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AbstractÐIn today’s market environment not all the pa-
rameters of the transportation problems may not be known
precisely. Uncertain data can be represented by fuzzy sets (FSs).
Intuitionistic FSs (IFSs) are an extension of FSs with a degree of
hesitancy. The paper presents a new approach for solution of a
two-stage intuitionistic fuzzy transportation problem (2-S IFTP)
through the prism of index matrices (IMs). Its main objective is to
find the quantities of delivery from manufacturers and resselers
to buyers to maintain the supply and demand requirements
at the cheapest transportation costs. The solution procedure is
demonstrated by a numerical example.

I. INTRODUCTION

T
HE TP originally was proposed by Hitchcock in

1941 [14].

In conventional TP, values of the transportation cost, the

demanded and offered quantities of the product are precisely

defined. In real-life TPs, some of their parameters are uncertain

due to climatic, road conditions or other market conditions. In

some TPs, destinations cannot get all the required quantity

of product due to limited storage capacity. In this case, the

necessary quantities of products are sent to the destinations

in two stages. Initially, the minimum destination requirements

are sent from the sources to the destinations. Once part of

the entire initial shipment has been used up, they are ready

to receive the remaining quantity in the second stage. This

type of transportation problem is known as two-stage TPs

(2-S TPs). The main purpose of the 2-S TP is to transport

the items from the origins to the destinations in two stages

such way that the total transportation costs in the two stages

are minimum [43]. In real life 2-S TPs, information about

the parameters of the problem is uncertain due to weather

and road conditions, lack of good communications, traffic

jams, etc. For description of imprecise information, Zadeh has

developed the theory of fuzzy sets (FSs) [29]. An extension

of FSs is intuitionistic fuzzy sets (IFSs), which was proposed

by Atanassov in 1983 [18]. The main difference between FSs

and IFSs is that the IFSs have a degree of hesitancy.

Let us give a brief literature overview of the works on

the topic fuzzy (FTPs) and intuitionistic fuzzy transportation
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problems (IFTPs). Chanas et al., in 1984, has proposed a

fuzzy linear programming model for solving TPs with clear

transportation costs, fuzzy supply and demand values [39].

Jimenez and Verdegay, in 1999, researched fuzzy Solid TP

with trapezoidal FNs and presented a genetic approach for

solving FTP [13]. Liu and Kao [41] have demonstrated

a method, based on Zadeh’s extension principle, to find

the optimal solution of the trapezoidal FTPs. Dinagar and

Palanivel [11] have described a fuzzy modified distribution

method to find the fuzzy optimal solution of FTPs in which all

the parameters are represented by trapezoidal fuzzy numbers.

Pandian and Natarajan, in 2010, developed zero-point method

for solution for FTP with trapezoidal fuzzy parameters [34].

In [1] was proposed a new method based on fuzzy zero-point

method for finding a more-or-less fuzzy optimal solution for

such FTPs in which all the parameters are represented by

trapezoidal fuzzy numbers.

Kaur and Kumar, in 2012, introduced fuzzy least cost

method, fuzzy north west corner rule and fuzzy Vogel ap-

proximation method for determining of an optimal solution

of FTP [33]. Basirzadeh [17] has found a fuzzy optimal

solution of fully FTPs by transforming the fuzzy parameters

into the crisp parameters using classical algorithms. Gani

et al. [2] used Arsham and Khan’s simplex algorithm [16]

to find a fuzzy optimal solution of FTPs with trapezoidal

fuzzy parameters. Patil and Chandgude, in 2012, performed

ªFuzzy Hungarian approachº for TP with trapezoidal FNs [7].

A modified Vogel’s approximation method for finding an

optimal solution of FTPs was proposed in [8]. Aggarwal and

Gupta, in 2013, described a procedure for solving intuitionistic

fuzzy TP (IFTP) with trapezoidal IFNs via ranking method

[15]. Jahihussain and Jayaraman, in 2013, presented a zero-

suffix method for obtaining an optimal solution for FTPs with

triangular and trapezoidal FNs (see [36], [37]). Zero suffix

method to solve FTP after its converting into the crisp problem

was applied in [32] and [44]. A fuzzified version of zero suffix

method was performed and applied in [30], in 2018, to FTPs.

