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Abstract—The communication topology is an essential aspect in
designing distributed optimization heuristics. It can influence the
exploration and exploitation of the search space and thus the op-
timization performance in terms of solution quality, convergence
speed and collaboration costs – relevant aspects for applications
operating critical infrastructure in energy systems. In this work,
we present an approach for adapting the communication topology
during runtime, based on the principles of simulated annealing.
We compare the approach to common static topologies regard-
ing the performance of an exemplary distributed optimization
heuristic. Finally, we investigate the correlations between fitness
landscape properties and defined performance metrics.

I. INTRODUCTION

D
ISTRIBUTED heuristics are a promising field for current

and future energy systems control and optimization tasks,

and have been designed and evaluated in recent years on

agent-based systems [1] [2] [3]. While conventional control

systems – centralized or hierarchical in their control paradigm –

perfectly fit to centralized generation and transmission systems,

distributed renewable energy systems show properties that

promote the application of distributed optimization systems:

First, future energy systems can be regarded as complex

systems of systems, sometimes framed as cyber-physical multi-

energy systems, coupling communication systems, power, heat

and gas systems. The resulting complexity of the solution

space is the main motivation for heuristic distributed control

and optimization [4]. Second, data availability as needed for

centralized control typically is not given for end-user scenarios

for privacy or regulatory reasons.

Distributed control and optimization systems often involve

multiple energy units that decide locally and communicate with

each other to solve global problems. For instance, software

agents can represent flexible energy loads that cooperatively

aggregate flexibility to provide load dispatch options for

balancing markets or congestion management [5] [6] [7].

One major design aspect is the communication topology.

This topology - usually modeled as a graph - determines which

units exchange data directly. In energy system applications, the

communication topology of multi-agent systems is often defined

based on the topology of the underlying power grid (see e.g.

[8] and [9]). This approach is limited to static topologies, and

not reflecting algorithmic aspects. Considerable research has

been conducted on distributed optimization in the power grid,

in the area of control theory, where systematic mathematical

approaches are used to design distributed controllers [10].

However, the type of problems that can be solved with such

approaches is limited [11]. Distributed energy resources are

very heterogeneous regarding forecast precision and flexibility

potential. Agents have to consider more local constraints and

be able to react flexibly to their environment. Thus, we consider

algorithms that provide a framework for negotiation between

different agents, but allow flexible local action. To the best

of our knowledge, there has been little research on how the

communication topology affects such distributed heuristics or

how it can be optimally designed.

In [12] we showed that different communication topologies

have an effect on the performance of the reflected algorithm

class: Highly meshed topologies converged into good solutions

reliably and quickly, but increased communication overhead and

premature convergence. In contrast, results for sparsely meshed

topologies were much less reliable. In the application domain

of energy systems as critical infrastructures, this behavior is

highly unwanted. We presume that dynamically adjusting the

topology during runtime leads to a beneficial transition of

exploration and exploitation of the search space for distributed

heuristics.

In this contribution, we evaluate the effect of dynamic

communication topology adaptation on a fully distributed

optimization heuristic. To ensure scientific comprehensibility

and reproducibility, standard optimization problems are taken

for an extensive analysis of the approach. Furthermore, we

analyse correlations between the performance of the distributed

optimization algorithm and the fitness landscape characteristics

of these benchmark functions with both static and dynamic

overlay topologies using decision trees.

The rest of this contribution is structured as follows:

In section II, an overview on the topic of communication

topologies for distributed heuristics is presented, motivating

the research gap. The dynamic topology adaptation scheme

is presented in section III. The metrics used for the fitness

landscape analysis are presented in section IV. In section V

we set the scene for the experimental setup chosen to analyse

the relevant correlations, followed by a discussion in section

VI. We conclude our work with an outlook on future research

directions.
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II. COMMUNICATION TOPOLOGIES FOR DISTRIBUTED

HEURISTICS

Distributed optimization heuristics are closely related to par-

allel cooperative metaheuristics [13]. In both types of heuristics,

multiple distributed (meta)heuristics are interconnected and

exchange information. Therefore, we consider the studies on

the influence of exchange topologies in the area of parallel

cooperative metaheuristics as relevant related work.

More precisely, we restrict our scope to asynchronous coop-

erative search strategies, i.e. several solvers run simultaneously

(multi-search / distributed on algorithmic level) and cooperate

with each other by asynchronously exchanging information.

This type of parallel heuristics originates from the field of

parallel computing. Therefore, the communication topology

was mostly designed with respect to the hardware architecture

(considering connections between processing units) leading

to hypercube, ring or torus topologies [14]. For island model

heuristics, i.e., heuristics where multiple instances of mostly

population-based metaheuristics run in parallel exchanging

individuals between their islands, a fully meshed topology is

often chosen [15]. In addition, information is usually exchanged

indirectly via a shared memory.

