO, combined with appropriate local
search procedure are confirmed.

Index Terms—Local Search, Ant Colony Optimization, Inter-
Criteria analysis, Knapsack Problem

I. INTRODUCTION

ENGINEERING applications normally lead to complex

decision make problems. Large scale problems can not

be solved with traditional numerical methods. It is a challenge

to develop a new techniques, which have simple structure and

easy application, and can find near optimal solution even the

information about the problem is incomplete. In most of the

cases these problems are HP-hard.

Nature inspired methods are more appropriate for solving

NP-hard optimization problem, than other methods, because

they are flexible and use less computational resources. They

are base on stochastic search. The most popular methods

are Evolutionary algorithm [28], [45], which simulates the

Darwinian evolutionary concept, Simulated Annealing [32]

and Gravitation search algorithm [39], Tabu Search [42] and

Interior Search [43]. The ideas for swarm-intelligence based

algorithms come from behavior of animals in the natures. The

representatives of this type of algorithms are Ant Colony Op-

timization [16], Bee Colony Optimization [29], Bat algorithm

[46], Firefly algorithm [47], Particle Swarm Optimization [31],

Gray Wolf algorithm [38] and so on.

Between the best methods for solving combinatorial opti-

mization problems is Ant Colony Optimization (ACO). The

impulse for this method comes from the behavior of real ants.

They always find the shortest path from the food to the nest.

The ants leave a trail called a pheromone and follow the trail

with the most concentrated pheromone.

The problem is represented with a help of a graph and

the solutions are paths in a graph. The optimal solution for

minimization problems is a shortest path, and for maximization

problems is a longest path in a graph. The solution construc-

tion starts from random node of the graph and next nodes

are included applying probabilistic rule. The pheromone is

imitated by numerical information corresponding to the quality

of the solution.

ACO is applied to many types of optimization problems.

The idea for application of ant behavior for solving com-

binatorial optimization problems is done by Marco Dorigo

twenty five years ago [15], [16], [18]. At the beginning it is

applied on traveling salesman problem. Later it is successfully

applied on a lot of complex optimization problems. During the

years, various variants of ACO methodology was proposed: ant

system [18]; elitist ants [18]; ant colony system [17]; max-min

ant system [44]; rank-based ant system [18]; ant algorithm

with additional reinforcement [21]. They differ in pheromone

updating. For some of them is proven that they converge to the

global optimum [18]. Fidanova et all [22]–[24] proposed semi-

random start of the ants comparing several start strategies. The

method can be adapted to dynamic changes of the problem in

some complex biological problems [19], [20], [44].

Sometimes the metaheuristic algorithm, can not avoid local

optimums. Appropriate Local Search (LS) procedure can help

to escape them and to improve algorithm efficiency. We apply

ACO on Multiple Knapsack Problem (MKP). A local search

procedure, related with a specificity of MKP is constructed and

combined with ACO to improve the algorithm performance

and to avoid local optimums [24]. InterCriteria analysis (ICrA)

is applied on the numerical results obtained by the traditional

ACO and hybrid ACO in order to estimate the algorithms

behavior. The approach ICrA has been applied for a large area

of problems, e.g. [1], [2], [14], [25]. Published results show the

applicability of the ICrA and the correctness of the approach.
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The rest of the paper is organized as follows: The definition

of the MKP is in Section 2. ACO algorithm is presented in

Section 3. Local Search procedure is described in Section 4.

Short notes on ICrA approach are presented in Section 5. Nu-

merical results and a discussion are in Section 6. Conclusion

remarks are done in Section 7.

II. MULTIPLE KNAPSACK PROBLEM

In knapsack problem is given a set of items with fixed

weights and values. The aim is to maximize the sum of the

values of the items in the knapsack, while remaining within

the capacity of the knapsack. Each item can be selected only

ones.

Multiple Knapsack Problem (MKP) is a generalization of

the single knapsack problem and instead to have only one

knapsack, there are many knapsacks with diverse capacity.

