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Abstract—In recent years, researchers have oriented their
studies towards new technologies based on quantum physics
that should resolve complex problems currently considered to
be intractable. This new research area is called Quantum
Computing. What makes Quantum Computing so attractive is
the particular way with which quantum technology operates and
the great potential it can offer to solve real-world problems.
This work focuses on solving assignment-like combinatorial
optimization problems by exploiting this novel computational
approach. A case-study, denoted as the Seating Arrangement
Optimization problem, is considered. It is modeled through the
Quadratic Unconstrained Binary Optimization paradigm and
solved through two tools made available by the D-Wave Systems
company, QBSolv, and a quantum-classical hybrid system. The
obtained experimental results are compared in terms of solution
quality and computational efficiency.

I. INTRODUCTION

C
OMBINATORIAL Optimization (CO) is one of the most

studied research fields in the area of optimization. The

application of this research area extends to many sectors,

and more and more researchers are active in model and

solve effectively and efficiently the problems belonging to

this category. Among others, one of the most recent and

innovative modeling approaches to formulate a CO problem

is the so-called Quadratic Unconstrained Binary Optimization

(QUBO) paradigm. Among the various approaches for solving

combinatorial optimization problems in the QUBO form, in

recent years, researchers have begun to be oriented towards

a new computational frontier, as the Quantum Computing.

This paper focuses on analyzing this new computational ap-

proach, specifically for the resolution of assignment problems.

We analyze the Seating Arrangement Optimization problem

(SAOP) as a case-study, which was first formulated as a

QUBO problem and then solved through the use of some

tools made available by D-Wave Systems, a Canadian company

specializing in quantum computing. In particular, quantum

systems suitable for solving optimization problems are called

quantum annealers; they exploit the physical concept that

everything in nature tends to evolve towards equilibrium (see

[1]). It is worth noting that there exist alternative ways to

implement quantum-like algorithms as the one explored in [4].

The remaining part of this paper is organized as follows.

Section II describes the Quadratic Unconstrained Binary Opti-

mization (QUBO) paradigm and reports on the existing solvers

dedicated to problems in this particular form, including the

quantum technologies offered by D-Wave Systems. Section III

presents the case-study considered, the Seating Arrangement

Optimization problem. The problem is first described and

modeled as a quadratic problem. Then an equivalent QUBO

formulation is derived. Section IV describes and compares the

computational results of the experimental analysis. Section V

provides conclusions and a brief discussion on possible future

works.

II. QUANTUM COMPUTING SOLVERS

The leader company that works with quantum annealers is

D-Wave Systems Inc.. In particular, this organization deals with

building and studying quantum technologies and, for some

years, has allowed external people to use their quantum an-

nealers to solve specific commercial problems, especially com-

binatorial optimization ones. Quantum annealers are designed

to solve complex combinatorial optimization problems in a

particular formulation, the Quadratic Unconstrained Binary

Optimization (QUBO) one. The goal of a QUBO model is to

find an optimal solution by minimizing an objective function

in the form

min
x∈{0,1}|N|

x
TQx (1)

where x is a column vector of binary variables of size |N | and

Q an upper-triangular |N |× |N | matrix, called QUBO matrix.

Not all optimization problems come in this form. However,

many of them can be rewritten as a QUBO model. The

constraints identified for the problem must be readjusted and

converted into penalties to form the actual objective function

(1) that has to be minimized. Specifically, as in classical
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Lagrangean relaxations, the purpose of these penalties is to

prevent the optimizer from choosing solutions that violate the

constraints. They involve the addition of a positive quantity,

therefore not favorable to the minimization objective in case

of infeasible solutions [3]. Some standard ways of creating

this translation from classical constraints can be found in [3].

By using this formulation, two solution methods are available:

QBSolv and D-Wave Systems.

QBSolv is an open-source solver released in January 2017,

which runs on the CPU like traditional solvers. Its goal is

to solve significant QUBO problems with high connectivity.

The solver strategy consists of partitioning significantly large

QUBO problems into smaller components and applying a

specified sampling method (the classical Tabu Search algo-

rithm, by default) independently to each of these pieces to

find the minimum value required for the optimization. Further

technical details on QBSolv can be found in [2].