The effect of communication topologies on the performance

of distributed optimization heuristics has been studied especially

for the island-model, where the topology is often referred to as

the migration topology. In most works, different topologies for

a given parallel heuristic are studied on multiple benchmark

problems and the topologies are ranked according to the

achieved performance, which may involve different aspects

[14], [16], [17], [18], [19]. Ruciński et al. investigated the effect

of different migration topologies, including ring, cartwheel and

hypercube topologies, on the performance of two different

parallel global optimization algorithms cooperating via the

island model [14]. They evaluated different topologies for both

heuristics according to the performance obtained. Since the

results varied widely, Ruciński et al. suggested that such studies

be conducted in the future for other heuristics and with more

problem instances.

Hijaze and Corne [16] analyzed how different topologies

affect the performance of an asynchronous distributed evo-

lutionary algorithm (EA). They evaluated the effect of the

topologies on the performance of the algorithm using 30-

dimensional target functions (Sphere, Rosenbrock, Schwefel,

Rastrigin, Griewank, Ackley [20][21]). The success rate in

finding the optimum was similar for all topologies, but better

than for the standard single population EA (with equal total

population size).

In their follow-up work in [17], they introduced an online

adaptation of the migration scheme in which the migration

probability was adjusted based on the progress of subpopula-

tions on islands. With the adaptive scheme, optimal solutions

were regularly found in less time and with a higher success rate,

suggesting that a balance between exploration and exploitation

can be achieved by dynamically adjusting the migration

mechanisms.

In [18], Sanu and Jeyakumar conducted an empirical analysis

on the performance of distributed differential evolution (DE)

for varying migration topologies. They used various topologies

(basic ring and ring variants, star, cartwheel, torus and mesh)

and multiple benchmark functions (e.g. Sphere, Schwefel

(1,2,3), Rosenbrock, Rastrigin) to investigate the impact of

the topologies on the performance of an island model DE.

They considered not only the convergence speed and solution

quality based metrics, but also the computational effort, i.e., the

number of function evaluations. They concluded that no single

topology is suitable for all optimization problems and took a

first step towards linking characteristics of the search spaces to

the performance of the topologies by roughly categorizing the

functions (modality and separability) and assigning the best

performing topologies in each case.

The presented research can be summarized as follows: First,

different communication topologies affect the performance

of the various parallel metaheuristics. Second, the notion of

performance is mainly limited to the achieved solution quality

and convergence speed. Since the studies do not address

spatially distributed systems, they usually do not examine

the costs of collaboration, especially the resulting message

traffic. Third, the design of communication topologies leads

to different balances between exploration and exploitation of

the search space. In some cases it is investigated how this

balance can be improved by adjusting parameters like migration

frequency or migration rate. However, the adaptation of the

topology has not been treated as a distinct research topic

for optimization problems with characteristics as be found in

energy system applications. To our knowledge, a systematic

approach regarding the above mentioned aspects including an

in-depth fitness landscape analysis has not yet been conducted

in this field.

III. DYNAMIC TOPOLOGY ADAPTATION

As described in the previous section, the communication

topologies of distributed optimization heuristics affect the

degree of exploration and exploitation of the search space.

Strongly meshed topologies lead to a high amount of informa-

tion exchange between units (diversification). This leads to a

fast convergence but bears the risk of a premature convergence

into local optima. In contrast, with sparsely meshed topologies,

the individual heuristics can evolve more independently. This

leads to an intensified search (exploitation) in some areas of

the search space. But in the worst case, these areas can be far

away from the global optimum.

Many metaheuristics adjust parameters at runtime to allow a

transition from exploration to exploitation. An example of this

is the adjustment of the temperature parameter T for simulated

annealing (SA) [22].

Since we want to achieve the same effect with dynamic

topology adjustment, our approach is based on the principles

the cooling process in SA. Just as SA starts with a high

temperature, we start with a high number of connections in

the communication topology. With cooling down, we reduce

the number of connections. To model the cooling process, SA
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Fig. 1: Dynamic topology adaptation

uses a so-called cooling schedule. We therefore determine a

so called "removal schedule". Table I shows the details of the

specified analogy. The approach presented here starts with a

fully meshed topology, transitions to small world intermediate

stages by removing edges, and ends with a ring to exploit the

most promising regions in the solution space. Fig. 1 illustrates

this process.

In order to model this transition, more specifications are

necessary. Let G = (V,E) denote the bidirectional graph that

represents the communication topology. V is the set of nodes,

where each node is assigned to an agent and thus to one part of

the distributed solver. E is the set of edges. An edge between

two nodes indicates direct communication between the two

agents assigned to the nodes. Agents can pass on information

from their neighbors to other neighbors, which means that there

is also indirect communication between unconnected nodes.