Shanmugasundari and Ganesan, in 2013, proposed a fuzzy

modified distribution algorithm and a fuzzy approximation

method of Vogel to solve FTP with FNs [31]. Gani and Abbas,

in 2014 [4], and Kathirvel, and Balamurugun, in 2012 (see

[27], [28]), proposed a method for solving TP in which the

quantities demanded and offered are represented in the form
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of the trapezoidal intuitionistic FNs (IFNs). In well-known

and commonly used methods, proposed by Basirzadeh [17],

Gani et al. [2], Pandian and Natarajan [34] and Dinagar and

Palanivel [11], there is a problem that, in a general case,

neither the cost values, nor the obtained fuzzy optimal solution

need necessarily to be non-negative fuzzy numbers. These are

shortcomings of these methods, as in real life problems there

is no physical meaning of a negative value of the cost and

a negative quantity of the product transported. In [41] was

developed a method for solution fully FTPs with both the

inequality and equality constraints in which all the parameters

are represented by non-negative trapezoidal fuzzy numbers.

Fully FTPs was resolved in [40], in 2017, using a new

method, based on the Hungarian and MODI algorithm. The

methods for finding a fuzzy optimal solution of TPs with the

LR flat fuzzy numbers were proposed in [6], based on the

tabular representation and on the fuzzy linear programming

formulation to overcome these shortcomings. Antony et al.

used Vogel’s approximation method for solving triangular

IFTP in 2014 [35]. Fuzzy methods of 2-S time minimizing

TPs are presented in [3], [33]. The work [42] was focused on

presenting an innovative study of a multi-stage multi-objective

solid trapezoidal IFTP with a green supply chain network

system. 2-S time minimizing TP have considered in [38] over

triangular intuitionistic fuzzy (IF) numbers. Trapezoidal and

triangular IFSs are special cases of IFSs.

In our previous works [46], [47], [48], [52], we have

proposed for the first time an intuitionistic fuzzy modified

distribution algorithm, a zero-suffix and a zero-point method

to determine an optimal solution of the IFTP, interpreted by

the IFSs and IMs [18], [19] concepts. The concept of index

matrices was introduced to enable two matrices with different

dimensions to be summed. Later, IMs concept was extended

and were defined operations, relations and operators over IMs.

The IMs theoretical apparatus was described in [21], [51].

Here, we propose a novel approach to the formulation and

solution 2-S IFTP, in which the transportation costs, supply

and demand quantities are IFPs, depending on the climatic,

road conditions and economic factors. The proposed algorithm

uses IMs toolkit for modeling the 2-S IFTP and for finding

of its optimal solution. The advantages of the algorithm are

indicated.

The remainder of this paper is as follows: Section 2 de-

scribes some initial definitions of the theories of the IMs and

the IFPs. In Section 3, we formulate 2-S IFTP and propose

an algorithm for its solution by the concepts of IMs and

IFSs. The effectiveness of the approach is demonstrated by

an example in Section 4. Section 5 drawns conclusions and

outlines directions for future research.

II. PREPARATORY DEFINITIONS ON INTUITIONISTIC

FUZZY PAIRS AND IMS

In this section we recall some basic definitions on intuition-

istic fuzzy pairs (IFPs) from [12], [20], [22], [26], [49] and

on index matrices tool from [21], [51].

2.1. Basic Remarks on IFPs

An IFP is under the form of an ordered pair ⟨a,b⟩ =
⟨µ(p),ν(p)⟩, where a,b ∈ [0,1] and a+ b ≤ 1, that is used

as an evaluation of a proposition p [22], [26]. µ(p) and ν(p)
respectively determine the ªtruth degreeº (degree of member-

ship) and ªfalsity degreeº (degree of non-membership).

