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AbstractÐRecently stochastic methods have become very im-
portant tool for high performance computing of very high
dimensional problems in computational finance. The advantages
and disadvantages of the different highly efficient stochastic
methods for multidimensional integrals related to evaluation
of European style options will be analyzed. Multidimensional
integrals up to 100 dimensions related to European options will
be computed with highly efficient optimized lattice rules.

I. INTRODUCTION

RECENTLY Monte Carlo (MC) and quasi-Monte Carlo

(QMC) approaches have become a very attractive and

necessary computational tools in finance [8]. The field of

computational finance is becoming more complicated with

increasing number of applications [2], [3]. The pricing of

options is a very important in financial markets today and

especially difficult when the dimension of the problem goes

higher [2], [8], [9], [12]. MC and QMC methods are ap-

propriate for solving multidimensional problems [4], since

their computational complexity increases polynomially, but

not exponentially with the dimensionality. MC methods are

used not only for option pricing, but also in other problems in

computational finance. The basic definitions and terminology

used in the paper can be found in [1], [8].

The paper is organized as follows. The problem setting and

motivation is presented in Section II. Some basic notations

about the stochastic methods that we are going to use are

presented in III. Numerical study and discussions are given in

Section IV. The conclusions are given in Section V.
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II. PROBLEM SETTINGS AND MOTIVATION

Consider a European call option [8] whose payoff depends

on k > 1 assets with prices Si, i = 1, ..., k.. The payoff is the

act or occasion of receiving money or material gain especially

as compensation or as a bribe. Following [8] we assume that

at expiry time T , and risk-free interest rate r, the payoff is

given by h(S′
1, . . . , S

′
k), where S′ denotes the value of the

i-th asset at expiry. Then the value of the option satisfies:

V = e−r(T−t)(2π(T − t))−k/2(detΣ)−1/2(σ1 . . . σk)
−1

∫ ∞

0

· · ·

∫ ∞

0

h(S′
1, . . . , S

′
k)

S′
1 . . . S

′
k

exp
(

−0.5α⊤Σ−1α
)

dS′
1 . . . dS

′

k,

αi =
(

σi(T − t)1/2
)−1

(

ln(S′
i/Si)− (r − σ2

i /2)(T − t)
)

.

According to [8] the most important case in recent models is

when the payoff function is the exponent function.

We will now give a brief explanation which demonstrates

the strength of the MC and QMC approach. This is a case

of practical high performance computations showing the high

power and efficiency of the stochastic approach versus the

deterministic one [4]. According to [4] we will choose 100
nodes on the each of the coordinate axes in the s-dimensional

cube G = Es and we have to evaluate about 10100 values of

the function f(x). Assume a time of 10−7s is necessary for

calculating one value of the function [4]. So, a time of order

1093s will be necessary for computation of the integral, and 1

year has 31536× 103s.

Now MC approach [4] consists of generating N pseudo

random values (points) (PRV) in G; in evaluating the values

of f(x) at these points; and averaging the computed values of

the function. For each uniformly distributed random (UDR)

point in G we have to generate 100 UDR numbers in [0, 1].
The probable error is estimated in [4]:

N ≈ (
0.6745||f ||L2

cM
)2 × h−6. (1)
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Assume that the expression in front of h−6 is of order 1 [4].

Here h = 0.1, and we have N ≈ 106; so, it will be necessary

to generate 100× 106 = 10× 107 PRV. Usually, 2 operations

are sufficient to generate a single PRV. According to [4] the

time required to generate one PRV is the same as that for

computation the value of f(x). So, in order to solve the task

with the same accuracy, a time of

10× 107 × 2× 10−7 ≈ 20s

will be necessary. We summarize that in the case of 100-

dimensional integral it is 5 × 1091 times faster than the de-

terministic one. Also the stochastic approach is more accurate

than the deterministic approach for higher dimensions. That

motivates our study on the new highly efficient stochastic

approaches for the problem under consideration.

III. HIGHLY EFFICIENT STOCHASTIC APPROACHES

We will make a brief description of the stochastic ap-

proaches that we are going to use in our survey. Such compar-

ison, up to 100 dimensions, has been made for the first time

for the problem under consideration.

A. Lattice rules

Fot the lattice point sets, please see cite[13], and more

information can be found in the works of Sloan and Kachoyan

[10], Sloan and Joe [11] and Hua and Wang [6].

We will use this rank-1 lattice sequence [13]:

xk =

{

k

N
z

}

, k = 1, . . . , N, (2)

where N is an integer, N ≥ 2, z = (z1, z2, . . . zs) is the

generating vector and {z} denotes the fractional part of z. For

the definition of the Eα
s (c) and Pα(z,N) see [13].