The communication topology thus regulates the information

dissemination in the distributed system.

A cooling schedule for SA is determined by the initial

temperature T0, the equilibrium state, i.e. the criterion that

controls when the transition to the next temperature level occurs,

and the cooling itself. Since the communication topology will

start with a fully meshed bidirectional graph, the number of

edges is defined as |E0| =
n·(n−1)

2 . Geometric functions are

particularly popular to model cooling, whereas logarithmic

functions are considered too slow for practical application,

although they theoretically converge to a global optimum [13].

Considering that the initial number of edges is much smaller

than usual starting temperatures, a slower reduction seems

appropriate. A combination of linear, geometric and logarithmic

reduction functions was chosen. Equation 1 displays the

function that determines the number of edges δ at each schedule

step.

δi+1 = |Ei| −
|E0|

log(i)
· α, with α ∈ ]0, 1] (1)

The index i represents the index of the step in the reduction

schedule. δi determines the number of edges that should remain

in the reduction schedule step i. Thus the new communication

topology graph is constructed such that

Gi+1 = (V,Ei+1), with |Ei+1| = δi+1 (2)

The parameter α controls how many steps the removal schedule

includes. If it is close to 0, only a few edges are removed

in each step, leading to a slow decrease of connectivity. If

it equals 1, the number of edges is reduced in large steps,

which leads to a rapid decrease in connectivity. The edges

that are removed are selected randomly, ensuring that the final

ring topology remains. The figures 2a and 2b show how the

parameter α influences the granularity of the edge reduction

schedule.

(a) α = 0.1 (b) α = 1

Fig. 2: Reduction schedule with 100 agents and different α

Finally, the transition criterion from one topology to the

next must be specified. It defines when a transition from

one schedule step to the next occurs. Common conditions

for a temperature adaptation in SA are counting of iterations,

acceptances, rejections or a combination of these [13]. In this

case, a simple approach is used, where the number of local

searches (equivalent to the number of iterations) since the

last transition is counted. As soon as this number becomes

larger than n, the topology is adjusted. Since the starting

topology is a complete graph all agents start at the same time

and each unit performs its local search at least once before

the first adjustment. In later stages, this procedure can lead

to some agents optimizing locally multiple times between

topology adjustments and others not optimizing at all. This

rapid transition was chosen since it showed the best results in

preliminary experiments.

To evaluate this dynamic approach, we perform a systematic

comparison of the performance of the approach in different

parameterizations and several static topologies. For this purpose,

we use a set of well-known benchmark functions. However,

instead of considering them separately, we perform fitness

landscape analysis to match the individual difficulties of

the problems with the performance of the topologies and

find possible correlations. Consequently, we first explain the

metrics used in the following section before moving on to the

experimental setup and the evaluation of the results.

IV. FITNESS LANDSCAPE ANALYSIS

As the no free lunch theorem states, no optimization heuristic

can be superior to all others without regard to the problem [23].

Different communication topologies significantly influence the

information propagation in a heuristic and thus the resulting

optimization process. Consequently, for different problems,

different topologies presumably lead to more advantageous

behavior. We use various fitness landscape metrics to classify

the objective functions to examine the relationships between

problem characteristics and the performance of different

topologies.

A fitness landscape, as presented e.g. in [24], is defined by

the search space X , containing all possible solutions of the

problem, connected according to a defined distance measure,
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TABLE I: Comparison of the modeling of SA cooling and the connection reduction of the communication topology

cooling schedule removal schedule

definition of temperature for each step of the SA algorithm number of edges in the communication topology for each
step

initialization parameter T0: initial temperature |E0| = δ0: initial number of edges
equilibrium state number of iterations at a temperature number of local optimizations at a topology configuration
adaptation cooling: decrease of the temperature decrease of edges in the communication topology

and the fitness function f : X → R. A fitness landscape for a

continuous problem, often uses euclidean distance measures

and thus can be described as a landscape with the search

space as the bottom floor and the landscape surface being

elevated according to the values of the fitness function f [13].

Analogous to a geographical landscape, fitness landscapes can

have peaks, valleys, plains, canyons, cliffs, plateaus, basins, etc.

Investigating these landscape characteristics provides clues as to

how difficult it is to find an optimum, i.e., the highest mountain

peak (maximization) or the lowest valley (minimization). Fig. 3

shows 3-D plots of benchmark functions demonstrating some

manifestations of such landscape features.

