Uit

Proceedings of the 16" Conference on Computer
Science and Intelligence Systems pp. 521-531

DOI: 10.15439/2021F81
ISSN 2300-5963 ACSIS, Vol. 25

An Agent-based Cyber-Physical Production System
using Lego Technology

Metehan Mustafa Yalcin*, Burak Karaduman', Geylani Kardast and Moharram Challenger§
*Department of Electric and Electronics Engineering, Ege University, Izmir, Turkey
metehanmustafayalcin @ gmail.com
TDepartment of Computer Science, University of Antwerp and Flanders Make, Belgium
burak.karaduman @uantwerpen.be
Hnternational Computer Institute, Ege University, Izmir, Turkey
geylani.kardas @ege.edu.tr
§Department of Computer Science, University of Antwerp and Flanders Make, Belgium
moharram.challenger @uantwerpen.be

Abstract—To cope with the challenges of constructing Cyber-
physical Production Systems (CPPS), many studies propose ben-
efiting from agent systems. However, industrial processes should
be mostly emulated while agent-based solutions are integrating
with CPPS since it is not always possible to apply cyber-based
solutions to these systems directly. The target system can be
miniaturised while sustaining its functionality. Hence, in this
paper, we introduce an agent-based industrial production line
and discuss the system development using Lego technology while
providing integration of software agents as well as focusing on
low-level requirements. In this way, a CPPS is emulated while
agents control the system.

Index Terms—Software Agent, Multi-agent System, SPADE
Agent Programming, Cyber-Physical Production System, SysML

I. INTRODUCTION

DVANCES in networked systems produce new

paradigms and new design challenges in the embedded
systems. The information processing and computation are
merged with communication and control that creates Cyber-
Physical Systems (CPS) [1]. This evolution expands the
capabilities of embedded technology interacting with the
physical world through computation, control and networked
communication. In this way, medical devices, transportation
vehicles, intelligent highways, robotic systems and factory
automation can be instrumented and implemented considering
new capabilities that are achieved by CPS. One of the
specialized fields of CPS is the Cyber-physical Production
Systems (CPPS) which is related to the autonomous and
cooperative elements and subsystems that are connected based
on the context within and across all levels of production,
from processes through machines up to the production and
logistics networks [2].

Smart manufacturing considers adapting the embedding
software and hardware technologies to the CPS, including
intelligent methodologies. It aims at increasing the efficiency
in the production as well as improving the conditions in the
delivery process. Moreover, it is one of the leading application
domains since it can have large scale production in domestic

IEEE Catalog Number: CFP2185N-ART ©2021, PTI

and international marketing that can impact highly economic
growth. Industry 4.0 takes a pioneering role to determine
manufacturing standards of the future [3]. A highly challenge
in manufacturing came forward is flexibility since there are
high demands for products. It is very problematic to meet those
demands because of safety and complexity that arise from
frequent interactions and co-operative requirements between
machines, lack of human experts, and absence of an intelli-
gent mechanism that can reason unpredictable behaviours of
the system [4]. However, the requirement for intelligence to
achieve smart CPS has emerged due to the complexity of these
systems and physical unpredictability.

To cope with the challenges of CPS, many studies propose
benefiting from the features of multi-agent systems (MAS)
(e.g. [5]-[7]). MAS are widely preferred for providing support
for smartness, decentralization, autonomy, and socialization
of CPS. They increase the effectiveness of CPS providing
enhanced functionalities for production and automation. The
software agents can decide reconfiguration of the control
functions/parameters, monitor transition between processes,
and observe the human errors while increasing the system/hu-
man safety. Moreover, they can detect module breakdowns,
structural changes, and contradictory inputs and materials,
then they plan and decide on a suitable solution. In this way,
they can enhance product quality and prevent damages during
critical processes.

An integration of MAS and CPS may facilitate the use of
intelligent agents in various industrial applications [8]. Once
agents can control the components of the CPS, the developer
can focus on higher-level solutions such as implementing in-
telligence mechanisms [9], aggregating Big Data and creating
Digital Twins [10]. However, industrial processes should be
emulated while agent-based solutions are integrating with CPS
to address its challenges. Because it is not always possible
to apply cyber-based solutions to the operational systems
and dangerous environment of the industry directly when
requested. Moreover, it is a burden to prototype an actual
industrial production system for development purposes. There-

521

522

fore, the target system can be miniaturised while sustaining its
functionality, accuracy and goal-orientedness.

Firstly, a composable and concrete technology to mimic
the industrial systems where CPSs are intensively operational
is required. One of the technologies commonly used for
imitating such systems is Lego (e.g. [11], [12]). Although
Lego technology can be supported with tools or languages
such as Scratch [13] for programming its hardware devices to
control motors and collect data from sensors, it is not possible
to integrate software agents and any intelligence mechanism
easily. Secondly, a common development environment and
language is required to merge Lego technology and agent
software. Lastly, the integration should be seamless and built
from scratch, and the system should behave as it is developed
by the Scratch graphical programming language. Hence, in
this study, we introduce an agent-based industrial production
line and discuss the design and implementation of this system
using Lego technology while providing the integration of the
software agents both to address the abovementioned CPS
problems and to focus on low-level requirements.

Since CPPS use different controller/computation parts, their
relationship should be modelled to reduce their development
and design complexity [14]. For this purpose, the analysis and
design of both the software and system parts are realized using
SysML [15] in our study. Physical implementation is done
using Lego technology and Raspberry Pi (with PiStorms hat)
while embedded and agent software is coded using Python
and Smart Python Agent Development Environment (SPADE)
[16], respectively, including RasberryPI-Lego library [17].
This paper discusses all these parts of the system development.
In addition, the challenges during the integration of Lego
technology and software agents to create a CPPS are discussed,
and lessons learned are also given in the paper.

The rest of this paper is organized as follows: Section 2
briefly discusses the related work. Section 3 gives the analysis
and design of the smart production line system. The imple-
mentation of the software components and the setup of the
hardware are all discussed in Section 4. The challenges we
faced and lessons learned are reported in Section 5. Finally,
the paper is concluded and the future plan is described in
Section 6.

II. RELATED WORK

Multi-agent systems are broadly researched and developed
for providing modularization of the dynamic systems, decen-
tralization for distributed systems [18], autonomy for produc-
tion, and re-usability for further development of physical sys-
tems [19]. However, before realising such complex operations,
agent integration has to be provided [20]. Once agents are
implemented into CPS, their control over embedded functions
should also be ensured.

In [7], capabilities of agents and CPS challenges are
matched while underlining the software agents are generally
a good fit for the requirements of the next generation CPS.
Therefore, agents can show paramount effects for creating
collaboration and integrity when they are distributed, providing

PROCEEDINGS OF THE FEDCSIS. ONLINE, 2021

smart decisions when physical unpredictability exists during
the operation of CPPS. Leitao et al. [7] also emphasize that
agents are good at reasoning e.g. using machine learning
techniques, providing sustainability and managing human in-
teraction in CPS.