The existence of lattice point sets with low discrepancy and

low worst case error are closely connected [13].

While the theoretical result establish the existence of opti-

mal generating vectors the main bottleneck lies in the creation

of the optimal vectors, especially for very high dimensions [8].

The first generating vector in our study is the generalized

Fibonacci numbers of the corresponding dimension:

z = (1, F (s)
n (2), . . . , F (s)

n (s)). (3)

where we use that

F (s)
n (j) := F

(s)
n+j−1 −

j−2
∑

i=0

F
(s)
n+i (4)

and F
(s)
n+l (l = 0, . . . , j − 1, j is an integer, 2 ≤ j ≤ s) is the

term of the s-dimensional Fibonacci sequence [13].

Then each component of the generating vector z is defined

by a sum of some terms of the generalized Fibonacci sequence

with dimensionality s. For example:

F (s)
n (2) = F

(s)
n+1 − F (s)

n = (F (s)
n + F

(s)
n−1 + . . .+

F
(s)
n−s+1)− F (s)

n = F
(s)
n−1 + . . .+ F

(s)
n−s+1.

Our generating vector (3) is transformed into [6], [13]:

z = (1, F
(s)
n−1+F

(s)
n−2+. . .+F

(s)
n−s+1, . . . , F

(s)
n−1+F

(s)
n−2, F

(s)
n−1).

(5)

If we change the generating vector to be optimal in the way

described in [7] we have improved the lattice sequence. This is

a 200-dimensional base-2 generating vector of prime numbers

for up to 220 = 1048576 points, constructed recently by Dirk

Nuyens [7]. The special choice of this optimal generating

vector is definitely more efficient than the Fibonacci generating

vector, which is only optimal for the two dimensional case

[13]. For this improved lattice rule, presented in the paper, is

satisfied [7]:

D∗
N = O

(

logsN

N

)

.

IV. NUMERICAL EXAMPLES AND RESULTS

The numerical study includes high performance computing

of the multidimensional integrals

Is =

∫

[0,1]s

exp

(

s
∏

i=1

xi

)

. (6)

We will use the expansion of the exponential function in Taylor

series and integrating (x1 · · ·xs)
n:

∫

[0,1]s
exp

(

s
∏

i=1

xi

)

=

=
∞
∑

n=0

1

(n+ 1)sn!
=s Fs(1, · · · , 1; 2, · · · , 2; 1),

where pFq(a1, · · · , ap; b1, · · · , bq;x) is the generalized hyper-

geometric function

pFq(a1, · · · , ap; b1, · · · , bq;x) =
∞
∑

n=0

(a1)n · · · (ap)n
(b1)n · · · (bq)n

xn

n!
,

and (c)n = c(c+1) · · · (c+n−1) is the Pochhammer symbol.

∫

[0,1]3

exp(x1x2x3) ≈ 1.14649907. (7)

∫

[0,1]5

exp(
5
∑

i=1

0.5aix
2
i (2 + sin

5
∑

j=1,j ̸=i

xj)) ≈ 2.923651, (8)

where ai = (1, 0.5, 0.2, 0.2, 0.2).

∫

[0,1]8

exp(
8
∑

i=1

0.1xi) = 1.496805. (9)

∫

[0,1]20

exp(

20
∏

i=1

xi) ≈ 1.00000949634. (10)
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We also have done high performance computing with our

methods for the first time on a 100 dimensional integral:

I100 =

∫

[0,1]100

exp

(

100
∏

i=1

xi

)

. (11)

We calculate his reference value by using the exponential

function in Taylor series and integrating (x1 · · ·x100)
n we

receive
∫

[0,1]100
exp

(

100
∏

i=1

xi

)

=

=
∞
∑

n=0

1

(n+ 1)100n!
=100 F100(1, · · · , 1; 2, · · · , 2; 1).

We also include in the experiments the 50-dimensional integral

of the same kind:

I50 =

∫

[0,1]50

exp

(

50
∏

i=1

xi

)

. (12)

The results are given in the Tables including the relative

error (RE) of the MC and QMC method that has been used,

the CPU-time (T) in seconds and the number of realizations

of the random variable (#). We will make a high performance

computation, including the Optimized lattice rule (OP), the

Fibonacci based rule (FI), the Adaptive approach (AD) and

the Sobol quasi-random sequence (SO).