Various metrics have been proposed in literature. We limit

the scope to metrics that can be used for continuous search

spaces and that can be normalized, since we want to be able to

compare different functions. In [24], Sun et al. distinguished

some basic features of fitness landscapes and argued that for

proper characterization, these features must be covered when

selecting a set of metrics. These features include:

• Dimensionality

• Separability

• Ruggedness, Smoothness and Neutrality

• Modality

• Deception and Evolvability

The dimensionality of the problems is a selectable parameter

in the experimental setup and therefore known. Furthermore,

separability is a well-known property of the benchmark func-

tions. For the other characteristics mentioned, suitable metrics

must be selected. We discuss our choice in the following.

A. Ruggedness, smoothness and neutrality

The characteristics of ruggedness and smoothness concern

the quantity and distribution of the local optima in the search

space. The fitness differences in a neighborhood can be

large (rugged), small (smooth), or barely present (neutral).

Each of these surface shapes presents different challenges

for optimization algorithms. In [25] Malan and Engelbrecht

adapted the entropy based measure for ruggedness that was

first proposed by Vassilev et al. [26] for continuous fitness

landscapes. The information theoretic technique is based on a

random walk through the search space. The random walk is

represented as a string with respect to the information stability

measure ǫ. If the magnitude of the difference between two

fitness values is less than ǫ, they are considered to be equivalent.

The string representation is obtained as follows:

Si(ǫ) =











−1, if fi − fi−1 < −ǫ

0, if |fi − fi−1| ≤ ǫ

1, if fi − fi−1 > ǫ

(3)

The entropy value is calculated for the resulting string Si(ǫ)
according to Equation 4:

H(ǫ) = −
∑

p 6=q

P[pq]log6P[pq] (4)

where P[pq] is the frequency of occurrence of the block [pq] in

Si(ǫ) with p, q ∈ {−1, 0, 1}. This entropy is calculated with

various ǫ between 0 and ǫmax, which is the value at which

the resulting string consists only of zeros. The maximum of

all attained entropy measures is taken as the final result [25].

This entropy measure reflects the information content of the

random walk. This is naturally high for a rugged landscape,

whereas a smoother landscape has a smaller entropy value.

Depending on the stepsize of the random walk, ruggedness

can be viewed on different scales. We follow Malan’s sug-

gestion and compute the metric once based on random walks

with a maximum step size of 1% of the search space and once

with 10%. The resulting metrics FEMmicro and respectively

FEMmacro (First Entropic measure as defined by [27] ) are

values in [0, 1] and reflect the relationship between ruggedness

and neutrality on micro an macro scale.

Similarly to the FEM a second entropy measure can be

calculated that estimates the smoothness of the function rather

than the ruggedness. Based on the string Si(ǫ) the entropy of

smooth blocks, i.e. two consecutive characters with the same

sign, is calculated as follows:

h(ǫ) = −
∑

p=q

P[pq]log3P[pq] (5)

We apply the same approach as for FEM by calculating

h(ǫ) with different values for ǫ and keeping the maximum of

all entropy values as SEM (Second Entropy Measure). The

SEMmicro and SEMmacro are again values in [0, 1], but refer

to the interaction of smoothness and neutrality of the landscape

[27].

B. Modality

The modality of a function corresponds to the number of

local optima. Modality and ruggedness are closely related,

since a rugged landscape may also include many local optima.

In [26], Vassilev et al. also proposed a metric to quantify the

modality of the random walk encoded by Equation 3. A new
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string S′(ǫ) is constructed by removing all zeros from S(ǫ)
and reducing sequences of equal characters to one character.

Thus, S′(ǫ) contains only information that is essential with

respect to modality. The resulting modality measure is called

partial information content (PIC) and is given by

PIC(ǫ) =
µ

n
(6)

where n is the length of S(ǫ) and µ the length of S′(ǫ). If the

random walk encountered a landscape with high modality, the

length of S′(ǫ) is almost the same as that of S(ǫ), resulting

in PIC(ǫ) being close to or equal to one. If the path is flat

or only leading in one direction PIC(ǫ) tends to or is equal

to zero. For PIC, we use the same procedure as for FEM

and SEM and perform random walks with varying step sizes

to look at modality at different scales. Accordingly, we use

PICmicro and PICmacro as metrics.

C. Deception and evolvability

A deceptive landscape provides information that can guide an

optimization algorithm away from the global optimum, towards

local optima. Which properties of a function are deceptive

depends on the algorithm - in the case of distributed algorithms,

perhaps also on the communication topology. One possibly

deceiving characteristic is the presence of funnels. A funnel

is a cluster of local optima that forms a global basin shape

[28]. The dispersion metric of Lunacek et al. [29] provides

insight into the global topology of fitness functions and thus

indirectly allows estimation of the presence of funnels. In

[28], Malan and Engelbrecht proposed a normalized version to

allow comparison of functions with different domain sizes. To

compute the dispersion metric, a random sample S of length

n is drawn that is uniformly distributed over the search space.

