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Abstract—The local search procedure is a method for hy-
bridization and improvement of the main algorithm, when
complex problems are solved. It helps to avoid local optimums
and to find faster the global one. In this paper we apply
InterCriteria analysis (ICrA) on hybrid Ant Colony Optimization
(ACO) algorithm for Multiple Knapsack Problem (MKP). The
aim is to study the hybrid algorithm behavior comparing with
traditional ACO algorithm. Based on the obtained numerical
results and on the ICrA approach the efficiency and effectiveness
of the proposed hybrid ACO, combined with appropriate local
search procedure are confirmed.

Index Terms—Local Search, Ant Colony Optimization, Inter-
Criteria analysis, Knapsack Problem

I. INTRODUCTION

NGINEERING applications normally lead to complex

decision make problems. Large scale problems can not
be solved with traditional numerical methods. It is a challenge
to develop a new techniques, which have simple structure and
easy application, and can find near optimal solution even the
information about the problem is incomplete. In most of the
cases these problems are HP-hard.

Nature inspired methods are more appropriate for solving
NP-hard optimization problem, than other methods, because
they are flexible and use less computational resources. They
are base on stochastic search. The most popular methods
are Evolutionary algorithm [28], [45], which simulates the
Darwinian evolutionary concept, Simulated Annealing [32]
and Gravitation search algorithm [39], Tabu Search [42] and
Interior Search [43]. The ideas for swarm-intelligence based
algorithms come from behavior of animals in the natures. The
representatives of this type of algorithms are Ant Colony Op-
timization [16], Bee Colony Optimization [29], Bat algorithm
[46], Firefly algorithm [47], Particle Swarm Optimization [31],
Gray Wolf algorithm [38] and so on.

Between the best methods for solving combinatorial opti-
mization problems is Ant Colony Optimization (ACO). The
impulse for this method comes from the behavior of real ants.
They always find the shortest path from the food to the nest.
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The ants leave a trail called a pheromone and follow the trail
with the most concentrated pheromone.

The problem is represented with a help of a graph and
the solutions are paths in a graph. The optimal solution for
minimization problems is a shortest path, and for maximization
problems is a longest path in a graph. The solution construc-
tion starts from random node of the graph and next nodes
are included applying probabilistic rule. The pheromone is
imitated by numerical information corresponding to the quality
of the solution.

ACO is applied to many types of optimization problems.
The idea for application of ant behavior for solving com-
binatorial optimization problems is done by Marco Dorigo
twenty five years ago [15], [16], [18]. At the beginning it is
applied on traveling salesman problem. Later it is successfully
applied on a lot of complex optimization problems. During the
years, various variants of ACO methodology was proposed: ant
system [18]; elitist ants [18]; ant colony system [17]; max-min
ant system [44]; rank-based ant system [18]; ant algorithm
with additional reinforcement [21]. They differ in pheromone
updating. For some of them is proven that they converge to the
global optimum [18]. Fidanova et all [22]-[24] proposed semi-
random start of the ants comparing several start strategies. The
method can be adapted to dynamic changes of the problem in
some complex biological problems [19], [20], [44].

Sometimes the metaheuristic algorithm, can not avoid local
optimums. Appropriate Local Search (LS) procedure can help
to escape them and to improve algorithm efficiency. We apply
ACO on Multiple Knapsack Problem (MKP). A local search
procedure, related with a specificity of MKP is constructed and
combined with ACO to improve the algorithm performance
and to avoid local optimums [24]. InterCriteria analysis (ICrA)
is applied on the numerical results obtained by the traditional
ACO and hybrid ACO in order to estimate the algorithms
behavior. The approach ICrA has been applied for a large area
of problems, e.g. [1], [2], [14], [25]. Published results show the
applicability of the ICrA and the correctness of the approach.
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The rest of the paper is organized as follows: The definition
of the MKP is in Section 2. ACO algorithm is presented in
Section 3. Local Search procedure is described in Section 4.
Short notes on ICrA approach are presented in Section 5. Nu-
merical results and a discussion are in Section 6. Conclusion
remarks are done in Section 7.

II. MULTIPLE KNAPSACK PROBLEM

In knapsack problem is given a set of items with fixed
weights and values. The aim is to maximize the sum of the
values of the items in the knapsack, while remaining within
the capacity of the knapsack. Each item can be selected only
ones.