The study in [21] addresses joint characteristics of Industrial
Internet-of-Things (IIoT) and CPS while it also provides
methodologies about the applicability of IoT-enabled solutions
to CPPS considering interoperability principles. Additionally,
they also present modelling approaches for IIoT systems.

In [22], the association between CPS and Embedded sys-
tems is considered. It is suggested to use a micro-controller
board with various communication interfaces such as CAN,
UART, WLAN, Ethernet, and BLE. In this way, this micro-
controller can provide system-level compatibility with various
boards and technological diversity to extend the design space.

Lee [23] discusses the design challenges of CPS in general
from various perspectives and proposes a model-based design
as a complementary approach. Hence, the process of rewriting
the CPS software every time for each system can be shortened
or even eliminated.

Similarly, the application of zero defect manufacturing
using software agents is studied in [24] to cope with the
challenges of CPS in the smart manufacturing domain. The
researchers create a four-layer architecture and benefit from
IoT solutions to inter-operate it with CPS using an edge-fog-
cloud methodology. They highly consider earlier detection of
anomalies, product quality and data correlation to find the
optimal solution without interfering with any control functions.

In [25], an agent-oriented system is proposed for an Au-
tomated Guided Vehicle (AGV) with the on-board camera.
Xing et al. [25] benefit from the MAS paradigm to provide
an effective organisation and communication between system
components. They indicate that the MAS paradigm improves
the intelligence of the systems by providing an onboard
solution while achieving context-awareness for an autonomous
AGV.

Queiroz et al. [26] discuss the cognitive requirement of
CPS, exhibit the necessity of the distributed intelligence, and
envision the usefulness of MAS as they fit the CPS. They
indicate that autonomous decisions in a decentralised way can
address some of the CPS challenges.

In [27], an ontological classification of CPS is made consid-
ering past, present, and future CPS technologies emphasising
the requirement of intelligence. Moreover, intelligence level
and self-* features of CPS are matched considering both the
previous achievements and future projections. The study also
focuses on the current research gaps in this domain.

In [6], the authors suggest using an agent development
platform, called Tartarus, to implement both cyber-physical
and IoT systems. They use a solution to run the software
agent on the Intel Galileo and RaspberryPI boards using the
Tartarus-Lego Mindstorms NXT robots programming inter-
face. Although the current study also supports our vision
to achieve agent-CPS integration using Lego development
components, our solution differentiates in the sense that we

METEHAN MUSTAFA YALCIN ET AL.: AN AGENT-BASED CYBER-PHYSICAL PRODUCTION SYSTEM USING LEGO TECHNOLOGY

focus more on integrating agent behaviours with the low-level
of embedded control of the system components. This refers
to low-level problems of agent-CPS integration from the bare-
metal embedded libraries to binding them with agent-based
programming.

Petrovska et al. [28] propose a domain-independent ap-
proach for knowledge aggregation and reasoning of decen-
tralized monitoring in multi-agent smart CPS. According to
their logic algorithm, they tackle the uncertainty of partial,
faulty and potentially conflicting context observations. Their
approach allows capturing uncertainty at run-time on a local
level while providing a global decision-making mechanism.
They evaluate their approach using multiple rooms cleaning
robots implementing MAPE-K feedback loop to their multi-
robot system.

The study in [5] discusses how a domain-specific modeling
language, called SEA_ML++ and its tool [29], [30] are used
for the design and implementation of a cyber-physical garbage
collection system. The system is first modelled according to
SEA_ML++’s graphical concrete syntax. Then a significant
portion of the agent-based implementation of the system is
automatically generated from these models via a series of
model-to-code transformations.

In [31], the use of agents on Raspberry Pi is introduced.
The study mostly focuses on the networking of agents and
the cyber part of their location-aware and tracking services to
establish an indoor person tracking system.

The survey in [32] considers the state of the art of applying
agent technologies into the industry. The authors indicate that
the industrial systems should be coupled with software logic
and software agents to design CPS. They also underline the
integration of software agents with physical hardware is both
a difficult and a long-term process, and hence the common
software patterns and paradigms can be applied to construct
industrial agents which control the industrial machines and
devices. However, according to their results, there is no
uniform way to integrate the software agents to the low-
level automation functions to create the industrial agents. Our
methodology, which will be discussed in the following sections
of this paper, may provide a strong alternative on facilitating
the related integration within this perspective, specifically by
emulating the industrial system before the real implementa-
tion and benefiting from both the agents and the embedded
software and hardware.

Karnouskos et al. [33] classify the industrial agents ac-
cording to ISO/IEC SQuaRE standards [34] under 8 cat-
egories, namely Usability, Compatibility, Performance Ef-
ficiency, Functional Suitability, Portability, Maintainability,
Reliability and Security. Considering these 8 categories, an
industrial system can be mimicked, and these standards can
be applied to test the validity of them before the developed
methodologies are adapted to the actual system.

As can be seen, while most research in the literature focuses
on providing intelligence, adaptiveness and awareness mech-
anisms for CPS using agent technologies from a higher level
of view, our study contributes to these efforts by providing an

underlying infrastructure to merge embedded software with
agent programming as well as mimicking the system opera-
tions over Lego technology to achieve the physical emulation
of the industrial-like systems before their construction. Thus,
we believe that once such an infrastructure is provided, then
applying high-level solutions via decision making, knowledge
extraction or pattern matching as mainly considered in the
current studies can become more feasible.

III. SYSTEM SOFTWARE ANALYSIS & DESIGN

In this section, we discuss the analysis and design of
our smart manufacturing system using SysML. We provide
a multi-agent, multi-layered, multi-process study for such
manufacturing systems. At the cyber side, the scalability,
reactivity, and communication are merged with the embedded
software in order to control a composable, extensible and
modular Lego-based physical system.

A. System Overview

During the analysis and design, an efficient, autonomous,
and smart manufacturing system is aimed to emulate the
industrial requirements and tasks. The different types of input
products are sorted in this system and they are processed
autonomously according to their features which are similar
to the common functionalities in an industrial factory.

The operation of the production line starts from inputting
Lego bricks into the system. Then, the system starts to deliver
these bricks using conveyor belts and in the next phases, the
system decides either to sort or to combine these Lego bricks
according to their colours.