In the works [10], [12], [20], [26], [24] were proposed some

basic operations over two IFPs x = ⟨a,b⟩ and y = ⟨c,d⟩ :

¬x = ⟨b,a⟩;
x∧1 y = ⟨min(a,c),max(b,d)⟩;
x∨1 y = ⟨max(a,c),min(b,d)⟩;

x∧2 y = x+ y = ⟨a+ c−a.c,b.d⟩;
x∨2 y = x.y = ⟨a.c,b+d −b.d⟩;

α.x = ⟨1− (1−a)α ,bα⟩(for α = n or 1/n (n ∈ N));
x− y = ⟨max(0,a− c),min(1,b+d,1−a+ c)⟩

(1)

x : y =







⟨min(1,a/c),min(max(0,1−a/c),
max(0,(b−d)/(1−d)))if c ̸= 0 &d ̸= 1

⟨0,1⟩ otherwise

(2)

The forms of the relations with IFPs are the following

x ≥ y iff a ≥ c and b ≤ d; x ≤ y iff a ≤ c and b ≥ d;

x ≥✷ y iff a ≥ c; x ≤✷ y iff a ≤ c;

x ≥⋄ y iff b ≤ d; x ≤⋄ y iff b ≥ d;

x = y iff a = c and b = d

x ≥R y iff R⟨a,b⟩ ≤ R⟨c,d⟩,
(3)

where R⟨a,b⟩ = 0.5(2−a−b)(1−a) [12].

The IFP x is an ªintuitionistic fuzzy false pairº (IFFP) if

and only if a ≤ b.
2.2. Definition, Operations and Relations over Intuitionistic

Fuzzy Index Matrices

One of the basic IM-types are intuitionistic fuzzy

IMs (IFIMs) whose elements are IFPs. Let I

be a fixed set. The definition of two-dimensional

IFIM (2-D IFIM) [K,L,{⟨µki,l j
,νki,l j

⟩}] with index

sets K and L (K,L ⊂ I ) is the following:
l1 . . . l j . . . ln

k1 ⟨µk1,l1 ,νk1,l1⟩ . . . ⟨µk1,l j
,νk1,l j

⟩ . . . ⟨µk1,ln ,νk1,ln⟩
...

...
. . .

...
. . .

...

km ⟨µkm,l1 ,νkm,l1⟩ . . . ⟨µkm,l j
,νkm,l j

⟩ . . . ⟨µkm,ln ,νkm,ln⟩

,

where for i = 1, ...,m; j = 1, ...,n:

0 ≤ µki,l j
,νki,l j

,µki,l j
+νki,l j

≤ 1.

The basic operations over two IMs

A = [K,L,{⟨µki,l j
,νki,l j

⟩}] and B = [P,Q,{⟨ρpr ,qs ,σpr ,qs⟩}]

are as follows [21]:

Negation: ¬A = [K,L,{⟨νki,l j
,µki,l j

⟩}].
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Addition-(◦,∗): A ⊕(◦,∗) B = [K ∪ P,L ∪ Q,{⟨φtu,vw ,ψtu,vw⟩}],
where ⟨φtu,vw ,ψtu,vw⟩

=















































⟨µki,l j
,νki,l j

⟩, if tu = ki ∈ K and vw = l j ∈ L−Q

or tu = ki ∈ K −P and vw = l j ∈ L;

⟨ρpr ,qs ,σpr ,qs⟩, if tu = pr ∈ P and vw = qs ∈ Q−L

or tu = pr ∈ P−K

and vw = qs ∈ Q;

⟨◦(µki,l j
,ρpr ,qs), if tu = ki = pr ∈ K ∩P

∗(νki,l j
,σpr ,qs)⟩, and vw = l j = qs ∈ L∩Q;

⟨0,1⟩, otherwise.

where ⟨◦,∗⟩ ∈ {⟨max,min⟩,⟨min,max⟩,⟨ average,average⟩}.
Termwise subtraction-(max,min):

A−(max,min) B = A⊕(max,min)¬B.