Each item is assigned to maximum one of the knapsacks

without violating any of the knapsacks capacity. The purpose

is to maximize the total profit of the items in the knapsacks.

MKP is a special case of the generalized assignment prob-

lem [36]. It is a representative of the subset problems. Econom-

ical, industrial and other types of problems can be represented

by MKP. Resource allocation in distributed systems, capital

budgeting, cargo loading and cutting stock problems [30] are

some of the applications of the problem. One important real

problem which is represented as MKP is patients scheduling

[3]. MKP is related with bin packing problem where the size

of the bins can be variable [40] and cutting stock problem for

cut row materials [30]. Other application is multi-processor

scheduling on uniformly related machines [35]. Other difficult

problem which leads to MKP is crypto-systems and generating

keys [30]. One early application of MKP is tests generation

[27]. MKP is a model large set of binary problems with integer

coefficients [33], [36].

MKP is NP-hard problem and normally is solved with some

metaheuristic method such as genetic algorithm [37], tabue

search [48], swarm intelligence [34], ACO algorithm [21],

[26].

We will define MKP as resource allocation problem, where

m is the number of resources (the knapsacks) and n is

the number of the objects. The object j has a profit pj .

Each resource has its own budget (knapsack capacity) and

consumption rij of resource j by object i. The purpose is

maximization of the profit within the limited budget.

The mathematical formulation of MKP can be as follows:

max
∑n

j=1
pjxj

subject to
∑n

j=1
rijxj ≤ ci i = 1, . . . ,m

xj ∈ {0, 1} j = 1, . . . , n

(1)

There are m constraints in this problem, so MKP is also

called m-dimensional knapsack problem. Let I = {1, . . . ,m}
and J = {1, . . . , n}, with ci ≥ 0 for all i ∈ I . A well-stated

MKP assumes that pj > 0 and rij ≤ ci ≤
∑n

j=1
rij for all

i ∈ I and j ∈ J . Note that the [rij ]m×n matrix and [ci]m
vector are both non-negative.

The MKP partial solution is represented by S =
{i1, i2, . . . , ij} and the last element included to S, ij is not

used in the selection process for the next element. Thus the

solution of MKP have not fixed length.

III. ANT COLONY OPTIMIZATION ALGORITHM

NP-hard problems require the use of huge resources and

therefore cannot be solved by exact or traditional numerical

methods, especially when they are large scale. We apply

metaheuristic method aiming to find approximate solution

using reasonable resources [18], [26].

Firs Marco Dorigo applies ideas coming from ants be-

havior to solve complicate optimization problems 30 years

ago [16]. Some modifications are proposed by him and by

other authors for algorithm improvement. The modifications

concern pheromone updating [18]. The algorithm is problem

dependent. Very important is representation of the problem by

a graph. Thus the solutions represent paths in the graph. The

ants look for an optimal path, taking in to account problem

constraints.

The transition probability Pi,j , is a product of the heuristic

information ηi,j and the pheromone trail level τi,j related to

the selection of node j if the previous selected node is i, where

i, j = 1, . . . . , n.

Pi,j =
τai,j · η

b
i,j

∑

k∈Unused

τai,k · η
b
i,k

, (2)

where Unused is the set of unused nodes.

At the beginning the pheromone is initialized with a small

constant value τ0, 0 < τ0 < 1. Every time the ants build a

solution, the pheromone is bring up to date [18].The elements

of the graph with more pheromone are more tempting to the

ants.

The main update rule for the pheromone is:

τi,j ← ρ · τi,j +∆τi,j , (3)

where parameter ρ decreases the value of the pheromone,

like evaporation in a nature decreases the quantity of old

pheromone. ∆τi,j is a new deposited pheromone, which

depends on the value of the objective function, corresponding

to this solution.