The system is represented by a block diagram, which is
illustrated in Figure 1, to provide an overview of the design.
Considering the achievement of an autonomous and a modular
system, the system is designed to be working on two embedded
devices which are represented as layer I and layer 2. The
essential requirement to run the whole system is the agent
communication which is established between these two layers
using XMPP protocol [35]. Two layers controlled with two
PiStorms extension boards and two RaspberryPI3. The first
layer controls 4 motors, 1 button, 1 ultrasonic sensor and 2
colour sensors while the second layer controls 3 motors and
a limit switch.

Each software agent (shown in the photograph of the created
system in Figure 2) has its own tasks and roles inside the sub-
systems of the production line. In the following subsections,
they are discussed in detail. First of all, each agent has specific
behaviours and actions to control hardware elements. These
actions provide the sustainability to make the system complete
its processes successfully. While four of seven agents work
with cyclic behaviour, two agents have one-shot behaviour
and an agent works based on a finite state machine (FSM)
behaviour. To get the system and the agents ready, "Initialize"
methods of all agents are triggered at first. Agents act based
on their roles. The roles of the system agents are as follows:
Drop agent is responsible for delivering products from system
input to the Shredder agent. Shredder agent is responsible for

523

524

shredding products and delivering them to Sort agent. Sort
agent should decide about the product and move it to a related
process. Push agent removes the brick from the conveyor belt.
Lastly, Build agent builds required products according to the
current state of its FSM behaviour model. Collaboratively, all
agents run and control the whole production process.

In this regard, agents execute their programmed behaviours
to achieve their goals. Before they start executing their tasks,
each agent awaits a message from the preceding agent. This
communication system provides a proper sequence for agent
executions in the system.

B. Architectural Design

We designed the system architecture using block definition
diagrams. For instance, in Figure 1, hardware layers are
represented with root classes, named devl and dev2. These
classes are specialized to assign specific functions for the goals
of agents. These classes are created using Singleton Pattern
to constraint the instance creation as only one instance per
PiStorms device. We benefit from PiStorms library to program
the device-specific features and the functions which are used
by the devl and dev2 classes. Software agents control the
hardware I/O ports via these singleton classes. These classes
constraint the cardinality of object creation to one for each
hardware element and these device objects are accessed by
software agents to use device functions for I/O operations. In
this way, agents control the device I/O to achieve their goals
and sustain the operation of the production line.

C. Agent Communications

In a MAS, messaging is important for agents to complete
tasks collaboratively. In SPADE, Agent Communication Lan-
guage (ACL) messages have various parameters and com-
monly used ones are type, receiver, sender, and content. In our
system, we use informative messages to establish organization
between agents. When certain events occur in the system,
agents send messages which include keywords (performatives)
and lead triggering an action inside the agent receiving that
message. SPADE uses the XMPP protocol to deliver messages
and to ease connection creation. The sequence diagram given
in Figure 3 represents the messaging between the system
agents.

D. Behavioural Design

In this section, behavioural activities of the agents (emu-
lating the product line robots) are discussed. As illustrated in
Figure 4, each agent has specific behaviours and actions to
control hardware elements.

Overall, while four of seven agents work with cyclic be-
haviour, two agents have one-shot behaviour and an agent
work based on finite state machine (FSM) behaviour. These
agents provide actions for the sustainability of the system.
Moreover, the process transitions, controlled by the software
agents of the system can be visualized as given in Figure 5.

PROCEEDINGS OF THE FEDCSIS

ols ™

runson

ontrols "\ con'ra

-

N
8 //mnla:ns

itz Agen

BuidFsMAgent

T |
[fcontains

¢ “~~__controls /contains

— L

Fig. 1. Block definition diagram of the system.

. ONLINE, 2021

METEHAN MUSTAFA YALCIN ET AL.: AN AGENT-BASED CYBER-PHYSICAL PRODUCTION SYSTEM USING LEGO TECHNOLOGY

TTAYER 2

Fig. 2. Layers and agents of the Lego-based production System.

T X2z 2

InitAgent DropAgent ShredAgent SortAgent PushAgent BuildFSMAgent

done

dropped

dropped

shredend

alt / [readed_color]

push

build

done

done

=

X

InitAgent

-~ - - -~ -~

A XXX X

DropAgent ShredAgent SortAgent PushAgent BuildFSMAgent

Fig. 3. Message sequence of the system agents.

1) Layer 1 Agents and their Behaviors:

Initialize Agent: Unpredictable power cuts and instant system
shutdowns may cause positioning problems for the motors.
When the power is cut, motors freeze at a position that
is unknown by the system. Unknown motor positions cause
failures on tasks. The main task of this agent is positioning the
motors within mechanical limits. After motors are positioned,
the agent sends a "done" message to the Drop Agent. This
agent has a one-shot behaviour that works only once a time
when the system starts up. There are 2 initializing agents for
each layer. The initialize agent in layerl positions the drop
motor with the mechanical limiter.

Drop Agent: Drop Agent is responsible for delivering the
product (Lego brick) from system input to conveyor belt. It
has a cyclic behaviour so it continuously samples data from 2
sensors while controls a motor. It waits for a "done" message
from Initialize Agent or Build Agent, then the user presses the
button to run the system continuously. The "done" message
refers to the system is ready for the first run or the current
process is done so that Drop Agent can deliver a new product
to the conveyor belt.

Before Drop Agent runs the motor to drop a brick on the
conveyor belt, it checks whether there is any brick in the input

using the sensor at the input. If this condition is satisfied, then
Drop Agent delivers the brick to the conveyor belt. It rotates
the motor 90° clockwise to release the brick and then -90°
anti-clockwise to return its initial position. Lastly, Drop Agent
sends "dropped" message to Shredder Agent and Sort Agent
to inform these agents about completion of its operation.

Shredder Agent: Shredder Agent is responsible for con-
trolling shredding and washing processes. This agent has
a continuous cyclic behaviour. The behaviour starts with
receiving a "dropped" message from Drop Agent and stops
when a "shredend" message is received from Sort Agent.
While product shredding, washing and moving to the second
conveyor belt, the agent concurrently checks an ultrasonic
sensor with a thread. In case of any outside intervention, the
system accepts this intervention as an emergency and stops
the shredder motor, washing motor and conveyor belt.

Sort Agent: As represented in Figure 7, Sort Agent has major
role for making decisions in the system. It executes a Cyclic
behavior. After a product is dropped on the conveyor belt,
Sort Agent starts waiting for a brick and activates the colour
sensor. When the sensor realizes that the brick has arrived,
it stops the conveyor belt. If the brick still does not arrive
at the sensor after a certain time, the sort agent reverses the
movement of the conveyor belt to set free the brick which is
stuck. It reads colour sensor to recognize colour of the brick.
Sensor sampling starts with receiving a "dropped" message
and ends with product recognition. If the sensor recognizes
product arrival to the sensor, then Sort Agent reads the colour
of the brick and stops the conveyor belt. Then, it has 4 decision
options to deliver brick and to inform related agents:

« Move brick to the bucket 1 and send "push" message to
Push agent.