D-Wave Systems allows to submit and solve a problem

modeled as QUBO on a remote quantum computer. To do

this, in 2018, the computing company made available to users

a cloud service, the D-Wave’s Leap, and a set of Python APIs,

the Solver API (SAPI), that allow any developer to access and

submit any problem to the D-Wave Quantum System.

III. A CASE-STUDY: THE SEATING ARRANGEMENT

OPTIMIZATION PROBLEM

The considered case-study focuses on passenger transport

on high-speed trains considering the Italian Government’s

new regulations on social distancing due to the COVID-19

pandemic.

The railway companies have currently adapted their passen-

ger positioning strategies by embracing a seating arrangement

as a "checkerboard" pattern, i.e., with the allocation of passen-

gers to alternate seats, to counter the spread of the COVID-

19 virus. Nevertheless, with the adoption of this strategy, the

filling capacity of the wagons has dropped to 50% of the total

capacity, leading to a drastic reduction in the high-speed rail

operators’ earnings. This is due to the mismatch between the

costs necessary for activating the railway transport lines and

the revenues obtained from ticket sales. From now on, we will

denote the examined case-study as the Seating Arrangement

Optimization problem.

The objective of the Seating Arrangement Optimization

problem (SAOP) is to fill the train wagon as much as possible

within the restrictions on social distancing due to the COVID-

19 health emergency. Still, it aims to maximize the number

of passengers belonging to the same family or living group

in adjacent seats. Although the focus of the problem can

be extended to the entire train, the study refers to only one

wagon. Then, for a multi-wagon train, the procedure will be

run for each wagon separately. Furthermore, we assumed a

static situation: just one train segment, i.e., a trip between

two adjacent stations, is considered so that the number of

passengers and their social relationships are known beforehand

without any changes during the travel.

Some fundamental elements characterize the SAOP. A set

of passengers that has to be transported on a high-speed

train is given. During the ticket reservation procedure, each

passenger is associated with a unique identifier, the booking

ID, which can be shared or not with other passengers. The

important assumption of the problem is that people with the

same booking ID belong to the same family or living group.

This condition, therefore, assumes they can be excluded from

the social distancing impositions prescribed by the regulations

against the spread of the COVID-19 virus. A high-speed train’s

wagon is then considered. The wagon has a certain number of

seats. Each seat is represented by a pair of coordinates, a row

and a column number, which collocate it into a grid. Finally,

it is necessary to consider the following requirements:

• allocation of one and only one seat to each one of the

considered passengers (avoid that a passenger has more

than one seat assigned to him);

• allocation of one passenger at most to each seat (avoid

different passengers being assigned the same seat);

• allocation of not adjacent (in front/behind/left/right) seats

to people belonging to different families (identified by

different booking IDs).

Let us consider the following sets and parameters:

• R = {1, 2, . . . , rmax}: set of seats row numbers;

• C = {1, 2, . . . , cmax}: set of seats column numbers;

• K: set of booking IDs;

• nk: nb. of passengers with the same booking ID k ∈ K.

Moreover, let us define the variable

x(r,c),k :=











1 if a passenger with booking ID k is

assigned to seat with row and column (r, c)

0 otherwise

for each row r ∈ R, column c ∈ C, and booking ID k ∈ K.

Then, a natural quadratic programming model for the SAOP

can be stated as:

max
∑

k

∑

(r,c)

x(r,c),k · x(r+1,c),k+

+
∑

k

∑

(r,c)

x(r,c),k · x(r,c+1),k (2)

subject to
∑

(r,c)

x(r,c),k = nk, k ∈ K (3)

∑

k

x(r,c),k ≤ 1, r ∈ R, c ∈ C (4)

x(r,c),k · x(r+1,c),k′ = 0,

r ∈ R \ {rmax}, c ∈ C, k, k′ ∈ K, k 6= k′ (5)

x(r,c),k · x(r,c+1),k′ = 0,

r ∈ R, c ∈ C \ {cmax}, k, k′ ∈ K, k 6= k′ (6)

x(r,c),k ∈ {0, 1}, r ∈ R, c ∈ C, k ∈ K. (7)
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The objective function (2) maximizes the number of passen-

gers with the same booking ID assigned to adjacent seats.