Termwise multiplication-(min,max) :

A⊗(min,max) B = [K ∩P,L∩Q,{⟨φtu,vw ,ψtu,vw⟩}],

where

⟨φtu,vw ,ψtu,vw⟩= ⟨min(µki,l j
,ρpr ,qs),max(νki,l j

,σpr ,qs)⟩.

Multiplication:

A⊙(◦,∗) B = [K ∪ (P−L),Q∪ (L−P){⟨φtu,vw ,ψtu,vw⟩}], (4)

where ⟨φtu,vw ,ψtu,vw⟩ is defined in [21] and ⟨◦,∗⟩ ∈
{⟨max,min⟩ ,⟨min,max⟩ ,⟨∧2,∨2⟩}.
Transposition: AT is the transposed IM of A.
Reduction: The symbol ª⊥º denotes the lack of some com-

ponent in the definitions. The operation (k,⊥)-reduction of the

IM A is defined by: A(k,⊥) = [K −{k},L,{ctu,vw}],
where ctu,vw = aki,l j

for tu = ki ∈ K −{k} and vw = l j ∈ L.
Projection: Let M ⊆ K and N ⊆ L. Then,

prM,NA = [M,N,{bki,l j
}],

where for each ki ∈ M and each l j ∈ N, bki,l j
= aki,l j

.
Substitution: Let IM A = [K,L,{ak,l}] be given. Some forms

of the substitution over A are defined for the couples of indices

(p,k) by
[ p

k
;⊥

]

A =
[

(K −{k})∪{p},L,{ak,l}
]

.

Index type operations [45]:

AGIndex{(min/max)/(min✷ /max✷)/(min⋄ /max⋄)(minR /maxR)}(̸⊥) (A)

= ⟨ki, l j⟩

finds the index of the minimum/ maximum element of A with

no empty value in accordance with the relations (3).

AGIndex{(min/max)/(min✷ /max✷)/(min⋄ /max⋄)(minR /maxR)}(̸⊥)(/∈F)

(A) = ⟨ki, l j⟩

presents the index of the minimum/ maximum element be-

tween the elements of A, whose indexes /∈ F , with no empty

value in accordance with the relations (3).

Index{(min/max)/(min✷ /max✷)/(min⋄ /max⋄)(minR /maxR)}(̸⊥),ki
(A)

= {⟨ki, lv1
⟩, . . . ,⟨ki, lvx⟩, . . . ,⟨ki, lvV

⟩},

where ⟨ki, lvx⟩ (for i = 1, ...,m; j = 1, ...,n;x = 1, ...,V ) are the

indices of the minimum/ maximum IFFP of ki-th row of A

with no empty value in accordance with the relations (3).

Index(̸⊥)(A) = {⟨k1, lv1
⟩, . . . ,⟨ki, lvi

⟩, . . . ,⟨km, lvm⟩},

where ⟨ki, lvi
⟩ (for 1 ≤ i ≤ m) are the indices of the element

of A, whose cell is full.

Aggregation operations

Let us use the operations #q,(q ≤ i ≤ 3) from [50] for scaling

aggregation operations over two IFPs x = ⟨a,b⟩ and y = ⟨c,d⟩:
x#1y = ⟨min(a,c),max(b,d)⟩;
x#2y = ⟨average(a,c),average(b,d)⟩;
x#3y = ⟨max(a,c),min(b,d)⟩.

Let k0 /∈K be a fixed index. The definition of the aggregation

operation by the dimension K is [21], [50]: is:

αK,#q(A,k0)

=

l1 . . . ln

k0

m

#q

i=1

⟨µki,l1 ,νki,l1⟩ . . .
m

#q

i=1

⟨µki,ln ,νki,ln⟩
,

where 1 ≤ q ≤ 3.