« Move brick to the bucket 2 and send "push" message to
Push agent.

« Move brick to the bucket 3 and send "push" message to
Push agent.

« Move brick to the press and send "build" message to
Build agent.

2) Layer 2 Agents and their Behaviors:

Init2 Agent: Initializes the push motor, press motor and eject
motor to their initial positions. This agent executes a one-shot

525

526

PLASTIC RECLYING

PROCEEDINGS OF THE FEDCSIS. ONLINE, 2021

MULTI AGENT
SYSTEM
v v Legend
AGENT PLATFORM | XMPP AGENT PLATFORM)
LAYER 1 | - LAYER 2 (I
I Root I
J 7 7 l J 7 l (o
InitAgent DropAgent ShredAgent SortAgent Init2Agent PushAgent BuildAgent
[Init Behavior] [Drop Benavior] Snred Beh. Sorl Benavmr Init2 Benavmr Push Beh. Agent
(One-Shof) (Cyclic) (Cyclic) (Cyclic) (One—Shot] (Cyclic) (FSM)
Behavior Name
& Template
Actuation Sense & Act Sense & Act Sense & Act Sense & Act Actuation Sense & Act Actuation Physical Role
Drop Motor Button Ultrasonic Sen.| | Color Sensor Push Motor Push Motor Press Motor Eject Motor Controlled Component
Drop Sensor Shredder Mot. | | Conveyor Belt1| | Press Motor Limit Switch
Drop Motor Conveyor Belt1| | Conveyor Beli2 | [Eject Motor
Conveyor Belt1
Fig. 4. Organisation diagram of the system.
o mechanical line forward and then back. After, it sends the
"done" message to Drop agent to inform the process is
completed. When it receives a "push" message, Push Agent
InitAgent l turns the motor clockwise with 120° and after a second, it
turns counter-clockwise with 120°.

done;

DropAgent

dropped; (dune. done;

SortAgent

shredend; build;

ShredderAgent

(Buildrsmagent)

)

(Push,Lgentw
N)

Fig. 5. Process transition between the agents.

behaviour. The agent is created with the system start up and
dies after completing its behaviour and related task execution.
In the Lego systems, the moving parts are usually limited with
mechanical bounds. Therefore, we added an extra limit switch
into this configuration for the press motor to obtain a much
better initial position performance.

Push Agent: Push agent is an agent that has a cyclic
behaviour. After it receives a "push" message, it pushes the

Build Agent: As Figure 6 illustrates, Build Agent controls
the pressing process in an FSM manner. The agent starts
pressing the first product after it receives the first "build"
message. Then, it waits for the second "build" message which
means the second product is about to arrive. When the agent
receives the first "build" message, then it moves to Press
1 state where it holds the first brick. Once it receives the
second "build" message, then it switches to the Press 2 state
to combine these two bricks. After the completion of these two
consecutive actions, Build Agent ejects the arm and pushes the
products to the storage area. Build Agent executes its FSM
behaviour continuously until the system shutdowns.

IV. IMPLEMENTATION OF THE PRODUCTION LINE

The software agents work in collaboration to control the
heterogeneous parts of our production line which is, in fact,
a complex CPS. These agents periodically sense their en-
vironment and operate to achieve their goals while keeping
the system operational. Agents are self-containing entities that
are able to achieve their tasks by providing local control for
the different parts of the system. The role distribution to the
agents are defined according to process phases to harvest the
product and they are programmed to work in harmony with
other agents. Their modularity and dynamic deployment also
enhance the physical upgrades and changes, in other words,

METEHAN MUSTAFA YALCIN ET AL.: AN AGENT-BASED CYBER-PHYSICAL PRODUCTION SYSTEM USING LEGO TECHNOLOGY

build message recieved;

b

build message recieved; “ build message recieved;

Press2 | Press2 completed,

Fig. 6. State diagram of the Build agent.

new agents and new hardware can be added to the system
easily.

In this section, the implementation of our smart manu-
facturing system is elaborated including the hardware setup
and software agent implementation. The system configuration,
the realization of the communication between agents, and the
implementation of the corresponding behaviour classes are all
discussed in the following subsections. The final structure of
the implemented system has been previously shown in Figure
2.

A. System Configuration

The system is controlled by two PiStorms interface boards
and two Raspberry Pi 3. Raspbian operating system runs
Python 3.7 to interpret both embedded software and agent
codes to control the system. SPADE is used for creating
agents while PiStorms API is used to control Lego EV3
sensors/actuators.

In addition to the Lego production line pack, some modifica-
tions were made to resemble a more realistic industrial system.
In the original system, the whole conveyor band had been
controlled with only a single motor. Thanks to the modularity
of Lego Technology, we separated conveyor bands to make
each motor controls a separate conveyor belt so that two
conveyor bands became controlled by the individual motors.

Generally, in most industrial production process implemen-
tations, limit switches are one of the most necessary hardware
components to increase the reliability of the system. Hence,
we added a limit switch for reducing the re-positioning error
of the pressing process to zero shift. In case of any unexpected
power cuts or environmental uncertainty, the system can obtain
the initial position accurately using the limit switches.

Moreover, the initial version of the system had some issues
about sampling colour value at the intersection point of
conveyor 1 and conveyor2. Sometimes there was some noise
that effecting colour sampling data due to the moving parts. To
fix this, we separated conveyors to find the optimal position for
the colour sensor. Lastly, we added some brick parts as limiters
to keep the moving bricks on the middle of the conveyors
accurately.

B. Embedded Software

As discussed previously, we applied the singleton design
pattern to restrict object creation from the class, including the
hardware-specific I/O operations. Because the agents should
access the same memory address and register so that an agent
does not override other agent’s access.

Inside the device-specific classes namely devl and dev2,
we also created inner classes for each hardware component.
Inside these inner classes, there are functions specialized for
each hardware element. For instance, an excerpt from the
ConveyorMotor inner classes is given in Listing 1.

These inner classes can be accessed by an agent to control
the hardware. Inside these inner classes, we developed a
wrapper to raise the abstraction between the embedded Lego
library and class implementation. In this way, wrapped code
became more suitable for behavioural programming. In Listing
1, start(), startSlow(), stop(), brickStucked() and runDegs()
functions are shown. These functions access the device-
specific functions defined in the PiStorms library and wrap
them to make them more usable for agent-based programming.
Between lines 2 and 3, the conveyor motor is initialized and
set to a certain speed. Lines 5 and 6 describe a lower speed
setting for the conveyor motor while lines 8 and 9 instruct the
stop function. When the system detects a stuck on the conveyor
belt, it calls brickStucked function to reverse the conveyor belt.
Lastly, lines between 14 and 16 define the runDegs method to
rotate and run the motor according to the desired parameters.