The first step, when ACO is applied on some combinatorial

optimization problem is representation of the problem by

graph. In our case the items are related with the nodes of the

graph and the edges fully connect the nodes. The pheromone

is deposited on the arcs of the graph.

Second step is construction of appropriate heuristic informa-

tion. This step is very important, because the heuristic infor-

mation is the main part of the transition probability function

and the search process depends mainly on it. Normally the

heuristic information is a combination of problem parameters.

Let sj =
∑m

i=1
rij . For heuristic information we use:
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ηij =







pd1

j /sd2

j if sj 6= 0

pd1

j if sj = 0

(4)

where d1 > 0 and d2 > 0 are parameters. Hence the objects

with greater profit and less average expenses will be more

desirable. Thus is increased the probability to include more

items and most profitable items. This can lead to maximization

of the total profit, which is the objective of this problem.

IV. LOCAL SEARCH PROCEDURE

At times is used hybridization of the used method, for

algorithm performance improvement. The goal is avoid some

disadvantages of the main method. A possibility for hybridiza-

tion is one of the methods to be basic and the other only helps

to improve the solutions. Most used hybridization manner is

local improvement or at the end of the iteration to apply some

problem dependent local search procedure.

The Local Search (LS) procedure is used to perturbs current

solution and to generate neighbor solutions [41]. LS generates

neighbor solutions in a local set of neighbors. The best solution

from the set is compared with the current solution. If it is

better, it is accepted as a new current solution.

A LS procedure which is consistent with MKP has been

developed and combined with ACO algorithm in our previous

work [26]. The MKP solution is represented by binary string

where 0 corresponds to not chosen item and 1 corresponds

to item included in the solution. Two positions are randomly

chosen. If the value of one of the positions is 0 we replace

it with 1 and if the value of other position is 1 we replace

it with 0 and vice versa. The feasibility of the new solution

is verified. If the solution is feasible we compare it with the

current (original) solution. The perturbed solution is accepted

if its value of the objective function is greater, than of the

original one.

We apply this LS procedure ones on each iteration on each

solution, disregarding if the new constructed solution is better

than current one or not. Thus the proposed LS works without

significant increase of the used computational resources.

V. INTERCRITERIA ANALYSIS

Based on the apparatuses of index matrices [4], [6], [8],

[9] and intuitionistic fuzzy sets (IFSs) [5], [7], [10], authors

in [11] propose a new approach named InterCriteria analysis.

Briefly presented, an intuitionistic fuzzy pair (IFP) [12] is an

ordered pair of real non-negative numbers 〈a, b〉, where a, b ∈
[0, 1] and a + b ≤ 1, that is used as an evaluation of some

object or process. According to [12], the components (a and

b) of IFP might be interpreted as degrees of ”membership”

and ”non-membership” to a given set, degrees of ”agreement”

and ”disagreement”, etc.

Let O denotes the set of all objects being evaluated, and

C(O) is the set of values assigned by a given criteria C (i.e.,

C = Cp for some fixed p) to the objects, i.e.,

O
def
= {O1, O2, O3, . . . , On},

C(O)
def
= {C(O1), C(O2), C(O3), . . . , C(On)}.

Let xi = C(Oi). Then the following set can be defined:

C∗(O)
def
= {〈xi, xj〉|i 6= j& 〈xi, xj〉 ∈ C(O)× C(O)}.

Further, if x = C(Oi) and y = C(Oj), x ≺ y if i < j will

be written.

In order to find the agreement of different criteria, the

vectors of all internal comparisons for each criterion are

constructed, which elements fulfill one of the three relations

R, R and R̃. The nature of the relations is chosen such that

for a fixed criterion C and any ordered pair 〈x, y〉 ∈ C∗(O):

〈x, y〉 ∈ R⇔ 〈y, x〉 ∈ R, (5)

〈x, y〉 ∈ R̃⇔ 〈x, y〉 /∈ (R ∪R), (6)

R ∪R ∪ R̃ = C∗(O). (7)

For example, if “R” is the relation “<”, then R is the

relation “>”, and vice versa.