Multiple Knapsack Problem (MKP) is a generalization of
the single knapsack problem and instead to have only one
knapsack, there are many knapsacks with diverse capacity.
Each item is assigned to maximum one of the knapsacks
without violating any of the knapsacks capacity. The purpose
is to maximize the total profit of the items in the knapsacks.

MKEP is a special case of the generalized assignment prob-
lem [36]. It is a representative of the subset problems. Econom-
ical, industrial and other types of problems can be represented
by MKP. Resource allocation in distributed systems, capital
budgeting, cargo loading and cutting stock problems [30] are
some of the applications of the problem. One important real
problem which is represented as MKP is patients scheduling
[3]. MKP is related with bin packing problem where the size
of the bins can be variable [40] and cutting stock problem for
cut row materials [30]. Other application is multi-processor
scheduling on uniformly related machines [35]. Other difficult
problem which leads to MKP is crypto-systems and generating
keys [30]. One early application of MKP is tests generation
[27]. MKP is a model large set of binary problems with integer
coefficients [33], [36].

MKP is NP-hard problem and normally is solved with some
metaheuristic method such as genetic algorithm [37], tabue
search [48], swarm intelligence [34], ACO algorithm [21],
[26].

We will define MKP as resource allocation problem, where
m is the number of resources (the knapsacks) and n is
the number of the objects. The object j has a profit p;.
Each resource has its own budget (knapsack capacity) and
consumption r;; of resource j by object i. The purpose is
maximization of the profit within the limited budget.

The mathematical formulation of MKP can be as follows:

max Z;;l DT
subject to >0 rijr; < ¢ i=1,...,m (1)

z;€{0,1} j=1,...,n

There are m constraints in this problem, so MKP is also
called m-dimensional knapsack problem. Let I = {1,...,m}
and J = {1,...,n}, with ¢; > 0 for all ¢ € I. A well-stated
MKP assumes that p; > 0 and 7;; < ¢; < Z;—L:l r;; for all
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i € I and j € J. Note that the [r;]mxn matrix and [¢;]m,
vector are both non-negative.

The MKP partial solution is represented by S =
{i1,42,...,4;} and the last element included to S, i; is not
used in the selection process for the next element. Thus the
solution of MKP have not fixed length.

III. ANT COLONY OPTIMIZATION ALGORITHM

NP-hard problems require the use of huge resources and
therefore cannot be solved by exact or traditional numerical
methods, especially when they are large scale. We apply
metaheuristic method aiming to find approximate solution
using reasonable resources [18], [26].

Firs Marco Dorigo applies ideas coming from ants be-
havior to solve complicate optimization problems 30 years
ago [16]. Some modifications are proposed by him and by
other authors for algorithm improvement. The modifications
concern pheromone updating [18]. The algorithm is problem
dependent. Very important is representation of the problem by
a graph. Thus the solutions represent paths in the graph. The
ants look for an optimal path, taking in to account problem
constraints.

The transition probability P; ;, is a product of the heuristic
information 7, ; and the pheromone trail level 7; ; related to
the selection of node j if the previous selected node is i, where
,ij=1,....,n.

a b
Tij Mg

a b
> Tik Mk
ke Unused

P ;= )

where Unused is the set of unused nodes.

At the beginning the pheromone is initialized with a small
constant value 79, 0 < 79 < 1. Every time the ants build a
solution, the pheromone is bring up to date [18].The elements
of the graph with more pheromone are more tempting to the
ants.

The main update rule for the pheromone is:

Tij < P Tig + AT g, (3)

where parameter p decreases the value of the pheromone,
like evaporation in a nature decreases the quantity of old
pheromone. Ar; ; is a new deposited pheromone, which
depends on the value of the objective function, corresponding
to this solution.

The first step, when ACO is applied on some combinatorial
optimization problem is representation of the problem by
graph. In our case the items are related with the nodes of the
graph and the edges fully connect the nodes. The pheromone
is deposited on the arcs of the graph.

Second step is construction of appropriate heuristic informa-
tion. This step is very important, because the heuristic infor-
mation is the main part of the transition probability function
and the search process depends mainly on it. Normally the
heuristic information is a combination of problem parameters.

m . e . . .
Let s; = >." | r;;. For heuristic information we use:
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pit/si® if s #£0
Nij = 4)
P} if s;=0

where d; > 0 and dy > 0 are parameters. Hence the objects
with greater profit and less average expenses will be more
desirable. Thus is increased the probability to include more
items and most profitable items. This can lead to maximization
of the total profit, which is the objective of this problem.