Table I
ALGORITHMIC COMPARISON OF RE FOR (7)

# OP T AD T FI T SO T

19513 1.93e-5 0.01 3.21e-4 2.21 4.69e-4 0.02 4.98e-5 0.56
35890 3.18e-6 0.04 6.55e-5 6.41 5.46e-6 0.06 1.56e-5 1.45
66012 2.65e-6 0.07 5.12e-5 9.86 5.34e-6 0.11 8.11e-6 2.31
121415 9.16e-7 0.12 5.11e-5 15.4 5.34e-6 0.12 3.08e-6 3.80
223317 8.01e-7 0.20 9.34e-5 24.2 1.73e-6 0.22 2.05e-6 6.13

Table II
ALGORITHMIC COMPARISON OF RE FOR THE (7)

T OP AD FI SO

0.1 9.16e-7 8.67e-4 1.32e-6 3.21e-4
1 6.37e-7 2.96e-5 3.22e-7 8.21e-5
2 4.22e-7 5.45e-4 2.06e-7 2.96e-5
5 1.84e-7 1.14e-4 1.47e-7 5.00e-6
10 6.09e-8 6.56e-5 3.89e-7 2.71e-6
20 1.57e-8 2.04e-5 1.53e-8 1.65e-6

Table III
ALGORITHMIC COMPARISON OF RE FOR THE (8)

# OP T AD T FI T SO T

13624 6.72e-5 0.02 1.89e-3 2.33 9.59e-4 0.03 1.76e-4 0.56
52656 1.53e-5 0.06 2.31e-3 6.18 6.96e-4 0.06 5.05e-5 1.45
103519 8.48e-6 0.09 2.01e-3 9.94 8.72e-5 0.13 2.70e-5 2.52
203513 6.25e-6 0.15 3.42e-4 16.2 8.04e-5 0.25 7.57e-6 6.07
400096 8.16e-7 0.40 9.12e-4 45.6 7.26e-5 0.50 2.52e-6 10.63

Table IV
ALGORITHMIC COMPARISON OF RE FOR THE (8)

T OP AD FI SO

0.1 3.07e-6 1.34e-2 7.26e-5 8.22e-4
1 1.32e-6 2.44e-3 2.28e-5 2.91e-4
5 1.13e-6 4.93e-4 5.94e-6 1.71e-5
10 5.47e-7 1.88e-3 3.85e-7 1.79e-5
20 3.52e-7 2.71e-4 7.49e-7 4.71e-6

Table V
ALGORITHMIC COMPARISON OF RE FOR THE (9)

# OP T AD T FI T SO T

16128 1.79e-6 0.04 1.10e-5 12.6 8.08e-4 0.03 8.87e-5 0.13
32192 1.56e-6 0.05 3.32e-5 33.3 1.03e-4 0.07 5.42e-5 0.58
64256 8.01e-7 0.08 4.65e-5 54.2 5.03e-5 0.11 2.34e-5 2.49
128257 6.22e-7 0.13 8.25e-6 88.3 8.13e-6 0.14 4.45e-6 6.36
510994 3.21e-7 0.34 7.07e-6 233.6 5.95e-6 0.57 3.32e-6 19.45

Table VI
ALGORITHMIC COMPARISON OF RE FOR THE (9)

T OP AD FI SO

1 2.18e-7 6.34e-4 5.34e-6 2.02e-5
2 1.32e-7 1.58e-4 2.57e-6 2.73e-5
5 9.03e-8 1.44e-4 1.52e-7 8.88e-6
10 5.00e-8 6.61e-5 3.45e-6 5.23e-6
20 2.55e-8 2.77e-5 1.82e-7 2.11e-6

Table VII
ALGORITHMIC COMPARISON OF RE FOR THE (10)

# OP T AD T FI T SO T

2048 2.84e-6 0.02 1.14e-2 8.6 8.22e-5 0.03 8.44e-4 0.13
16384 1.04e-6 0.12 4.96e-4 60.3 3.12e-5 0.13 6.82e-5 1.68
65536 9.21e-7 0.91 9.75e-4 474.2 1.36e-5 1.17 8.34e-6 8.69
131072 6.15e-7 2.13 1.25e-5 888.3 8.85e-6 2.34 3.77e-6 14.36
524288 5.33e-8 8.13 1.96e-6 2356 2.15e-6 8.34 1.91e-7 57

Table VIII
ALGORITHMIC COMPARISON OF RE FOR THE (10)

T OP AD FI SO

1 9.14e-7 1.58e-3 1.48e-5 3.25e-5
2 1.08e-7 1.028e-3 9.17e-6 3.97e-5
5 5.87e-8 8.58e-4 5.19e-6 1.45e-5
10 3.56e-8 4.31e-4 1.73e-6 2.71e-6
20 1.23e-8 1.27e-4 1.38e-7 1.76e-6