1 class ConveyorMotor:

2 def start (self):

3 devl.psm.BBM2.setSpeed(—100)
4 print (f’Conveyor Started’)

5 def startSlow (self):

6 devl.psm.BBM2.setSpeed(—-20)

7 print (£’ Conveyor Slow Started’)
8 def stop(self):

9 devl.psm.BBM2.setSpeed(0)
10 print (f’Conveyor Stopped’)
11 def brickStucked (self):
12 devl.psm.BBM2.runDegs(200, 100, True, False)
13 print (f’Brick stucked’)
14 def runDegs(self ,degree,speed):
15 devl.psm.BBM2.runDegs(degree, speed, True, False)
16 motorState = devl.psm.BBM2.isBusy()
17 print (f’Motor rotated {degree} degree on {speed}
speed’)
18 return motorState

It is the working principle of an agent to operate in-
dependently using behaviours and execute them in parallel
with other agents. However, considering our I/O blocking
situation, it is now possible to en-queue any sensor reading or
motor actuating behaviours. Therefore, we need a concurrent
system where it can run continuously without any interruption.
Moreover, the system should sample data from the sensors
while actuating a motor for 3 seconds in parallel with running
another motor for 5 seconds.

528

PROCEEDINGS OF THE FEDCSIS. ONLINE, 2021

"dropped" message recieved j

Is product arrived I

¥

¥

[Read color) [Stop Conveyor Belt)

Is color Red
yes

[Move brick to Bucket 1) [Move brick to Bucket 2)

(Move brick to Bucket 3)

Move brick to Press

| !

l Color Error '

[Send message to PushAgent) [Send message to PushAgent) [Send message to PushAgent) (Send message to BuiIdAgent)

Y ¥

¥ ¥

Fig. 7. Activity diagram of the Sort agent.

The obvious way to implement this concurrency is to assign
a Python thread to each agent. However, there is a need for
more parallelism within each agent, because an agent may
also be involved in negotiations with other agents and each
negotiation should proceed at its own pace while I/O blocking
situations exist. In the implemented system, we used tradi-
tional threads for reading sensors and actuating motors instead
of applying agent behaviours directly. Because sensor sam-
pling is a crucial and continuous activity and agent behaviours
can be blocked due to these I/O operations according to their
processes considering the sampling rate. This considerably
reduces the runtime-slices of each agent behaviour by blocking
other operations when an agent reads the sensor inside these
behaviours. As a solution, our implementation made each
agent starts another thread within its setup and handles I/O
operations.

1 threading . Thread(target =dev1.ColorSensor. waitBrick , args
=(dev1.ColorSensor,))

2 async def setup(self):

3 print ("SortAgent :: started ")

4 b = self .SortBeh()

5 template = Template()

6 template . set_metadata (" performative ", "inform")

7 self .add_behaviour(b, template)

8 print ("SortAgent ::

9 t. start ()

running")

In Listing 2, an excerpt from one of the created threads
for the colour sensor is given. In line 1, the target method is
defined. Lines between 2 and 9 describe the setup function
of the agent which is also used for the initialization of the
interrelated threads.

In Listing 3, a code excerpt from the LimitSwitch class
which defines a limit switch is given. In the production line
system, the limit switch is used to set the borders of motion
of the components. For this purpose, LimitSwitch inner class
is specialized for the limit switch hardware. In line 3, the state
of the button is checked periodically, then "if/else" statement
controls the state of the button. In this way, agents can detect
the limit of motion when isPressed() function returns true and
then they behave accordingly.

Listing 3. LimitSwitch innerclass
1 class LimitSwitch:
2 def isPressed (' self):
3 touch = dev2.psm.BBS1.isTouchedEV3()
4 if touch != True:
5 return False
6
7
8

else :
print (f’LS Pressed’)
return True

To minimize work accidents, many sensors are added to
the manufacturing systems for occupational safety and health.
These sensors must sense quickly as expected. For better
sensor sampling rates and reactions, two threads of execution

METEHAN MUSTAFA YALCIN ET AL.: AN AGENT-BASED CYBER-PHYSICAL PRODUCTION SYSTEM USING LEGO TECHNOLOGY

were implemented in the responsible agents: Shredder Agent
executes the thread to check emergency while Sort Agent
executes the thread on checking the arrival of bricks to the
colour sensor.

Colour sensors can be influenced negatively by the noises
in the environment. To remove this effect, we implemented
a sensor sampler inside the system. The system collects data
from samples arriving from the sensor. If the last 15 samples
are the same, the system accepts the colour. Otherwise, it
continues to sample data (see. Listing 4).

Listing 4. Color Sensor Sampling

1 def waitBrick(self):
2 readedcolorlist = [0]x15
3 index =0
4 readSensor = True
5 count = 0
6 print (" Starting to wait brick")
7 devl.retVal = 0.0
8 while readSensor:
9 color = devl.psm.BBS2.colorSensorEV3()
10 readedcolorlist [index] = color
11 now = datetime.now()
12 index = index + 1
13 x=sum(readedcolorlist)/15
14 if index ==15:
15 index=0
16 if x==2 or x==3 or x==4 or x==5 or x==6:
17 print (str (index) + " —> " + "
ReadedColor:" + str (color))
18 print ("RETVAL:" str(x))
19 devl.retVal = x
20 else :
21 devl.retVal = 0.0
22 time. sleep (0)

Sample videos demonstrating how the implemented system
executes the continuous production and manages a stuck
event in the production line are available at https://youtu.be/
dRUyXYuDPIY and https://youtu.be/_xgYyaBMv90.

V. DISCUSSION

CPPS are expected to provide various features such as adap-
tiveness, awareness, intelligence, and abstraction to meet the
requirements of the emerging industrial applications. Agent-
based approaches can be a good alternative to support these
features. However, an integration of the industrial systems with
the agents is still a significant issue for the agentification of
such systems as discussed in [33] and [36]. MAS is a paradigm
derived from the distributed artificial intelligence field that
covers distribution, decentralization, intelligence, autonomy
and adaptation. Using these features, MAS provide flexibility,
robustness, responsiveness and reconfigurability and create an
ecosystem of intelligent, autonomous and cooperative compu-
tational entities. Despite the fact that MAS technology has al-
ready been integrated into several industrial applications such
as smart production, smart power grids, smart logistics and
smart healthcare, acceptance and standardisation of industrial
agents is still under debate.

Seamless integration of MAS, embedded system and CPS
may bring solutions to the abovementioned issues and lead to

the realization of the expected features. Since CPS consists of
both physical and cyber parts, top-level methodologies cannot
be evaluated and shown without low-level architectures to
emulate the industrial problems. There is no uniform way
to integrate the software agents to the low-level automation
functions to utilize them as the industrial agents [32]. Hence,
the miniaturisation of the industrial systems, mimicking the
process steps and reproducing the problems as described in our
study can be a way to ease the burden of developing industrial
agents within this context.