IV. LoCcAL SEARCH PROCEDURE

At times is used hybridization of the used method, for
algorithm performance improvement. The goal is avoid some
disadvantages of the main method. A possibility for hybridiza-
tion is one of the methods to be basic and the other only helps
to improve the solutions. Most used hybridization manner is
local improvement or at the end of the iteration to apply some
problem dependent local search procedure.

The Local Search (LS) procedure is used to perturbs current
solution and to generate neighbor solutions [41]. LS generates
neighbor solutions in a local set of neighbors. The best solution
from the set is compared with the current solution. If it is
better, it is accepted as a new current solution.

A LS procedure which is consistent with MKP has been
developed and combined with ACO algorithm in our previous
work [26]. The MKP solution is represented by binary string
where 0 corresponds to not chosen item and 1 corresponds
to item included in the solution. Two positions are randomly
chosen. If the value of one of the positions is 0 we replace
it with 1 and if the value of other position is 1 we replace
it with 0 and vice versa. The feasibility of the new solution
is verified. If the solution is feasible we compare it with the
current (original) solution. The perturbed solution is accepted
if its value of the objective function is greater, than of the
original one.

We apply this LS procedure ones on each iteration on each
solution, disregarding if the new constructed solution is better
than current one or not. Thus the proposed LS works without
significant increase of the used computational resources.

V. INTERCRITERIA ANALYSIS

Based on the apparatuses of index matrices [4], [6], [8],
[9] and intuitionistic fuzzy sets (IFSs) [5], [7], [10], authors
in [11] propose a new approach named InterCriteria analysis.
Briefly presented, an intuitionistic fuzzy pair (IFP) [12] is an
ordered pair of real non-negative numbers (a, b), where a,b €
[0,1] and a + b < 1, that is used as an evaluation of some
object or process. According to [12], the components (a and
b) of IFP might be interpreted as degrees of “membership”
and “non-membership” to a given set, degrees of “agreement”
and “disagreement”, etc.

Let O denotes the set of all objects being evaluated, and
C(O) is the set of values assigned by a given criteria C (i.e.,
C = C, for some fixed p) to the objects, i.e.,

0= {017027037 ey On}a
C(0) £ {C(01),C(02),C(0s), .., C(On)}.
Let z; = C(O;). Then the following set can be defined:
* def . .
C*(0) = {(&i, z;))i # j & (xi,z;) € C(O) x C(O)}.

Further, if + = C(0;) and y = C(0;), x < y if i < j will
be written.

In order to find the agreement of different criteria, the
vectors of all internal comparisons for each criterion are
constructed, which elements fulfill one of the three relations
R, R and R. The nature of the relations is chosen such that
for a fixed criterion C' and any ordered pair (x,y) € C*(O):

def

(z,y) € R& (y,z) € R, ®)
(z,y) € R (z,y) ¢ (RUR), ©
RURUR=C*(0). (7)

For example, if “R” is the relation “<”, then R is the
relation “>”, and vice versa.

When comparing two criteria the degree of “agreement”is
determined as the number of matching components of the
respective vectors (divided by the length of the vector for
normalization purposes).

Let the respective degrees of “agreement” and “disagree-
ment” are denoted by uc,cr and vo cr. In the most of the
obtained pairs {(uc, o, ve,cr), the sum pe o + ve o is equal
to 1. However, there may be some pairs, for which this sum
is less than 1. The difference

e, =1 — peo,cr —ve,or (8)
is considered as a degree of uncertainty.

VI. COMPUTATIONAL RESULTS AND DISCUSSION

The proposed hybrid ACO algorithm for MKP is tested
on 10 test MKP instances from Operational Research
Library “OR-Library” available within WWW access at
http://people.brunel.ac.uk/ mastjjb/jeb/info.html. Every test
problem consists of 100 items and 10 constraints/knapsacks.
We prepare a software, which realizes our hybrid algorithm.
The software is coded in C'++ program language and is run on
Pentium desktop computer at 2.8 GHz with 4 GB of memory.
The ACO algorithm parameters are fixed experimentally as
follows:

¢ Number of iterations = 300, Number of ants = 20;

e p=05,17=0.5;

ea=1,b=1and dy = 1.