From this sample S , a subset S ∗ is determined that contains

the best points by fitness values. To make functions with

different domain sizes comparable, the position vectors of S ∗

are normalized in such a way that the search space is scaled

to [0,1]. In addition, a comparison sample C also of size is

sampled uniformly across the search space. Let disp(S ) be

the average pairwise distance between normalized positions in

the sample S . Then the dispersion metric DM is defined as

follows:

DM = disp(S ∗)− disp(C ) (7)

Thus, the metric quantifies how far points with high fitness

values are away from each other compared to a large uniform

random sample. It yields values in the range of [-1,1]. A low

value (DM < 0) indicates a single funnel landscape with

an underlying unimodal structure. A high value (DM > 0)

indicates a multi-funnel landscape and underlying multimodal

structure. Fig. 3 shows 3-d plots of three benchmark functions

once in their full domain and once in a one-percent section

of their domain, respectively. The penalized Schwefel 2.26

function is very rugged on the macro scale (Fig. 3a), but

much less so on the micro scale (Fig. 3d). The function has a

high value in the dispersion metric, which is also consistent

with its global multi funnel shape. In contrast, both Griewank

Fig. 3: Selection of benchmark functions as 3-D plot on the

full domain (fd) or on a 1 % section of the domain (1%d)

(a) Schwefel 2.26 with
penalty (fd) (b) Griewank (fd) (c) Salomon (fd)

(d) Schwefel 2.26 with
penalty (1%d) (e) Griewank (1%d) (f) Salomon (1%d)

and Salomon have a small value in the dispersion metric,

corresponding to their global single funnel shapes. While

Salomon is highly rugged on macro and micro scale with a

slight increase on micro scale, Griewank is much more rugged

on micro scale than on the macro level. This effect actually

decreases in higher dimensions, making the function "easier"

to solve [30].

Table II shows an overview of the applied fitness landscape

metrics, including a brief summary. The results obtained for

the metrics for the benchmark functions are summarized in a

dedicated repository1.

dimension dimension, here also equal to number of agents

separability boolean that indicates if variables of a function are
independent

FEMmacro first entropy based measure of ruggedness on macro and
micro scaleFEMmicro

SEMmacro second entropy based measure of smoothness on macro
and micro scaleSEMmicro

PICmicro measure of partial information content concerning
modality on macro and micro scalePICmacro

DM dispersion metric that quantifies distances between good
solutions and thus indicates the presence of funnels

TABLE II: Overview of applied metrics

V. METHODOLOGY

The goal of the experimental study is to investigate if

a dynamic topology adaptation approach outperforms static

topologies. We use multiple benchmark functions, all scalable

and multi-modal, and the distributed optimization heuristic

presented in subsection V-A.

Furthermore, we examine correlations between the properties

of the benchmark functions and the performance of different

1https://github.com/sholly-offis/Deta
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topologies in the defined performance dimensions. In doing so,

we also consider different parameterizations of the dynamic

approach. Thereby, we hope to find clues that will help in the

further development of the dynamic approach and ultimately

lead to the parameterization of dynamic topology adaptation in

such a way that it provides a tailored solution to a problem. In

the following we first give a short introduction to the chosen

example heuristic and then elaborate on the experimental setup.

A. Distributed Optimization Algorithm

COHDA is a combinatorial optimization heuristic for dis-

tributed agents, and was developed for the self-organized

scheduling of distributed energy resources in virtual power

plants [31]. The heuristic can be classified as a system realizing

a gossiping protocol based on strictly defined communication

and knowledge integration rules. In [32], Bremer et al. adapted

COHDA to find the global minimum of a real valued objective

function. An agent ai is responsible for only one value xi from

a continuous search space. It performs its local optimization

to minimize the global objective function, by adapting its own

choice of xi while considering the choices of other agents

xj , j 6= i as temporarily fixed. Agents send update messages

to their neighbors - as defined by the communication topology

- to pass on new information from their neighbors or to inform

about their own changes in the value selection. Depending

on well-defined convergence conditions, COHDA has been

proven to always converge at least to a local optimum [31].

Parts of these conditions are related to the topology, and thus

have to be reflected here: The chosen topology has to be

connected, irreflexive, and symmetric. As a consequence, the

topology adaptation developed in this work has to guarantee

these characteristics in all intermediate stages to not sacrifice

convergence.

B. Experimental Setup

The experiments are preformed with agent systems in two

different sizes, namely 50 and 100. In the applied setup,

the system size is equal to the dimension of the objective

functions, as each agent is responsible for choosing one solution

variable. A set of 13 different benchmark functions is used as

underlying synthetical problem instances. They include Ackley,

a scalable version of Eggholder, Griewank, Happy Cat [33],

Rana, Rastrigin [21], Rosenbrock, Salomon, Schaffer F6, Qing,

Schwefel 2.26 and a penalized Version of Schwefel 2.2.6 which

was introduced in [12]. Unless otherwise stated, the definitions

are taken from [20]. Definitions, domains and global minima of

the benchmark functions are listed in a dedicated repository2.