To achieve CPS and agent integration, device specific
libraries are mostly required. Then, these libraries can be
merged with agent development environments. The library can
be wrapped to provide behavioral structures. Once the control
of the physical components is achieved by the cyber side, the
agentification process can be applied. Moreover, the integra-
tion process can be facilitated by using software engineering
design principles e.g. benefiting from the design patterns.
Moreover, the physical construction of the target system is
still required because CPS is also a physical entity. To address
this requirement, we suggested using the Lego technology,
which allows the miniaturisation of the interaction between
embedded systems and agents while providing extensibility
for applying high-level solutions and mechanisms. When the
MAS is integrated into any system, the agents inside can be
distributed to the subsystems to achieve the control process
distribution while establishing a network for negotiation and
messaging. In this way, functionalities of the embedded de-
vices can be encapsulated into the behaviours of the agents.
Then, various behaviours can be defined for executing tasks,
sending parameters, and controlling the process to achieve the
system goals.

After the completion of the agentification process, the
system can also be enhanced with the distributed wireless
sensors for data acquisition [37], [38]. The edge, fog and
cloud computing can be the key enabler technologies for CPPS
considering IoT and CPS interoperability. Then, this data can
be fed into the Machine Learning algorithms to achieve various
computations such as pattern matching to detect system faults,
prediction algorithms to avoid human errors and system-level
reasoning to apply high-level plans.

During the implementation of the smart production line
introduced in this paper, we followed some fundamental
industrial application principles. Firstly, to keep the pressing
operation calibrated, the limit switch was added to measure
the elevation. While the press goes up and down, it touches
the limit switch so that it operates between bounded limits.
Secondly, we followed the separation of concerns principle
and placed an agent for a section of the production line. In
other words, only one agent is responsible for a process phase.
Lastly, the same principle was also applied to conveyor belts
to create layer I and layer 2. When the task is finished in the
layer 1, it delivers the product to the layer 2 so that layer I
can receive a new task while layer 2 processing the second
step of the previous task operating as pipelined.

We believe that the constructed system based on the Lego

529

530

technology may be an appropriate tool for education consid-
ering the CPS and agent integration. Due to the fact that CPS
is a multi-disciplinary field and owns multi-target domains, it
is studied by a lot of researchers, engineers and practitioners.
However, the recent advancements, open issues and challenges
require multi-disciplinary knowledge as CPS has a wide um-
brella that unites various engineering fields and disciplines.
Most of the engineering and information technology courses
now focus on CPS, agent-based programming and embedded
technology and the requirement of autonomy and intelligence
mostly becomes a must to achieve and sustain next-generation
systems [39]. We need physically easy-to-construct and easy-
to-modify technologies integrated with easy-to-deploy and
easy-to-run programming paradigms. Lego technology pro-
vides modular and modifiable structures to meet these re-
quirements while agent-oriented approaches present higher-
level abstraction of programming. Moreover, the nature of
the agents paves the way for integrating artificial intelligence,
inter-operating IoT solutions, and high-level programming. As
a result, multi-disciplinary studies can be taught to the future’s
talented engineers and students using our proposed approach.

As some technical notes, we would like to share that
we faced with some challenges during the operation of the
system. Due to the power requirement of RaspberryPI, Lego
components and PI Storms, the system was fed with two
power supplies and each power supply was feeding the system
with 9.8 Volts and 3 amps. Alternatively, Li-Po batteries can
also be used for short-term tests and mobility. Because the
power requirements cannot be fed, then the motors fail, and
the system shuts down. Moreover, if the motors get heated,
then cold gels of the spray should be applied to cool down
the components. To reduce the friction between Lego bricks
and moving parts, we used machine oil.

Lastly, during the sensor sampling, we discovered that the
colour sensor could not recognize the colour of the Lego
bricks accurately due to the speed of the conveyor belt.
Instead of reducing the velocity of the conveyor belt, we
provided a buffered reading at the cyber part by wrapping the
method into the sensor reading method and physical buffered
transition by moving the colour sensor between two conveyor
belts. Naturally, when Lego bricks are transferred from the
first conveyor belt to the second one (layer I to layer 2),
we benefited from the natural delay caused by the friction
between them. This delay and buffered reading raised accurate
decisions on the colour of the Lego bricks. This decision can
be supported by using pattern matching algorithms, machine
learning, and/or dynamic buffer size. Because we are aware
that selecting industrially standardised sensors does not guar-
antee ideal operation and reducing the sensor errors under
harsh and corrosive conditions is another challenge [40].

VI. CONCLUSION

In this paper, a system to integrate software agents and
CPS is proposed based on SPADE, RaspberryPI and Lego
technologies. The design and implementation of this produc-
tion line system are discussed. With employing agents and

PROCEEDINGS OF THE FEDCSIS. ONLINE, 2021

encapsulating embedded functions, an agent-based control on
the CPPS is achieved. In this way, it is also avoided to
deal with low-level details of embedded software for robot
programming. Also, the distributed and mobility capabilities of
software agents helped to develop heterogeneous components
in the system. Our system based on the Lego technology may
also assist the education activities especially considering how
automation on CPPS can be supported via software agents.

As a future study, we aim to improve the current reasoning
and planning capabilities of the agents in our system using
belief-desire-intention (BDI) logic [41]. Additionally, we in-
tend to provide a multi-paradigm approach, e.g. by benefiting
from the IoT paradigm, so that our system both works with
the same system instances (homogeneous infrastructures) and
incorporate with different type systems (heterogeneous infras-
tructures) by establishing a network. For this purpose, both
the state-of-the-art on agent-based IoT systems, as well as our
past experiences, [42] will be considered. In addition, a model-
based framework can also be developed to support the current
development process by automatically synthesizing both agent
code and embedded software [43]. To achieve this, model-
driven engineering techniques similar to the ones we used in
[44], [45] can be applied again to these systems to reduce the
complexity.

REFERENCES

[1] R. Baheti and H. Gill, “Cyber-physical systems,” The impact of control
technology, vol. 12, no. 1, pp. 161-166, 2011, doi: https://doi.org/10.
1109/icmech.2019.8722929.

[2] L. Monostori, B. Kadar, T. Bauernhansl, S. Kondoh, S. Kumara, G. Rein-
hart, O. Sauer, G. Schuh, W. Sihn, and K. Ueda, “Cyber-physical systems
in manufacturing,” Cirp Annals, vol. 65, no. 2, pp. 621-641, 2016, doi:
https://doi.org/10.1016/j.cirp.2016.06.005.