Constraints (3) state that each passenger with a given booking

ID is assigned to one seat, while constraints (4) state that

each seat is assigned to at most one passenger with a given

booking ID. Constraints (5) ensure that two seats, one next to

the other (in the same column), are not assigned to passengers

with different booking IDs, while constraints (6) ensure that

two seats, one in front of the other (in the same row), are not

assigned to passengers with different booking IDs. Finally,

binary conditions on the variables are stated in (7).

A. QUBO formulation

Since the QUBO paradigm asks for an unconstrained model,

as the one in (1), the constraints (3)-(6) and the cost function

(2) are relaxed and aggregated into a single objective function

through non-negative parameters λ’s, to be calibrated (see

later). In particular, we chose to set these parametric coef-

ficients as numerical and to associate each of them with a

specific group of constraints presented in model (2)–(7). We

decided to adopt this modeling choice to minimize the number

of λ parameters needed, as they represent a non-negligible

obstacle during the model calibration.

To do this relaxation, we built a penalty term for each of

the identified constraints by following the approach from [3].

Hence, a QUBO formulation for the SAOP problem becomes:

minλAHA + λBHB + λCHC + λDHD −HE (8)

where

• the penalty term associated with constraints (3) is

HA =
∑

k

(nk −
∑

(r,c)

x(r,c),k)
2

• the penalty term associated with constraints (4) is

HB =
∑

(r,c)

∑

k,k′

x(r,c),k · x(r,c),k′

• the penalty term associated with constraints (5) is

HC =
∑

(r,c)

∑

k,k′

x(r,c),k · x(r+1,c),k′

• the penalty term associated with constraints (6) is

HD =
∑

(r,c)

∑

k,k′

x(r,c),k · x(r,c+1),k′

• the penalty term associated with objective function (2) is

HE =
∑

k

∑

(r,c)

x(r,c),k · x(r+1,c),k+

∑

k

∑

(r,c)

x(r,c),k · x(r,c+1),k.

Note that, unlike the other penalties, a squaring has been

introduced in HA as it is necessary to be able to grasp the

relationship between the values assumed by different variables

within the solution.

Starting from (8), the Q matrix of model (1) has been

derived. To do that, we need to identify the relationship

between the problem’s variables. First of all, the single QUBO

terms of the function (8) need to be expanded. Then, after

the coefficients have been found, they are multiplied by the

parametric coefficients λA, λB , λC and λD, whose purpose is

to give more or less weight to each QUBO penalty such that

the constraints are imposed when searching for the solution.

IV. COMPUTATIONAL RESULTS

This section reports the results obtained by executing several

instances of the SAOP modeled as a QUBO using the two tools

offered by D-Wave Systems, namely, the QBSolv and D-Wave

Leap’s cloud-based quantum-classical hybrid solver (from now

on referred to as D-Wave Hybrid Solver). Initially, the problem

size in terms of the number of variables is reported. Then, the

two solvers are compared in terms of optimal solutions and

computational times.

An ad-hoc data set containing simulated test instances about

seats, passengers, and bookings were created for the performed

experiments. The input that we provided to our QUBO model

has been created based on an indicative estimate of realistic

data of a high-speed train. In particular, it was decided to use a

wagon consisting of 80 seats, placed in a 4×20 grid, made up

of 4 horizontal (the rows) and 20 vertical (the columns) rows.

Taking as a reference a reasonable number of passengers for

a high-speed train, 1000 passengers have been created. Still,

only a small subset of them was used for our restricted exper-

imental analysis. In particular, for the experiments reported in

the following, the maximum number of people that have been

tested is 52. Since it was necessary to associate a specific

booking ID to each passenger, we decided to use 300 distinct

booking IDs to make a reasonably homogeneous assignment.