We perform 30 independent runs with every one of the test
instances, because the algorithm is stochastic and to guarantee
the robustness of the average results. We apply ANOVA test
for statistical analysis and thus we guarantee the significance
of the difference between the average results. The names of
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TABLE I: Test instances

Instance Name
Hybrid ACO | Traditional ACO

MKP 100 x 10-01 P11, P1;
MKP 100 x 10-02 P2 P2,
MKP 100 x 10-03 P3p, P3;
MKP 100 x 10-04 P4, P4,
MKP 100 x 10-05 Pby, P5;
MKP 100 x 10-06 P6y, P6;
MKP 100 x 10-07 PTy, PT7;
MKP 100 x 10-08 P8y, P8
MKP 100 x 10-09 P9y, P9
MKP 100 x 10-10 P10y, P10

TABLE II: Traditional ACO performance

Pl P2 P3 P4, P5¢ P6; PT; P8 P9 P10
runl 22089 | 22452 | 20936 | 21481 | 21751 | 21810 | 21537 | 21634 | 22213 | 40594
run2 21954 | 22055 | 20966 | 21318 | 21606 | 21864 | 21659 | 21596 | 22398 | 40701
run3 21935 | 21912 | 21023 | 21318 | 21463 | 21912 | 21526 | 21516 | 22065 | 40647
run4d 22030 | 21914 | 20732 | 21556 | 21519 | 21903 | 21470 | 21337 | 22191 | 40617
run5 21875 | 21990 | 21120 | 21451 | 21903 | 21970 | 21360 | 21689 | 22152 | 40489
run6 21970 | 21999 | 21114 | 21619 | 21736 | 21756 | 21426 | 21729 | 22125 | 40646
run? 21974 | 21990 | 21085 | 21740 | 21641 | 21654 | 21522 | 21515 | 22398 | 40714
run8 22041 | 22120 | 21032 | 21918 | 21811 | 22053 | 21584 | 21550 | 22109 | 40550
run9 21893 | 21924 | 21187 | 21335 | 21716 | 21864 | 21587 | 21725 | 22398 | 40581
runl0 | 21984 | 22104 | 20822 | 21719 | 21767 | 21864 | 21509 | 21550 | 22078 | 40594
runll | 21787 | 21950 | 21042 | 21661 | 21673 | 22047 | 21595 | 22067 | 22398 | 40659
runl2 | 21916 | 22675 | 21182 | 21629 | 21818 | 21834 | 21426 | 21550 | 22101 | 40646
runl3 | 22031 | 22027 | 20869 | 21490 | 21843 | 22123 | 21466 | 21508 | 22398 | 40584
runl4 | 22188 | 21975 | 21203 | 21736 | 21811 | 21864 | 21601 | 21550 | 22398 | 40627
runl5 | 21889 | 22119 | 21204 | 21740 | 21716 | 21824 | 21509 | 21573 | 22086 | 40515
runl6 | 22009 | 22101 | 20877 | 21705 | 21952 | 21779 | 21409 | 21506 | 22039 | 40498
runl7 | 21880 | 21990 | 21085 | 21531 | 21736 | 21713 | 21394 | 21579 | 22398 | 40680
runl8 | 21958 | 22102 | 20872 | 21335 | 21811 | 22053 | 21596 | 21550 | 22105 | 40589
runl9 | 22015 | 21963 | 20841 | 21861 | 21581 | 21864 | 21624 | 21729 | 22324 | 40404
run20 | 22054 | 22027 | 21007 | 21815 | 21679 | 22140 | 21392 | 21729 | 22398 | 40367
run2l | 22093 | 22027 | 20833 | 21607 | 21811 | 21816 | 21509 | 21496 | 22039 | 40496
run22 | 22074 | 22065 | 20960 | 21701 | 21711 | 21903 | 21509 | 21496 | 22398 | 40737
run23 | 22003 | 22027 | 20976 | 21759 | 21685 | 21864 | 21522 | 21339 | 22039 | 40594
run24 | 22169 | 22005 | 21003 | 21490 | 21735 | 21898 | 21511 | 21520 | 22156 | 40317
run25 | 22091 | 22106 | 20808 | 21964 | 21622 | 21840 | 21434 | 21614 | 22398 | 40664
run26 | 21945 | 21899 | 21103 | 21335 | 21417 | 22053 | 21426 | 21516 | 22059 | 40319
run27 | 22086 | 22196 | 21069 | 21774 | 21944 | 22241 | 21590 | 21629 | 22398 | 40728
run28 | 21926 | 21975 | 21003 | 21437 | 21922 | 21864 | 21531 | 21503 | 22398 | 40636
run29 | 21929 | 22177 | 20799 | 21681 | 21736 | 21907 | 21479 | 21530 | 22398 | 40498
run30 | 22030 | 21931 | 20925 | 22061 | 21434 | 21864 | 21509 | 21366 | 22398 | 40756

the test instances are presented in Table I. In Table II and
Table III observed numerical results for all 30 runs are listed.