When comparing two criteria the degree of ”agreement”is

determined as the number of matching components of the

respective vectors (divided by the length of the vector for

normalization purposes).

Let the respective degrees of ”agreement” and ”disagree-

ment” are denoted by µC,C′ and νC,C′ . In the most of the

obtained pairs 〈µC,C′ , νC,C′〉, the sum µC,C′ + νC,C′ is equal

to 1. However, there may be some pairs, for which this sum

is less than 1. The difference

πC,C′ = 1− µC,C′ − νC,C′ (8)

is considered as a degree of ”uncertainty.

VI. COMPUTATIONAL RESULTS AND DISCUSSION

The proposed hybrid ACO algorithm for MKP is tested

on 10 test MKP instances from Operational Research

Library ”OR-Library” available within WWW access at

http://people.brunel.ac.uk/ mastjjb/jeb/info.html. Every test

problem consists of 100 items and 10 constraints/knapsacks.

We prepare a software, which realizes our hybrid algorithm.

The software is coded in C++ program language and is run on

Pentium desktop computer at 2.8 GHz with 4 GB of memory.

The ACO algorithm parameters are fixed experimentally as

follows:

• Number of iterations = 300, Number of ants = 20;

• ρ = 0.5, τ0 = 0.5;

• a = 1, b = 1 and d1 = 1.

We perform 30 independent runs with every one of the test

instances, because the algorithm is stochastic and to guarantee

the robustness of the average results. We apply ANOVA test

for statistical analysis and thus we guarantee the significance

of the difference between the average results. The names of
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TABLE I: Test instances