The final range of assigned booking IDs is 290 booking IDs,

and the minimum number of passengers with the same booking

ID is 1 while the maximum is 8. All the experiments have been

carried out on a desktop computer with a 1.8 GHz Intel Core

i7-8550U processor.

A. Quality of solutions

The quality of the D-Wave Systems solvers is now analyzed.

After having calibrated the λ parameters in model (8), by using

the Python APIs of the Ocean SDK, the two solvers were

used to solve different instances of the analyzed problem. The

numerical results for the SAOP various instances can be seen

in Table I. For each problem instance (identified by "Seats",

"Passengers", "Distinct booking IDs" columns), we report in

the "Total minimum energy" column the value of the best

solution found by each solver (i.e., the minimum value of the

expression (8)). Moreover, the number of passengers allocated

to seats inside the train wagon (fifth column) and the number

of people with the same booking ID correctly assigned to

adjacent seats (sixth column) are reported for each solution.

The two solvers seem to perform well, most of the time

reaching the goal of allocating people with the same booking
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TABLE I
OPTIMAL SOLUTIONS OBTAINED BY RUNNING THE QUBO MODEL INSTANCES WITH THE D-Wave Systems SOLVERS

Seats Passengers Distinct Solver Nb. of Nb. of passengers Total minimum

booking IDs passengers with an with same booking energy

assigned seat ID assigned to

adjacent seats

80 11 3
QBSolv 11 10 -464.300

D-Wave Hybrid 10 11 -464.300

80 16 4
QBSolv 16 15 -682.800

D-Wave Hybrid 16 15 -682.800

80 19 5
QBSolv 19 18 -762.000

D-Wave Hybrid 19 18 -762.000

80 23 7
QBSolv 23 21 -849.400

D-Wave Hybrid 23 21 -849.400

80 28 8
QBSolv 28 26 -1067.900

D-Wave Hybrid 28 26 -1067.900

80 34 9
QBSolv 34 32 -1382.000

D-Wave Hybrid 34 32 -1382.000

80 39 11
QBSolv 39 37 -1496.700

D-Wave Hybrid 39 37 -1496.700

80 44 13
QBSolv 44 41 -1646.900

D-Wave Hybrid 44 41 -1646.900

80 50 14
QBSolv 50 45 -1947.500

D-Wave Hybrid 50 47 -1958.300

80 51 15
QBSolv 51 46 -1953.000

D-Wave Hybrid 51 47 -1961.100

ID to adjacent seats. Furthermore, an improvement com-

pared to the passenger transport’s current situation has been

achieved. Both solvers manage to find at least an acceptable

seating arrangement up to 15 booking IDs for a total of 51

passengers, bringing therefore to have a filling percentage of

the seats up to 63,75% (instead of the classical 50%).

For most instances, the D-Wave Hybrid Solver finds solu-

tions with the same energy as those found by QBSolv. This

means that the solver running on the CPU performs well

in solution quality, even without quantum hardware usage.

However, there are two cases, i.e., the ones corresponding to

the instances with 14 and 15 distinct booking IDs (respectively

50 and 51 passengers), where D-Wave Hybrid Solver finds two

lower energy and better solutions than those found by QBSolv.

The computational time of QBSolv ranges from 1.2s (for the

instance with 11 passengers and 3 distinct booking IDs) up

to 18.8s (for the instance with 51 passengers and 15 different

booking IDs). Instead, if the D-Wave Hybrid Solver is used

for solving the same problems, the computational time ranges

from 6.5s to 22.1s. The difference between them lies in how

they work: QBSolv works locally on the CPU while D-Wave

Hybrid Solver requires remote access via the Internet to a

physically remote system shared between multiple users.

V. CONCLUSIONS

This paper has analyzed how assignment-like combinatorial

optimization problems can be effectively solved through quan-

tum technology tools. Specifically, we aimed to investigate this
innovative computation technique, quantum computing, and

explore the advantages and disadvantages that derive from it.

We considered a specific case-study concerning the alloca-

tion of passengers to seats on high-speed trains with the recent

hygiene and health regulations on social distancing due to the

COVID-19 pandemic. The experiments show that the quantum

approach is a feasible way to solve the problem effectively.
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