The search process in the solution space defined by each

benchmark function is performed using COHDA and different

topologies. This involves complete graphs, ring-, tree-, small-

world-, path-, and grid- topologies. Fig. 4 shows these topology

types for 10 agents.

For each system size (50 and 100) each topology type is

created, including a randomized setting with 5 different seeds

2https://github.com/sholly-offis/Deta

Fig. 4: Overview of reflected static communication topologies

(a) complete graph
(b) small world topol-
ogy (c) grid

(d) random tree (e) ring (f) path graph

and optimization runs and 10 different starting seeds. As a

result of this setting, 50 different setups are examined for each

combination of the number of agents and topology type. The

same is done for the dynamic approach with different values for

α ∈ [0.1, 0.3, 0.7, 1]. 3 A total of 1000 optimization runs were

performed per benchmark function (600 with static topologies

and 400 with the dynamic approach). Therefore, the following

evaluations are based on a total of 13,000 optimization runs.

To compare the performance, four performance dimensions

are evaluated:

• solution quality: error measure

• speed of convergence: time required to converge

• communication traffic: number of messages exchanged

between agents

• computational effort: number of local searches preformed

by all agents

Each of the performance dimensions is normalized per

system size and benchmark function. We differentiate the four

performance dimensions when determining the best topology

for a benchmark function. To be the best topology in a

performance dimension, a topology must achieve the lowest

possible values for this measure. Therefore, we consider the

mean in each case. For some topologies however, the spread of

values is extremely large, so that despite a good mean value,

the risk of an unfavorable outlier is much higher than for

other topologies. Again, in the application domain of critical

infrastructure optimization, this is unfavorable. The sum of

mean and standard deviation is used as an additional measure

(using the notion mps – mean plus standard deviation), to

reflect this aspect.

To relate the performance of the topologies to the charac-

teristics of the benchmark problems, fitness landscape metrics

described in section IV are computed for each benchmark

function using random walks of length 1000 and the mean of 30

runs is taken as measure as proposed by [28]. Finally, we train

decision trees using the CART algorithm [34] implemented by

scikit-learn [35]. We use them to determine which metrics can

be employed to distinguish benchmark functions and assign

them to the best-performing topologies.

3α = 0.5 was discarded in this presentation for reasons of brevity as it was
not superior to the other values.
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VI. RESULTS AND DISCUSSION

In the following, we first examine the differences in the

solution quality, using decision trees generated on the basis of

the fitness landscape analysis. Additionally, we want to identify

correlations between the properties of the fitness landscapes and

the performance of different topologies and parameterizations

of the dynamic adaptation approach.

In the second part of the evaluation, we examine the other

performance dimensions. Since these cannot be reasonably

analyzed on their own, individual functions are analyzed as

representatives in order to investigate the overall performance

of the different topologies and the trade-offs between the

performance dimensions.

A. Decision tree-based performance analysis

To determine which topology is best for a given function

and dimension for a performance indicator, minimum mean

and mps are evaluated in each case. For simplicity, additional

collective topology categories were introduced when several

topologies were equally good. All topologies whose mean and

mps do not deviate more than 1% from the minimum values are

assigned to a best list. If the best list contains more than three

entries, single topologies are replaced by collective categories.

The label highly meshed is assigned if only highly meshed

topologies are in the given class (complete, small world, grid,

dynamic). Weakly meshed accordingly summarizes ring, tree,

and path graph topologies. Other combinations are labeled as

various. Note that if dynamic is displayed without a value

for α, multiple values for α have performed equally well.

In order to classify what a decision boundary for a particular

landscape metric means, the distribution of the metric in the set

of benchmark functions must be considered. For this purpose,

Table III shows the respective minima, maxima, mean values

and the limits for the upper and lower quartiles.

min Q1 median/Q2 Q3 max

DM -0.39 -0.28 -0.2 -0.01 0.05

FEMmacro 0.69 0.72 0.87 0.88 0.89

FEMmicro 0.2 0.4 0.66 0.76 0.9

SEMmacro 0.51 0.53 0.57 0.68 0.74

SEMmicro 0.52 0.65 0.73 0.78 0.8

PICmacro 0.35 0.38 0.61 0.66 0.7

PICmicro 0.07 0.14 0.32 0.46 0.74

TABLE III: Distribution of fitness landscape metrics

First, we focus on the achieved solution quality in terms

of the normalized error. Fig. 5 shows the resulting decision

tree as sankey diagram for the mean error and Fig. 6 the

tree illustrating the error mps. The thickness of the branches

indicates the number of benchmark functions that belong to a

path. On the right, the best topologies or topology categories

are shown with the functions they contain. To facilitate the

discussion of the results, individual end nodes or clusters of

end nodes were numbered. These are discussed below.