In Table IV are reported average results for every one of
the test instances over 30 runs. We compare ACO algorithm
combined with local search procedure (hybrid ACO) with
traditional ACO algorithm. On the last row is reported average

computational time, in seconds, of the two variants of ACO
algorithm.

Table IV shows that for eight of ten instances hybrid ACO
algorithm outperforms the traditional one. For the instances
MKP 100 x 10-02 and MKP 100 x 10-10 the results are
statistically the same. The main problem with hybrid algo-
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TABLE III: Hybrid ACO performance

Pl, | P2, | P3, | P4, | P5, | P6, | P7, | P8, | P9, | P10,
runl | 22206 | 22047 | 21292 | 21885 | 21811 | 21940 | 21509 | 22004 | 22270 | 40647
run2 | 21968 | 22186 | 21089 | 21962 | 21811 | 21957 | 21509 | 21616 | 22097 | 40557
run3 | 21970 | 22074 | 21233 | 22139 | 21716 | 21934 | 21530 | 21550 | 22087 | 40598
rund | 22130 | 22028 | 21687 | 21701 | 21811 | 22024 | 21415 | 21729 | 22294 | 40679
runS | 22107 | 22168 | 21020 | 21885 | 21811 | 22047 | 21522 | 21729 | 22285 | 40647
run6 | 22138 | 22027 | 21222 | 21736 | 21798 | 21980 | 21522 | 21551 | 22257 | 40522
run7 | 22367 | 22027 | 21416 | 21962 | 21811 | 21900 | 21437 | 21729 | 22140 | 40538
run8 | 22051 | 22028 | 21261 | 21420 | 21790 | 22048 | 21509 | 21648 | 22125 | 40710
run9 | 21867 | 22104 | 20861 | 21780 | 21811 | 21985 | 21531 | 21729 | 22398 | 40710
runl0 | 21910 | 22027 | 21090 | 21666 | 21811 | 21987 | 21537 | 21729 | 22398 | 40647
runll | 22133 | 22027 | 20758 | 21854 | 21844 | 22011 | 21655 | 21729 | 22398 | 40583
runl2 | 22164 | 22074 | 20848 | 21885 | 21798 | 22053 | 21330 | 21653 | 22154 | 40662
runl3 | 21949 | 22044 | 21090 | 22099 | 21736 | 21987 | 21409 | 21729 | 22398 | 40664
runld | 22067 | 22102 | 20954 | 21921 | 21798 | 21987 | 21587 | 21729 | 22117 | 40683
runlS | 21889 | 22027 | 21236 | 21801 | 21811 | 22113 | 21509 | 21729 | 22069 | 40689
runl6 | 21999 | 22213 | 21185 | 21561 | 21811 | 21900 | 21509 | 21650 | 22429 | 40636
runl7 | 21926 | 22065 | 21017 | 22174 | 21914 | 21937 | 21509 | 21550 | 22191 | 40489
runl8 | 21914 | 22027 | 21097 | 21542 | 21855 | 21864 | 21509 | 21550 | 22247 | 40714
runl9 | 22008 | 22028 | 20953 | 21490 | 21796 | 22053 | 21624 | 21683 | 22398 | 40677
run20 | 21840 | 22151 | 21166 | 21893 | 21804 | 21987 | 21418 | 21729 | 22193 | 40728
run2l | 21993 | 22155 | 20839 | 21656 | 21811 | 21891 | 21584 | 21550 | 22398 | 40565
run22 | 22130 | 22106 | 21134 | 21962 | 21798 | 22063 | 21533 | 21658 | 22479 | 40742
run23 | 21958 | 22060 | 20881 | 21885 | 21811 | 21987 | 21426 | 21729 | 22152 | 40503
run24 | 22014 | 22027 | 21373 | 22023 | 21811 | 21924 | 21511 | 21729 | 22152 | 40514
run25 | 22072 | 22027 | 20925 | 21953 | 21811 | 21987 | 21509 | 21697 | 22123 | 40650
run26 | 22088 | 22104 | 20857 | 22052 | 21974 | 21987 | 21509 | 21550 | 22429 | 40751
run27 | 21928 | 22027 | 20934 | 21864 | 21811 | 21987 | 21509 | 21550 | 22218 | 40658
run28 | 21933 | 22110 | 20916 | 21885 | 21811 | 22121 | 21509 | 21689 | 22398 | 40499
run29 | 21970 | 22027 | 21281 | 21793 | 21832 | 21987 | 21509 | 21729 | 22398 | 40598
run30 | 21993 | 22027 | 21064 | 21951 | 21811 | 22050 | 21509 | 21550 | 22479 | 40540