Instance Name

Hybrid ACO Traditional ACO

MKP 100× 10-01 P1h P1t

MKP 100× 10-02 P2h P2t

MKP 100× 10-03 P3h P3t

MKP 100× 10-04 P4h P4t

MKP 100× 10-05 P5h P5t

MKP 100× 10-06 P6h P6t

MKP 100× 10-07 P7h P7t

MKP 100× 10-08 P8h P8t

MKP 100× 10-09 P9h P9t

MKP 100× 10-10 P10h P10t

TABLE II: Traditional ACO performance

P1t P2t P3t P4t P5t P6t P7t P8t P9t P10t

run1 22089 22452 20936 21481 21751 21810 21537 21634 22213 40594

run2 21954 22055 20966 21318 21606 21864 21659 21596 22398 40701

run3 21935 21912 21023 21318 21463 21912 21526 21516 22065 40647

run4 22030 21914 20732 21556 21519 21903 21470 21337 22191 40617

run5 21875 21990 21120 21451 21903 21970 21360 21689 22152 40489

run6 21970 21999 21114 21619 21736 21756 21426 21729 22125 40646

run7 21974 21990 21085 21740 21641 21654 21522 21515 22398 40714

run8 22041 22120 21032 21918 21811 22053 21584 21550 22109 40550

run9 21893 21924 21187 21335 21716 21864 21587 21725 22398 40581

run10 21984 22104 20822 21719 21767 21864 21509 21550 22078 40594

run11 21787 21950 21042 21661 21673 22047 21595 22067 22398 40659

run12 21916 22675 21182 21629 21818 21834 21426 21550 22101 40646

run13 22031 22027 20869 21490 21843 22123 21466 21508 22398 40584

run14 22188 21975 21203 21736 21811 21864 21601 21550 22398 40627

run15 21889 22119 21204 21740 21716 21824 21509 21573 22086 40515

run16 22009 22101 20877 21705 21952 21779 21409 21506 22039 40498

run17 21880 21990 21085 21531 21736 21713 21394 21579 22398 40680

run18 21958 22102 20872 21335 21811 22053 21596 21550 22105 40589

run19 22015 21963 20841 21861 21581 21864 21624 21729 22324 40404

run20 22054 22027 21007 21815 21679 22140 21392 21729 22398 40367

run21 22093 22027 20833 21607 21811 21816 21509 21496 22039 40496

run22 22074 22065 20960 21701 21711 21903 21509 21496 22398 40737

run23 22003 22027 20976 21759 21685 21864 21522 21339 22039 40594

run24 22169 22005 21003 21490 21735 21898 21511 21520 22156 40317

run25 22091 22106 20808 21964 21622 21840 21434 21614 22398 40664

run26 21945 21899 21103 21335 21417 22053 21426 21516 22059 40319

run27 22086 22196 21069 21774 21944 22241 21590 21629 22398 40728

run28 21926 21975 21003 21437 21922 21864 21531 21503 22398 40636

run29 21929 22177 20799 21681 21736 21907 21479 21530 22398 40498

run30 22030 21931 20925 22061 21434 21864 21509 21366 22398 40756

the test instances are presented in Table I. In Table II and

Table III observed numerical results for all 30 runs are listed.

In Table IV are reported average results for every one of

the test instances over 30 runs. We compare ACO algorithm

combined with local search procedure (hybrid ACO) with

traditional ACO algorithm. On the last row is reported average

computational time, in seconds, of the two variants of ACO

algorithm.

Table IV shows that for eight of ten instances hybrid ACO

algorithm outperforms the traditional one. For the instances

MKP 100 × 10-02 and MKP 100 × 10-10 the results are

statistically the same. The main problem with hybrid algo-
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TABLE III: Hybrid ACO performance