[3] K.-D. Thoben, S. Wiesner, and T. Wuest, ““industrie 4.0” and smart
manufacturing-a review of research issues and application examples,”
International journal of automation technology, vol. 11, no. 1, pp. 4—
16, 2017, doi: https://doi.org/10.20965/ijat.2017.p0004.

[4] N.-H. Tran, H.-S. Park, Q.-V. Nguyen, and T.-D. Hoang, “Develop-

ment of a smart cyber-physical manufacturing system in the industry

4.0 context,” Applied Sciences, vol. 9, no. 16, p. 3325, 2019, doi:

https://doi.org/10.3390/app9163325.

M. Challenger, B. T. Tezel, V. Amaral, M. Goulao, and G. Kardas,

“Agent-based cyber-physical system development with sea_ml++,” in

Multi-Paradigm Modelling Approaches for Cyber-Physical Systems,

B. Tekinerdogan, V. Amaral, and H. Vangheluwe, Eds. Elsevier Pub.,

2021, doi: https://doi.org/10.1016/B978-0-12-819105-7.00013-1.

[6] T. Semwal, M. Bode, V. Singh, S. S. Jha, and S. B. Nair, “Tartarus: a
multi-agent platform for integrating cyber-physical systems and robots,”
in Proceedings of the 2015 Conference on Advances in Robotics, 2015,
pp. 1-6.

[7]1 P. Leitao, S. Karnouskos, L. Ribeiro, J. Lee, T. Strasser, and A. W.
Colombo, “Smart agents in industrial cyber—physical systems,” Pro-
ceedings of the IEEE, vol. 104, no. 5, pp. 1086-1101, 2016, doi:
https://doi.org/10.1109/JPROC.2016.2521931.

[8] E. Schoofs, J. Kisaakye, B. Karaduman, and M. Challenger, “Software

agent-based multi-robot development: A case study,” in 2021 10th

Mediterranean Conference on Embedded Computing (MECO). IEEE,

2021, pp. 1-8, doi: https://doi.org/10.1109/MEC052532.2021.9460210.

B. Vogel-Heuser, J. Lee, and P. Leitdo, “Agents enabling cyber-physical

production systems,” at-Automatisierungstechnik, vol. 63, no. 10, pp.

777-789, 2015, doi: https://doi.org/10.1515/auto-2014-1153.

E. Negri, L. Fumagalli, and M. Macchi, “A review of the roles of digital

twin in cps-based production systems,” Procedia Manufacturing, vol. 11,

pp- 939-948, 2017, doi: https://doi.org/10.1016/j.promfg.2017.07.198.

[5

[9

[10]

METEHAN MUSTAFA YALCIN ET AL.: AN AGENT-BASED CYBER-PHYSICAL PRODUCTION SYSTEM USING LEGO TECHNOLOGY

(11]

[12]

[13]

[14]

(15]
(16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

J. Ding, Z. Li, and T. Pan, “Control system teaching and experiment
using lego mindstorms nxt robot,” International Journal of Information
and Education Technology, vol. 7, no. 4, p. 309, 2017.

D. Gauntlett, “The lego system as a tool for thinking, creativity, and
changing the world,” Lego studies: Examining the building blocks of a
transmedial phenomenon, pp. 1-16, 2014, doi: https://doi.org/10.4324/
9781315858012.

M. Resnick, J. Maloney, A. Monroy-Herniandez, N. Rusk, E. Eastmond,
K. Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman et al.,
“Scratch: programming for all,” Communications of the ACM, vol. 52,
no. 11, pp. 60-67, 2009.

F. Erata, M. Challenger, B. Tekinerdogan, A. Monceaux, E. Tiiziin, and
G. Kardas, “Tarski: A platform for automated analysis of dynamically
configurable traceability semantics,” in Proceedings of the 32nd ACM
SIGAPP Symposium on Applied Computing, 2017, pp. 1607-1614, doi:
https://doi.org/10.1145/3019612.3019747.

J. Holt and S. Perry, SysML for systems engineering. 1ET, 2008, vol. 7.
M. E. Gregori, J. P. Cdmara, and G. A. Bada, “A jabber-based multi-
agent system platform,” in Proceedings of the fifth international joint
conference on Autonomous agents and multiagent systems, 2006, pp.
1282-1284.

L. P. GitHub, “Lego PiStorms Lubrary,” Available: {https://github.com/
mindsensors/PiStorms}, [Online; accessed 9-May-2021].

S. Demirkol, S. Getir, M. Challenger, and G. Kardas, “Development of
an agent based e-barter system,” in 2011 International Symposium on
Innovations in Intelligent Systems and Applications. 1EEE, 2011, pp.
193-198, doi: https://doi.org/10.1109/INISTA.2011.5946060.

M. Merdan, M. Vallee, W. Lepuschitz, and A. Zoitl, “Monitoring and
diagnostics of industrial systems using automation agents,” International
Journal of production research, vol. 49, no. 5, pp. 1497-1509, 2011, doi:
https://doi.org/10.1080/00207543.2010.526368.

V. Mascardi, D. Weyns, A. Ricci, C. B. Earle, A. Casals, M. Challenger,
A. Chopra, A. Ciortea, L. A. Dennis, A. F. Diaz et al., “Engineering
multi-agent systems: State of affairs and the road ahead,” ACM SIGSOFT
Software Engineering Notes, vol. 44, no. 1, pp. 18-28, 2019, doi: https:
//doi.org/10.1145/3310013.3322175.

S. Jeschke, C. Brecher, T. Meisen, D. Ozdemir, and T. Eschert, “Indus-
trial internet of things and cyber manufacturing systems,” in Industrial
internet of things. Springer, 2017, pp. 3-19, doi: https://doi.org/10.
1007/978-3-319-42559-7_1.

N. Jazdi, “Cyber physical systems in the context of industry 4.0,” in
2014 IEEE international conference on automation, quality and testing,
robotics. 1EEE, 2014, pp. 1-4.

E. A. Lee, “Cyber physical systems: Design challenges,” in 2008 11th
IEEE international symposium on object and component-oriented real-
time distributed computing (ISORC). 1EEE, 2008, pp. 363-369, doi:
https://doi.org/10.1109/ISORC.2008.25.

P. Leitdo, J. Barbosa, C. A. Geraldes, and J. P. Coelho, “Multi-agent
system architecture for zero defect multi-stage manufacturing,” in Ser-
vice Orientation in Holonic and Multi-Agent Manufacturing. Springer,
2018, pp. 13-26, doi: https://doi.org/10.1007/978-3-319-73751-5_2.
W. Xing, Y. Jun, L. Peihuang, and T. Dunbing, “Agent-oriented embed-
ded control system design and development of a vision-based automated
guided vehicle,” International Journal of Advanced Robotic Systems,
vol. 9, no. 2, p. 37, 2012.