Aggregate global internal operation [45]:

AGIO⊕(◦,∗)
(A) , (5)

where ⟨◦,∗⟩ ∈ {⟨max,min⟩ ,⟨min,max⟩ ,⟨∧2,∨2⟩}.
Non-strict relation ªinclusion about valueº The form of

this type of relations between two IMs A and B is as follows:

A ⊆v B iff (K = P) & (L = Q) & (∀k ∈ K)(∀l ∈ L)(ak,l ≤ bk,l).

III. INTUITIONISTIC FUZZY INDEX MATRIX APPROACH TO

TWO-STAGE IFTP

Let us extend the IFTP from [48] into a two-stage one as

follows:

A. Generalized 2-S IFTP

A trader supplies a product to different companies after de-

livery of that product from different producers in an uncertain

environment. Destinations cannot get all the required quantity

of product due to limited storage capacity. In this case, the

necessary quantities of products are sent to the destinations

in two stages. Initially, the minimum destination requirements

are sent from the sources to the destinations. Once part of

the entire initial shipment has been used up, they are ready to

receive the remaining quantity in the second stage. The trader

wants to find optimal solutions for the 2-S IFTP.

First stage A trader supplies a product to n different companies

(consumers) {l1, . . . , l j, . . . , ln} after delivery of that product

from different m manufacturers (producers) {k1, . . . ,ki, . . . ,km}
in quantities cki,R (for 1 ≤ i ≤ m). Let the consumers (destina-

tions) need this product in quantities of cQ,l j
(for 1 ≤ j ≤ n).
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Let cki,l j
be the intuitionistic fuzzy cost for transporting a

unit quantity of the product from the ki-th producer to the

l j-th consumer; xki,l j
- the number of units of the product,

transported from ki-th source to l j-th destination and cpl,l j
(for

1 ≤ j ≤ n) are limits to the transportation costs of the delivery

a product from the ki-th manufacturer to the l j-th destination

under form of IFPs.

Second stage Let some of the buyers RS =
{l∗1 , . . . , l

∗
j∗ , . . . , l

∗
n∗} (RS ⊂ L) become resellers. The resellers

{l∗1 , . . . , l
∗
j∗ , . . . , l

∗
n∗} want to sell quantities of the product not

only purchased, but also from own production or stocks at a

surplus charge c∗l∗
j∗
,q∗ for a product unit to other consumers

{u1, . . . ,ug, . . . ,u f }, in quantities c∗l∗
j∗
,R∗ (for 1 ≤ j∗ ≤ n∗).

Consumers need this product in an amount of c∗Q∗,ug
(for

1 ≤ g ≤ f ). Let c∗l∗
j∗
,ug

(for 1 ≤ j∗ ≤ n∗,1 ≤ g ≤ f ) be the total

cost for the purchase of one unit quantity of the product from

the l∗j∗ -th reseller to ug-th destination; x∗l∗
j∗
,ug

± the number of

units of the product, transported from the l∗j∗ -th reseller to ug-

th destination; c∗l∗
j∗
,pu∗ ,( for 1 ≤ j∗ ≤ n∗) ± is the price of a

product unit of the l∗j∗ -th reseller; c∗pl∗,ug
,( for 1 ≤ g ≤ f ) ±

upper limit of the price at which the ug-th consumer wish to

purchase the product.

For estimating the parameters of 2-S IFTP, we can use the

expert approach described in detail in [20]. The experts are not

sure about the transportation costs, the quantities of offered

and demanded goods due to uncontrollable factors. The trans-

portation costs are evaluated as intuitionistic fuzzy numbers

after a thorough discussion, interpreted by the intuitionistic

fuzzy concept. The purpose of the 2-S IFTP is to meet the

requests of all users {l1, . . . , l j, . . . , lm} and {u1, . . . ,ug, . . . ,u f }
from the two stages so that the intuitionistic fuzzy transporta-

tion cost is minimum.

B. Solution of the 2-S IFTP

The proposed algorithm for modeling of 2-S IFTP and

finding of its optimal solution is based on IMs concept [21].