Table IX
ALGORITHMIC COMPARISON OF RE FOR THE (12)

# OP T FI T SO T

2
10 7.88e-6 0.05 6.23e-4 0.08 8.88e-5 3.5

2
12 1.88e-6 0.17 1.55e-4 0.35 5.21e-5 16

2
16 8.44e-8 2.14 9.72e-5 5.21 9.11e-4 73

2
20 4.28e-8 17.65 6.08e-5 32.76 4.88e-6 276

For the 3-dimensional integral, for the number of samples
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Table X
ALGORITHMIC COMPARISON OF RE FOR THE (12)

T OP FI SO

1 9.14e-7 1.58e-3 1.48e-4
2 7.51e-7 1.028e-3 9.17e-5
10 9.34e-8 3.01e-4 8.73e-5
100 1.34e-9 5.23e-5 1.03e-5

Table XI
ALGORITHM COMPARISON OF THE RE FOR THE (11)

# OP T FI T SO T

2
10 6.83e-3 0.05 4.13e-1 0.06 6.31e-2 18

2
12 3.77e-4 0.17 1.15e-1 0.18 1.23e-2 34

2
16 3.36e-5 9.1 6.12e-2 9.2 2.31e-3 170

2
20 4.78e-6 57.6 3.18e-2 58.7 2.34e-4 861

Table XII
ALGORITHM COMPARISON OF THE RE FOR THE 100-DIMENSIONAL

INTEGRAL (11)

T OP FI SO

1 2.67e-3 7.18e-2 9.31e-2
2 1.89e-4 6.02e-2 8.66e-2
10 3.22e-5 4.12e-2 6.94e-2
100 8.16e-7 1.13e-2 3.88e-3

Generalized Fibonacci numbers of the correspond-ing dimen-

sionality, the best relative error is produced by the optimized

lattice algorithm OPT - see Table I, but for a preliminary given

time in seconds the optimized method OPT and the Fibonacci

latice rule FIBO gives results of the same order - see Table II.

For the 5-dimesnional integral again the best approach is OPT

method, for N = 440096 it gives relative error of 8.16e− 7 -

see Table III, while for 20s again FIBO method gives results

of the same order as the optimized method - see Table IV. For

the 8-dimensional integral the Adaptive approach, the Sobol

QMC algorithm and the Fibonacci approach produce relative

error of the same order - see Table V, but for a preliminary

given time in seconds, Fibonacci approach is better than both

Sobol QMC and Adaptive approach - see Table VI. For the 20-

dimensional integral Sobol QMC approach is better than both

Fibonacci and Adaptive approach - see Table VII and Adaptive

approach requires very huge amount of time - near one hour

for number of samples N = 524888 due to the division of the

subareas in the description of the algorithm. Thats why we

omit this algorithm for the 50 and 100-dimensional integrals.

For 20s for 20-dimensional integral the best result is produced

again by the optimized lattice rule - 1.23e− 8 in Table VIII.

For the 50-dimensional integral Fibonacci approach is worse

than Sobol approach by at least 1 order - see Table IX, but for a

preliminary given time in seconds Sobol QMC and Fibonacci

approach give relative errors of the same order - see Table

X. It is worth mentioning that the SOBOL approach requires

more amount of time due to generation of the sequence,

while Fibonacci lattice rules and Optimized approach are

more faster and computationally efficient algorithms. For the

100-dimensional integral the best result is produced by the

optimized lattice approach - it gives 4.78e− 6 for number of

samples N = 220 - see Table XI and for 100s it produces a

relative error of 8.16e−7 which is very high accuracy and with

3 to 4 orders better than the other stochastic approaches. So

we demonstrate here the advantages of the new lattice method

and its capability to achieve very high accuracy for less than

a minute on a laptop with a quad core CPU.

V. CONCLUSION

A comprehensive experimental study of optimized lattice

rule, Fibonacci lattice sets, Sobol sequence and Adaptive

approach has been done for the first time on some case

test functions related to option pricing. Optimized lattice rule

described here is not only one of the best available algorithms

for high dimensional integrals but also one of the few possible

methods, because in this work we show that the deterministic

algorithms need a huge amount of time for the evaluation

of the multidimensional integral, as it was discussed in this

paper. The numerical tests show that the improved lattice

rule is efficient for multidimensional integration and especially

for computing multidimensional integrals of a very high di-

mensions up to 100. The novelty is that the new proposed

optimized method gives very high accuracy for less than a

minute on laptop even for 100-dimensional integral. It is an

important element since this may be crucial in order to achieve

a more reliable interpretation of the results in European style

options which is foundational in computational finance.
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