J. Queiroz, P. Leitdo, J. Barbosa, and E. Oliveira, “Distributing intelli-
gence among cloud, fog and edge in industrial cyber-physical systems,”
in 16th International Conference on Informatics in Control, Automation
and Robotics, ICINCO 2019, 2019, pp. 447-454.

I. Horvath, Z. Rusdk, and Y. Li, “Order beyond chaos: Introducing the
notion of generation to characterize the continuously evolving imple-
mentations of cyber-physical systems,” in ASME 2017 International De-
sign Engineering Technical Conferences and Computers and Information
in Engineering Conference. American Society of Mechanical Engineers
Digital Collection, 2017, doi: https://doi.org/10.1115/DETC2017-67082.
A. Petrovska, M. Neuss, 1. Gerostathopoulos, and A. Pretschner, “Run-
time reasoning from uncertain observations with subjective logic in
multi-agent self-adaptive cyber-physical systems,” in /6th Symposium on
Software Engineering for Adaptive and Self-Managing Systems, SEAMS,
2021, doi: https://doi.org/10.1109/SEAMS51251.2021.00026.

G. Kardas, Z. Demirezen, and M. Challenger, “Towards a dsml for
semantic web enabled multi-agent systems,” in Proceedings of the
International Workshop on Formalization of Modeling Languages, ser.

[30]

[31

[32

[33

[34]

[35

[36

[37]

[38

[39

[40]

[41]

[42

[43

[44]

[45]

FML *10. New York, NY, USA: Association for Computing Machinery,
2010. [Online]. Available: https://doi.org/10.1145/1943397.1943402

M. Challenger, B. T. Tezel, O. F. Alaca, B. Tekinerdogan, and
G. Kardas, “Development of semantic web-enabled bdi multi-agent
systems using sea_ml: An electronic bartering case study,” Applied
Sciences, vol. 8, no. 5, 2018, doi: https://doi.org/10.3390/app8050688.
[Online]. Available: https://www.mdpi.com/2076-3417/8/5/688

T. Semwal and S. B. Nair, “Agpi: Agents on raspberry pi,” Electronics,
vol. 5, no. 4, p. 72, 2016.

P. Leitdo, S. Karnouskos, L. Ribeiro, P. Moutis, J. Barbosa, and T. I.
Strasser, “Common practices for integrating industrial agents and low
level automation functions,” in IECON 2017-43rd Annual Conference of
the IEEE Industrial Electronics Society. IEEE, 2017, pp. 6665-6670,
doi: https://doi.org/10.1109/IECON.2017.8217164.

S. Karnouskos, P. Leitao, L. Ribeiro, and A. W. Colombo, “Industrial
agents as a key enabler for realizing industrial cyber-physical systems:
Multiagent systems entering industry 4.0,” IEEE Industrial Electronics
Magazine, vol. 14, no. 3, pp. 18-32, 2020, doi: https://doi.org/10.1109/
MIE.2019.2962225.

I. O. for Standardization, Systems and Software Engineering: Systems
and Software Quality Requirements and Evaluation (SQuaRE): Mea-
surement of System and Software Product Quality. 1SO, 2016.

A. Hornsby and R. Walsh, “From instant messaging to cloud computing,
an xmpp review,” in IEEE International Symposium on Consumer
Electronics (ISCE 2010). 1EEE, 2010, pp. 1-6.

L. Sakurada and P. Leitdo, “Multi-agent systems to implement industry
4.0 components,” in 2020 IEEE Conference on Industrial Cyberphysical
Systems (ICPS), vol. 1. IEEE, 2020, pp. 21-26, doi: https://doi.org/10.
1109/ICPS48405.2020.9274745.

B. Karaduman, T. Asici, M. Challenger, and R. Eslampanah, “A cloud
and contiki based fire detection system using multi-hop wireless sensor
networks,” in Proceedings of the Fourth International Conference on
Engineering & MIS 2018, 2018, pp. 1-5, doi: https://doi.org/10.1145/
3234698.3234764.

B. Karaduman, M. Challenger, and R. Eslampanah, “Contikios based
library fire detection system,” in 2018 5th International Conference on
Electrical and Electronic Engineering (ICEEE), 2018, pp. 247-251, doi:
https://doi.org/10.1109/ICEEE2.2018.8391340.

J. Tav¢ar and I. Horvéth, “A review of the principles of designing smart
cyber-physical systems for run-time adaptation: Learned lessons and
open issues,” IEEE Transactions on Systems, Man, and Cybernetics:
Systems, vol. 49, no. 1, pp. 145-158, 2018, doi: https://doi.org/10.1109/
TSMC.2018.2814539.

K. Thiyagarajan, S. Kodagoda, L. Van Nguyen, and R. Ranasinghe,
“Sensor failure detection and faulty data accommodation approach
for instrumented wastewater infrastructures,” IEEE Access, vol. 6,
pp. 56562-56574, 2018, doi: https://doi.org/10.1109/ACCESS.2018.
2872506.

B. T. Tezel, M. Challenger, and G. Kardas, “A metamodel for jason bdi
agents,” in 5th Symposium on Languages, Applications and Technologies
(SLATE’16). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016,
doi: https://doi.org/10.4230/OASIcs.SLATE.2016.8.

N. Karimpour, B. Karaduman, A. Ural, M. Challenger, and O. Dagde-
viren, “Iot based hand hygiene compliance monitoring,” in 2019 In-
ternational Symposium on Networks, Computers and Communications
(ISNCC). IEEE, 2019, pp. 1-6, doi: https://doi.org/10.1109/ISNCC.
2019.8909151.

M. Challenger and H. Vangheluwe, “Towards employing abm and mas
integrated with mbse for the lifecycle of scpsos,” in Proceedings of the
23rd ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems: Companion Proceedings, 2020, pp. 1-7, doi:
https://doi.org/10.1145/3417990.3421439.

B. Karaduman, M. Challenger, R. Eslampanah, J. Denil, and
H. Vangheluwe, “Platform-specific modeling for riot based iot systems,”
in Proceedings of the IEEE/ACM 42nd International Conference on
Software Engineering Workshops, 2020, pp. 639-646, doi: https://doi.
org/10.1145/3387940.3392194.

T. Z. Asici, B. Karaduman, R. Eslampanah, M. Challenger, J. Denil,
and H. Vangheluwe, “Applying model driven engineering techniques to
the development of contiki-based iot systems,” in 2019 IEEE/ACM Ist
International Workshop on Software Engineering Research & Practices
for the Internet of Things (SERP4IoT). 1EEE, 2019, pp. 25-32, doi:
https://doi.org/10.1109/SERP410T.2019.00012.

531