1) Solution of the First Stage of the 2-S IFTP: Step 1. At

starting of the algorithm for solution of the 2-S IFTP, the cost

IM C[K,L] is created:

=

l1 . . . ln R pu

k1 ⟨µk1,l1 ,νk1,l1⟩ . . . ⟨µk1,ln ,νk1,ln⟩ ⟨µk1,R,νk1,R⟩ ⟨µk1,pu,νk1,pu⟩
...

...
. . .

...
...

km ⟨µkm,l1 ,νkm,l1⟩ . . . ⟨µkm,ln ,νkm,ln⟩ ⟨µkm,R,νkm,R⟩ ⟨µkm,pu,νkm,pu⟩

Q ⟨µQ,l1 ,νQ,l1⟩ . . . ⟨µQ,ln ,νQ,ln⟩ ⟨µQ,R,νQ,R⟩ ⟨µQ,pu,νQ,pu⟩

pl ⟨µpl,l1 ,νpl,l1⟩ . . . ⟨µpl,ln ,νpl,ln⟩ ⟨µpl,R,νpl,R⟩ ⟨µpl,pu,νpl,pu⟩
pu1 ⟨µpu1,l1 ,νpu1,l1⟩ . . . ⟨µpu1,ln ,νpu1,ln⟩ ⟨µpu1,R,νpu1,R⟩ ⟨µpu1,pu,νpu1,pu⟩

,

where K = {k1,k2, . . . ,km,Q, pl, pu1}, L =
{l1, l2, . . . , ln,R, pu} and for 1 ≤ i ≤ m, 1 ≤ j ≤ n,

{cki,l j
,cki,R,cki,pu,cpl,l j

,cpl,R,cpl,pu,cQ,l j
,cQ,R,cQ,pu,cpu1,l j

,
cpu1,R,cpu1,pu} are IFPs.

Let we denote by |K| = m+ 3 the number of elements of

the set K; then |L|= n+2.

We also define the IM

X [KI ,LI ] =

l1 . . . l j . . . ln
k1 xk1,l1 · · · xk1,l j

· · · xk1,ln
...

...
. . .

...
. . .

...

km xkm,l1 . . . xkm,l j
. . . xkm,ln

,

KI = {k1,k2, . . . ,km}, KI = {l1, l2, . . . , ln}, and for 1 ≤ i ≤ m,

1 ≤ j ≤ n: xki,l j
= ⟨ρki,l j

,σki,l j
⟩. Go to Step 2.

Step 2. For solving the first stage on the 2-S IFTP we can

apply one of the algorithms, outlined in our papers [47], [48],

[52]. In the program code of the developed algorithms was

used a part of Microsoft Visual Studio.NET 2010 C project’s.

After an application of the algorithm for finding an optimal

solution of IFTP, the following conditions are checked: D =
Index̸⊥X = {⟨ki∗1

, l j∗1
⟩, . . . ,⟨ki∗ f

, l j∗ f
⟩, . . . ,⟨ki∗ϕ , l j∗ϕ ⟩}.

If the intuitionistic fuzzy feasible solution is degenerated (it

contains less than m+ n− 1 (the total number of producers

and consumers decreased by 1) occupied cells in the X i.e.

|D| < m+ n− 1) [9] then increase the basic cells xki,l j
with

one to which the minimum transportation cost corresponds.

Let us the recorded delivery of this cell is ⟨0,1⟩. The IMs

operations are:

If

|D|< m+n−1, then

{AGIndex{(min/max)/(min✷ /max✷)/(min⋄ /max⋄)(minR /maxR)}( ̸⊥)(/∈D) (C)

= ⟨kα , lβ ⟩;xkal ,lβ = ⟨0,1⟩}.

for i = 1 to m

for j = 1 to n

If xki,l j
= ⟨⊥,⊥⟩ then xki,l j

= ⟨0,1⟩.
Go to Step 3.

Step 3. The optimal intuitionistic fuzzy transportation cost at

the first stage is calculated by:

AGIO1
⊕(max,min))

(

C({Q,pl,pu1},{R,pu})⊗(min,max) Xopt

)

or AGIO2
⊕(∧2)

)

(

C({Q,pl,pu1},{R,pu})⊗(∨2) Xopt

)

,

where ∨2 and ∧2 are the operations from (1).