P1h P2h P3h P4h P5h P6h P7h P8h P9h P10h

run1 22206 22047 21292 21885 21811 21940 21509 22004 22270 40647

run2 21968 22186 21089 21962 21811 21957 21509 21616 22097 40557

run3 21970 22074 21233 22139 21716 21934 21530 21550 22087 40598

run4 22130 22028 21687 21701 21811 22024 21415 21729 22294 40679

run5 22107 22168 21020 21885 21811 22047 21522 21729 22285 40647

run6 22138 22027 21222 21736 21798 21980 21522 21551 22257 40522

run7 22367 22027 21416 21962 21811 21900 21437 21729 22140 40538

run8 22051 22028 21261 21420 21790 22048 21509 21648 22125 40710

run9 21867 22104 20861 21780 21811 21985 21531 21729 22398 40710

run10 21910 22027 21090 21666 21811 21987 21537 21729 22398 40647

run11 22133 22027 20758 21854 21844 22011 21655 21729 22398 40583

run12 22164 22074 20848 21885 21798 22053 21330 21653 22154 40662

run13 21949 22044 21090 22099 21736 21987 21409 21729 22398 40664

run14 22067 22102 20954 21921 21798 21987 21587 21729 22117 40683

run15 21889 22027 21236 21801 21811 22113 21509 21729 22069 40689

run16 21999 22213 21185 21561 21811 21900 21509 21650 22429 40636

run17 21926 22065 21017 22174 21914 21937 21509 21550 22191 40489

run18 21914 22027 21097 21542 21855 21864 21509 21550 22247 40714

run19 22008 22028 20953 21490 21796 22053 21624 21683 22398 40677

run20 21840 22151 21166 21893 21804 21987 21418 21729 22193 40728

run21 21993 22155 20839 21656 21811 21891 21584 21550 22398 40565

run22 22130 22106 21134 21962 21798 22063 21533 21658 22479 40742

run23 21958 22060 20881 21885 21811 21987 21426 21729 22152 40503

run24 22014 22027 21373 22023 21811 21924 21511 21729 22152 40514

run25 22072 22027 20925 21953 21811 21987 21509 21697 22123 40650

run26 22088 22104 20857 22052 21974 21987 21509 21550 22429 40751

run27 21928 22027 20934 21864 21811 21987 21509 21550 22218 40658

run28 21933 22110 20916 21885 21811 22121 21509 21689 22398 40499

run29 21970 22027 21281 21793 21832 21987 21509 21729 22398 40598

run30 21993 22027 21064 21951 21811 22050 21509 21550 22479 40540

TABLE IV: Comparison of ACO performance

Instance Hybrid ACO Traditional ACO

MKP 100× 10-01 22022.73 21989.43

MKP 100× 10-02 22071.46 22081.36

MKP 100× 10-03 21089.3 21027.63

MKP 100× 10-04 21846 21635.3

MKP 100× 10-05 21814.3 21717.3

MKP 100× 10-06 21989.26 21869.73

MKP 100× 10-07 21506.26 21477.3

MKP 100× 10-08 21672.53 21606.43

MKP 100× 10-09 22272.36 22257

MKP 100× 10-10 40626.66 40623.26

computational time 64.052 s 65.552 s

rithms, when some global method is combined with local

search procedure, is increasing of computational time. We try

to propose efficient and in a same time less time consuming

local search. We only change randomly chosen position in a

solution to 0, if it is 1 and another randomly chosen position to

1 if it is 0. Thus is generated only one neighbor solution. If this

solution is better than the current one, it is accepted and used

for pheromone updating instead of the solution constructed by

the ant. We apply this procedure to each of the solutions. As is

seen from Table IV the increase of computational time, when

our local search is applied is only 2.34%.

Thus we can conclude that proposed local search proce-

dure is efficient and effective. The algorithm performance is

improved, without significant increase of the computational

time.

To support these claims, the obtained numerical results

were analyzed using ICrA. The input matrix for ICrA has

the following form index matrix Table V:

The obtained by ICrA results are listed in Table VI (µ-

values) and Table VII (ν-values). The π-values are also pre-

sented (see Table VIII). The results between the same instances

but for different ACO algorithms are presented. For example,

relations between P1t − P1h, P2t − P2h, P3t − P3h, etc.

are considered for further analysis (presented in bold results

in Tables VI, VII and VIII).

According to [13] the results show that the considered
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TABLE V: Index matrix for ICrA

run1 run2 . . . run30

P1t valP1t,1
valP1t,2

.

.

. valP1t,30

P2t valP2t,1
valP2t,2

.

.

. valP2t,30

.

.

.
.
.
.

.

.

.
. . .

.

.

.

P10t valP10t,1
valP10t,2

.

.

. valP10t,30

P1h valP1h,1
valP1h,2

.

.

. valP1h,30

P2h valP2h,1
valP2h,2

.

.

. valP2h,30

.

.

.
.
.
.

.

.

.
. . .

.

.

.

P10h valP10h,1
valP10h,2

.

.

. valP10h,30

(9)