1) functions with below average micro ruggedness

(FEMmicro) and small dispersion (DM ), i.e. good

points in the search space are close to each other; These

function are easy to solve, thus many topologies provide

good results

2) Sargan and Happy Cat function; The Sargan function has

the highest values for macro smoothness (SEMmacro).

The Happy Cat function is also very smooth. For both

functions complete graph and the dynamic approach

perform similarly, while all other topologies rank far

behind.

3) functions with below average micro ruggedness but higher

dispersion; slightly more difficult than (1), thus weakly

meshed topologies are outperformed.

4) functions with above average micro ruggedness

(FEMmicro), above average macro smoothness

(SEMmacro) and low to medium modality on macro

scale (PICmacro) are solved best by dynamicα=1

topology. Solomon (50) has a very high micro ruggedness.

If only the mean error is considered, the ring topology

performs best. However, if the reliability is also considered

(see Fig. 6), the dynamicα=1 topology performs better.

The ring topology is obviously very well suited for the

intensive exploitation of landscape areas with high micro

ruggedness and lower macro smoothness, but an initial

exploration push, as in the dynamic approach, helps to

guide the search more reliably into good regions.

5) functions with above average micro ruggedness and macro

smoothness in the lower quartile; dynamic topology

adaptation with different values for α achieves the best

results there;

6) functions with above average micro ruggedness but very

low smoothness on micro scale but not on macro scale;

Considering only the mean error, the grid and tree

topologies perform best, but their advantage is very small,

so for the mps value for the Ackley function, many

topologies perform equally well and Eggholder (100)

is best and most reliably optimized with the dynamic

topology with α = 0.7.

Note that functions for which dynamicα=1 topology per-

forms best, have the highest values for the dispersion metric.

A DM larger than −0.037 seems to be a good indicator for

a class of functions with multi-funnel shapes for which the

dynamic approach with large values for α achieves the best

results. Fitness landscapes with high dispersion, high modality,

high ruggedness and low smoothness less strongly meshed

topologies are advantageous, which often makes the dynamic

approach with large values for α favorable. For landscapes

with lower modality, less dispersion, a less rugged surface, and

more smooth sections, more strongly meshed topologies tend

to have an advantage, and the dynamic approach with small

values for α also often performs well. More analysis on this

will be needed in future work.

B. Examination of further performance dimensions

For the analysis of the other performance dimensions, an

isolated consideration of the decision trees is not suitable,

since there are usually correlations between good and poor
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highly meshed: [rastrigin (50, 100), 

griewank 100, qing 100, rosenbrock 100]

complete: [happy cat 50]

complete: [happy cat 100]

dynamic α=0.1: [sargan (50, 100)]

dynamic α=1: [schaffe f6 (50, 100), rana 50]

dynamic α=0.7: [eggholder 50, rana 100]

various: [griewank 50, qing 50, rosenbrock 50] 1

2

3

dynamic α=1: [salomon 100, schwefel 2.26 

(50, 100), schwefel 2.26 Pen (50, 100)]

ring: [salomon 50]

4

5

grid: [ackley 50, eggholder 100]

tree: [ackley 100]
6

Fig. 5: Decision tree for mean error

various: [griewank 50, qing 50, rosenbrock 50]

highly meshed: [rastrigin (50, 100), 

griewank 100, qing 100, rosenbrock 100]

dynamic α=1: [salomon (50,100), schwefel

2.26 (50, 100), schwefel 2.26 Pen (50, 100)]

dynamic: [schaffe f6 50]

dynamic α=0.7: [eggholder (50, 100), 

rana (50, 100), schaffer f6 100]

complete: [sargan 100]

dynamic α=0.1: [sargan 50]

dynamic α=0.7: [happy cat 50]

dynamic α=1: [happy cat 100]

various: [ackley (50, 100)]

1

2

3

4

5

6

Fig. 6: Decision tree for mps error

performance in several dimensions. For example, the heuristic

may have terminated after a short time, but converged to a

local optimum. Or only very few messages are sent, but only

small parts of the search space are explored, which makes the

solution quality a matter of luck. Therefore, we examine the

results for the penalized Schwefel 2.26 function, Rana, and

Griewank in more detail below.