2) Solution of the Second Stage of the 2-S IFTP: To find

the optimal solution for the second stage of the problem,

we propose the following algorithm, described by a program

code, which is a part of Microsoft Visual Studio.NET 2010 C

project.

Step 4. Let us create the following cost IFIM C∗[L∗,U ]

=

u1 · · · u f R∗ q∗ pu∗

l∗1 c∗l∗1 ,u1
· · · c∗l∗1 ,u f

c∗l∗1 ,R
∗ c∗l∗1 ,q

∗ c∗l∗1 ,pu∗

...
... · · ·

... · · ·
...

...

l∗j∗ c∗l∗
j∗
,u1

· · · c∗l∗
j∗
,u f

cl∗
j∗
,R∗ c∗l∗

j∗
,q∗ c∗l∗

j∗
,pu∗

...
... · · ·

... · · ·
...

...

l∗n∗ c∗l∗
n∗
,u1

· · · c∗l∗
n∗
,u f

c∗l∗
n∗
,R∗ c∗l∗

n∗
,q∗ c∗l∗

n∗
,pu∗

Q∗ c∗Q∗,u1
· · · c∗Q∗,u f

c∗Q∗,R∗ c∗Q∗,q∗ c∗Q∗,pu∗

pl∗ c∗pl∗,u1
· · · c∗pl∗,u f

c∗pl∗,R∗ c∗pl∗,q∗ c∗pl∗,pu∗

pu∗1 c∗pu∗1,u1
· · · c∗pu∗1,u f

c∗pu∗1,R
∗ c∗pu∗1,q

∗ c∗pu∗1,pu∗

92 POSITION AND COMMUNICATION PAPERS OF THE FEDCSIS. ONLINE, 2021



where L∗ =
{

l∗1 , . . . , l
∗
j∗ , . . . , l

∗
n∗ ,Q

∗, pl∗, pu∗1

}

,

U =
{

u1, . . . ,ug, . . . ,u f ,R
∗,q∗, pu∗

}

and L∗ ⊂
L and for 1 ≤ j∗ ≤ n∗, 1 ≤ g ≤ f ,
{c∗l∗

j∗
,ug
,cl∗

j∗
,R∗ ,c∗l∗

j∗
,q∗ ,c

∗
l∗
j∗
,pu∗ ,c

∗
pu∗1,q

∗ ,c∗pu∗1,ug
,c∗pu∗1,R

,c∗Q∗,u f
,

c∗pl∗,u f
} and c∗pu∗1,pu∗ are IFPs, having meaning as defined in

the generalized 2-S IFTP.

We also define the IFIM

X [LJ ,U ] =

u1 . . . ug . . . u f

l∗1∗ xl∗
1∗
,u1

· · · xl∗
1∗
,ug

· · · xl∗
1∗
,u f

...
...

. . .
...

. . .
...

l∗n∗ xl∗
n∗
,u1

. . . xl∗
n∗
,ug

. . . xl∗
n∗
,u f

,

where LJ ={l∗1∗ , l
∗
2∗ , . . . , l

∗
n∗}, U ={u1,u2, . . . ,u f }, and for 1 ≤

j∗ ≤ n∗, 1 ≤ g ≤ f : xl∗
j∗
,ug

= ⟨ρl∗
j∗
,ug
,σl∗

j∗
,ug
⟩ are the number

of units of the product, transported from the l∗j∗ -th reseller to

ug-th destination.

Go to Step 5.

Step 5. Let construct IFIM matrix:

C1 = prRS,R∗(αKI ,#q
(Xopt ,R

∗)T )).

Then C∗ :=C∗⊕(◦,∗)C1.
So, the quantities of product purchased in this way by

the resellers from the set RS are set in the column R∗ of

the matrix C∗. Also, the elements {c∗l∗
j∗
,q∗ ,c

∗
Q∗,ug

,c∗pl∗,ug
} (for

1 ≤ j∗ ≤ n∗, 1 ≤ g ≤ f ) are introduced in C∗.