TABLE IV: Comparison of ACO performance

Instance Hybrid ACO | Traditional ACO
MKP 100 x 10-01 22022.73 21989.43
MKP 100 x 10-02 22071.46 22081.36
MKP 100 x 10-03 21089.3 21027.63
MKP 100 x 10-04 21846 21635.3
MKP 100 x 10-05 21814.3 21717.3
MKP 100 x 10-06 21989.26 21869.73
MKP 100 x 10-07 21506.26 214773
MKP 100 x 10-08 21672.53 21606.43
MKP 100 x 10-09 22272.36 22257
MKP 100 x 10-10 40626.66 40623.26
computational time 64.052 s 65.552 s

rithms, when some global method is combined with local
search procedure, is increasing of computational time. We try
to propose efficient and in a same time less time consuming
local search. We only change randomly chosen position in a
solution to 0, if it is 1 and another randomly chosen position to

1 if it is 0. Thus is generated only one neighbor solution. If this
solution is better than the current one, it is accepted and used
for pheromone updating instead of the solution constructed by
the ant. We apply this procedure to each of the solutions. As is
seen from Table IV the increase of computational time, when
our local search is applied is only 2.34%.

Thus we can conclude that proposed local search proce-
dure is efficient and effective. The algorithm performance is
improved, without significant increase of the computational
time.

To support these claims, the obtained numerical results
were analyzed using ICrA. The input matrix for ICrA has
the following form index matrix Table V:

The obtained by ICrA results are listed in Table VI (p-
values) and Table VII (v-values). The w-values are also pre-
sented (see Table VIII). The results between the same instances
but for different ACO algorithms are presented. For example,
relations between P1, — P1,, P2, — P2;,, P3; — P3;, etc.
are considered for further analysis (presented in bold results
in Tables VI, VII and VIII).

According to [13] the results show that the considered
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TABLE V: Index matrix for ICrA

runl run2 run30
Pl valpi, ; valpi, , Ualleg
P24 valp2t71 valpa, , valpgmo
P10 Ua’lplot,l ’Ualpu]t_’2 valPlOt,'s() )
Pl ”ualplh,1 ”umlplh’2 valplh’30
P2y, valpa,, | vczlpgm2 Ualpgh,SO
Pth ’Ualpl()h’l ’l)alploh‘2 UalPth,,so