TABLE VI: Degree of agreement – µC,C′ -values

µ P1t P2t P3t P4t P5t P6t P7t P8t P9t P10t

P1h 0.55 0.46 0.51 0.5 0.45 0.38 0.45 0.46 0.37 0.55

P2h 0.42 0.37 0.48 0.3 0.48 0.39 0.36 0.37 0.34 0.36

P3h 0.57 0.57 0.44 0.5 0.46 0.46 0.46 0.43 0.39 0.47

P4h 0.47 0.39 0.55 0.4 0.35 0.47 0.4 0.41 0.51 0.61

P5h 0.25 0.34 0.33 0.27 0.32 0.36 0.35 0.34 0.34 0.34

P6h 0.4 0.45 0.5 0.57 0.43 0.5 0.44 0.46 0.46 0.48

P7h 0.41 0.3 0.44 0.38 0.4 0.38 0.52 0.51 0.36 0.38

P8h 0.4 0.42 0.38 0.42 0.4 0.37 0.39 0.42 0.42 0.29

P9h 0.45 0.38 0.35 0.44 0.49 0.49 0.39 0.39 0.42 0.41

P10h 0.55 0.52 0.5 0.52 0.46 0.63 0.48 0.54 0.38 0.38

TABLE VII: Degree of disagreement – νC,C′ -values

ν P1t P2t P3t P4t P5t P6t P7t P8t P9t P10t

P1h 0.44 0.51 0.47 0.48 0.52 0.54 0.52 0.5 0.4 0.43

P2h 0.44 0.46 0.38 0.56 0.37 0.4 0.48 0.46 0.38 0.49

P3h 0.43 0.4 0.55 0.49 0.52 0.47 0.5 0.54 0.4 0.51

P4h 0.49 0.55 0.42 0.55 0.59 0.43 0.54 0.53 0.26 0.36

P5h 0.46 0.36 0.38 0.43 0.37 0.35 0.37 0.34 0.27 0.37

P6h 0.51 0.45 0.41 0.33 0.46 0.36 0.44 0.42 0.31 0.43

P7h 0.41 0.5 0.37 0.43 0.41 0.4 0.27 0.28 0.34 0.43

P8h 0.37 0.35 0.39 0.35 0.36 0.36 0.37 0.33 0.24 0.47

P9h 0.47 0.53 0.57 0.48 0.41 0.4 0.52 0.51 0.34 0.51

P10h 0.43 0.44 0.48 0.45 0.5 0.29 0.47 0.42 0.39 0.6

criteria pairs, are in dissonance or in strong dissonance. This

means that the both compared ACO algorithms (hybrid and

traditional ones) performed differently in case of all 10 various

instances.

The results obtained form ICrA are correct and reliable,

taking into account the observed values of πC,C′ -values. Only

for relations between P5t−P5h, P8t−P8h and P9t−P9h,

there are some high πC,C′ -values, respectively 0.31, 0.25 and

0.24. The obtained estimates for the degree of agreement and

the degree of disagreement have a high degree of uncertainty.

VII. CONCLUSION

In this paper we propose hybrid ACO algorithm for solv-

ing MKP. The algorithm is combination of traditional ACO

algorithm and local search procedure. Proposed algorithm is

tested on 10 benchmark MKP. The achieved results show

the efficiency and effectiveness of the proposed local search

procedure. The hybrid algorithm performs better than the

traditional one, while the calculation time increases only with

2.34%.

Obtained results are analyzed by ICrA approach. The anal-
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TABLE VIII: Degree of uncertainty – πC,C′ -values

π P1t P2t P3t P4t P5t P6t P7t P8t P9t P10t

P1h 0.01 0.03 0.02 0.02 0.03 0.08 0.03 0.04 0.23 0.02

P2h 0.14 0.17 0.14 0.14 0.15 0.21 0.16 0.17 0.28 0.15

P3h 0 0.03 0.01 0.01 0.02 0.07 0.04 0.03 0.21 0.02

P4h 0.04 0.06 0.03 0.05 0.06 0.1 0.06 0.06 0.23 0.03

P5h 0.29 0.3 0.29 0.3 0.31 0.29 0.28 0.32 0.39 0.29

P6h 0.09 0.1 0.09 0.1 0.11 0.14 0.12 0.12 0.23 0.09

P7h 0.18 0.2 0.19 0.19 0.19 0.22 0.21 0.21 0.3 0.19

P8h 0.23 0.23 0.23 0.23 0.24 0.27 0.24 0.25 0.34 0.24

P9h 0.08 0.09 0.08 0.08 0.1 0.11 0.09 0.1 0.24 0.08

P10h 0.02 0.04 0.02 0.03 0.04 0.08 0.05 0.04 0.23 0.02

ysis shows that the both algorithms performs differently for

the considered 10 instances, i.e. the behavior of the proposed

hybrid ACO is importantly different from that of the tradi-

tional ACO algorithm, or the local search procedure perturbs

significantly the search process.

Through the application of ICrA approach the efficiency

and effectiveness of the proposed hybrid ACO agorithm are

confirmed.
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