Fig. 7 shows the results obtained for Schwefel 2.26 with

penalty for a system size of 100 agents. Each of the four

performance dimensions considered is presented in a separate

row. For each static topology and the dynamic approach with

α = 1 a violin plot is displayed, which shows the distribution

with an internal box plot surrounded by a density plot. The

top row shows the distributions of the normalized errors. For

this function, the dynamic approach performs with the highest

solution quality in terms of mean value and outliers. Compared

to the strongly meshed topologies (complete, small world and

grid graph), the computational effort depicted in row two

of Fig. 7 is slightly increased. This seems reasonable, since

the topology converges to a ring topology after a short time

and therefore performs more computations (with the design

objective of these computations being in a promising region of

the search space). A similar picture is obtained for the emerging

communication traffic, row three in Fig. 7. However, the

complete graph generates much more communication effort. In

terms of convergence time, the dynamic approach shows slower

convergence compared to the topologies that are consistently

strongly meshed.

For Rana, the overall impression is similar to Schwefel 2.26

with penalty. The dynamic approach usually performs best

and thus needs more time, computational effort and message

exchange than other strongly meshed topologies. If the main

concern is convergence speed or low communication traffic,

the small-word or grid topology are preferable as they provide

a good trade-off. For functions with lower modality, dispersion,

and ruggedness, such as Rastrigin or Griewank, where many

topologies succeed in finding the global optimum, the complete

and dynamic graphs usually converge the fastest and have

the lowest computational cost. However, they also generate

the largest amount of messages, with the dynamic approach
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Fig. 7: Results for penalized Schwefel 2.26 (100 agents,

dynamicα=1)

Fig. 8: Performance results for Rana and Griewank (50 agents,

dynamicα=1)

(a) Rana (b) Griewank

performing slightly better. Fig. 8b shows these relationships

exemplary for the Griewank function.

To sum up the presented results: In our evaluations, easy to

explore fitness landscapes, i.e. functions with uni-modal single

funnel shapes and a hardly rugged surface, an arbitrary fairly

meshed topology leads reliably to the global optimum. Depend-

ing on whether lower message volume or lower computational

costs are preferred, small world or the dynamic approach with

large α are sufficient. For fitness landscapes with multi-modal

and multi-funnel shapes, the dynamic approach with a fast

reduction schedule shows advantages regarding solution quality

with moderate resource consumption.

VII. CONCLUSION AND OUTLOOK

Distributed optimization heuristics are a suitable approach

to handle the increased complexity in cyber-physical multi-

energy systems. The communication between the distributed

entities must be carefully designed to ensure reliable behavior

of a heuristic and thus its suitability for applications in critical

infrastructures like energy systems. The communication topol-

ogy defines which entities exchange information and therefore

affects solution quality, convergence speed and collaboration

costs. A dynamic approach to topology adaptation during

runtime has been presented, based on the principles of simulated

annealing. This approach was evaluated against several static

topologies using a distributed optimization heuristic to optimize

a set of well-known benchmark functions. In addition, we

conducted a fitness landscape analysis and trained decision

trees to derive correlations between problem properties and

performance of the communication topologies.

The main findings can be summarized as follows:

• Functions with small ruggedness at micro level can be

considered as "simple". Moreover, if they have a very

small DM , i.e., a unimodal shape, many topologies

will find the global optimum. Otherwise, more meshed

topologies are advantageous.

• When low micro ruggedness is combined with high

smoothness or very low macro ruggedness, strongly

meshed topologies such as the full graph or the dynamic

approach with small values for α, i.e., slowly decreasing

connectivity, outperform other topologies.

• The dynamic approach with large values for α excels in

providing superior solution quality for functions with high

dispersion and thus a difficult multi-funnel landscape. With

respect to the cost of cooperation, the dynamic approach

is competitive for both easy and hard to explore problems.

Regarding the application domain of distributed control in

cyber-physical energy systems, search spaces will have to be

analyzed in detail. Given the complexity and non-linearity

of the resulting system of systems though, high modality

and rugged surfaces seem to be characteristic for many use

cases with distributed energy resources, controllable loads and

storage systems [36]. So far, communication topologies for

distributed heuristics have been selected mostly independently

from solution space characteristics. Our work is a first step

towards a more systematical selection and dynamic adaptation

of communication topologies in this regard.

In future work, we plan to further enhance the dynamic

approach. One aspect of this is a intelligent selection of the

connections to be removed, by analysing the graph-theoretical

characteristics of the intermediate topologies. Furthermore, non-

monotonic reduction schedules could be beneficial for some

problems, i.e., schedules in which the number of edges can also

increase again under certain conditions. The starting topology

may be varied as well, since starting with complete graphs is not

always advantageous. Overall, with all these enhancements, we

aim to be able to optimally select these parameters in the future

depending on the problem characteristics and prioritization
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of the performance dimensions. The resulting parametrizable

dynamic topology adaptation will be evaluated on real world

problems in the energy domain.
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