TABLE VI: Degree of agreement — jic c/-values

m Pl | P2y | P3¢ | P44 Pb5; P6; | P7; | P8 | P9 | P10
P1y, 0.55 | 046 | 051 0.5 045 | 038 | 045 | 046 | 0.37 0.55
P2y, 042 | 037 | 0.48 0.3 048 | 039 | 036 | 037 | 0.34 0.36
P3p, 0.57 | 0.57 | 0.44 0.5 046 | 046 | 046 | 043 | 0.39 0.47
P4y, 047 | 039 | 0.55 0.4 035 | 047 0.4 0.41 | 0.51 0.61
P5y, 0.25 | 034 | 033 | 0.27 032 | 036 | 035 | 0.34 | 034 0.34
P6y, 04 | 045 | 05 | 057 | 043 05 | 044 | 046 | 046 | 048
P7y, 0.41 03 | 044 | 0.38 038 | 0.52 | 0.51 | 036 | 0.38
P8, 0.4 042 | 0.38 | 0.42 037 | 039 | 042 | 0.42 0.29
P9y, 045 | 038 | 035 | 044 | 049 | 049 | 039 | 039 | 0.42 0.41
P10y | 0.55 | 0.52 0.5 052 | 046 | 0.63 | 0.48 | 0.54 | 0.38 0.38
TABLE VII: Degree of disagreement — v ¢--values
v Pl; | P2y | P3y | P4 | P5; | P6y | P7¢ | P8 | P9y | P10
Pl 0.44 | 0.51 | 047 | 048 | 052 | 0.54 | 052 | 05 0.4 0.43
P2y, 0.44 | 046 | 038 | 056 | 037 | 04 | 048 | 046 | 038 | 0.49
P3y 043 | 04 | 055 | 049 | 052 | 047 | 05 | 054 | 04 0.51
P4y, 049 | 055 | 042 | 0.55 | 0.59 | 043 | 0.54 | 0.53 | 0.26 0.36
Pb5p, 046 | 036 | 038 | 043 | 037 | 035 | 0.37 | 0.34 | 0.27 0.37
P6y, 0.51 | 045 | 0.41 | 033 | 046 | 036 | 0.44 | 042 | 031 0.43
Py, 0.41 0.5 0.37 | 043 | 041 0.4 0.27 | 0.28 | 0.34 0.43
Pg;, 037 | 035 | 039 | 035 | 036 | 036 | 037 | 0.33 | 0.24 0.47
P9y, 047 | 0.53 | 0.57 | 048 | 0.41 0.4 0.52 | 0.51 | 0.34 0.51
P10s, | 043 | 044 | 048 | 045 029 | 047 | 042 | 0.39 0.6

criteria pairs, are in dissonance or in strong dissonance. This
means that the both compared ACO algorithms (hybrid and
traditional ones) performed differently in case of all 10 various
instances.

The results obtained form ICrA are correct and reliable,
taking into account the observed values of ¢ c/-values. Only
for relations between P5; — P5;,, P8; — P8;, and P9, — P9y,
there are some high ¢, cs-values, respectively 0.31, 0.25 and
0.24. The obtained estimates for the degree of agreement and
the degree of disagreement have a high degree of uncertainty.

VII. CONCLUSION

In this paper we propose hybrid ACO algorithm for solv-
ing MKP. The algorithm is combination of traditional ACO
algorithm and local search procedure. Proposed algorithm is
tested on 10 benchmark MKP. The achieved results show
the efficiency and effectiveness of the proposed local search
procedure. The hybrid algorithm performs better than the
traditional one, while the calculation time increases only with
2.34%.

Obtained results are analyzed by ICrA approach. The anal-
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TABLE VIII: Degree of uncertainty — m¢,cv-values

s Ply | P2y | P3; | P4 | P5: | P6y | P7¢ | P8 | P9: | P10
P11y 0.01 | 0.03 | 0.02 | 0.02 | 0.03 | 0.08 | 0.03 | 0.04 | 0.23 0.02
P2y, 0.14 | 0.17 | 0.14 | 0.14 | 0.15 | 0.21 | 0.16 | 0.17 | 0.28 0.15
P3y 0 0.03 | 0.01 | 0.01 | 0.02 | 0.07 | 0.04 | 0.03 | 0.21 0.02
P4y 0.04 | 0.06 | 0.03 | 0.05 | 0.06 0.1 0.06 | 0.06 | 0.23 0.03
P5y, 0.29 0.3 0.29 0.3 0.31 | 0.29 | 0.28 | 0.32 | 0.39 0.29
P6y, 0.09 | 0.1 0.09 | 0.1 0.11 | 0.14 | 0.12 | 0.12 | 0.23 0.09
PTp, 0.18 | 02 | 0.19 | 0.19 | 0.19 | 0.22 | 0.21 | 0.21 0.3 0.19
P8y, 023 | 023 | 023 | 023 | 0.24 | 0.27 | 024 | 0.25 | 0.34 0.24
P9y, 0.08 | 0.09 | 0.08 | 0.08 0.11 | 0.09 0.1 0.24 0.08
P10 | 0.02 | 0.04 | 0.02 | 0.03 | 0.04 | 0.08 | 0.05 | 0.04 | 0.23 0.02
ysis shows that the both algorithms performs differently for [10] K. Atanassov. Review and New Results on Intuitionistic Fuzzy Sets,

the considered 10 instances, i.e. the behavior of the proposed
hybrid ACO is importantly different from that of the tradi-
tional ACO algorithm, or the local search procedure perturbs
significantly the search process.

Through the application of ICrA approach the efficiency
and effectiveness of the proposed hybrid ACO agorithm are
confirmed.
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