Construct the matrix E[K/{Q, pl, pu1},L/{R, pu}]

=C({Q,pl,pu1},{R,pu})⊗(min,max) Xopt .

Go to Step 6.

Step 6. Through the following operations we will find the

average price of the l∗j∗ -th reseller ∈ RS to purchase a single

quantity of product.

Then construct the IM C2a = αKI ,#2
(E, pu∗)T ;

For 1 ≤ j∗ ≤ n∗ do:

{Construct the matrices:

C2b[l
∗
j∗ ,R

∗
j∗ ,{C2al∗

j∗
,pu∗/C∗

l∗
j∗
,R∗

j∗
}],

in which we use the operation division of IFPs (2):

C∗ :=C∗⊕(◦,∗)

[

⊥;
pu∗

R∗

]

C2b.}

Go to Step 7.

Step 7. The following operations will reflect in the column pu∗

of the matrix C∗ the final selling prices of a unit quantity of

the product together with its surplus charge above the purchase

price.

Let us construct the matrices

C3 =

[

⊥;
pu∗

q∗

]

{prRS,q∗C
∗}

and C4 = prRS,pu∗C
∗.

Let us perform operation C∗ :=C∗⊕(◦,∗)C3 ⊗C4.
Go to Step 8.

Step 8. Through the following operations, the elements c∗l∗ j∗,ug

(for 1 ≤ g ≤ f ) of the matrix C∗ will contain the final

selling price per unit of product, including the unit price

and its transportation price from the l∗ j∗-th reseller to ug-th

destination.

For 1 ≤ j∗ ≤ n∗, 1 ≤ g ≤ f , do following:

{C∗
l∗ j∗,ug

= {prl∗
j∗
,ug

C∗}⊕(◦,∗)

[

⊥;
ug

pu∗

]

{prl∗
j∗
,pu∗C

∗};

C∗ :=C∗⊕(◦,∗)C∗
l∗
j∗
,ug
.}

Go to Step 9.

Step 9. Determining the optimal plan at second stage of the

2-S IFTP - X∗[LJ ,U,{x∗l∗
j∗
,ug
}] after execution of one of the

algorithms, presented in [47], [48], [52] with the obtained cost

IFIM C∗. The optimal intuitionistic fuzzy transportation cost

at the second stage is calculated by:

AGIO1
⊕(max,min))

(

C∗
({Q∗,pl∗,pu∗1},{R∗,q∗,pu∗})⊗(min,max) X∗

opt

)

or AGIO2
⊕(∧2)

)

(

C∗
({Q∗,pl∗,pu∗1},{R∗,q∗,pu∗})⊗(∨2) X∗

opt

)

, where

∨2 and ∧2 are the operations from (1).

Step 10. The optimal intuitionistic fuzzy transportation cost

for the problem is calculated by:

AGIO1
⊕(max,min))

(

C({Q,pl,pu1},{R,pu})⊗(min,max) Xopt

)

⊕(max,min)

AGIO1
⊕(max,min))

(

C∗
({Q∗,pl∗,pu∗1},{R∗,q∗,pu∗})⊗(min,max) X∗

opt

)

or AGIO2
⊕(∧2)

)

(

C({Q,pl,pu1},{R,pu})⊗(∨2) Xopt

)

⊕(max,min)

AGIO2
⊕(∧2)

)

(

C∗
({Q∗,pl∗,pu∗1},{R∗,q∗,pu∗})⊗(∨2) X∗

opt

)

where ∨2 and ∧2 are the operations from (1).

IV. AN APPLICATION OF THE ALGORITHM FOR SOLUTION

OF 2-S IFTP

In this section we will define 2-S IFTP extending the IFTP

from [48]: A trader supplies a product to 4 different companies

{l1, l2, l3, l4}. Let a product be produced at the manufacturers

{k1,k2,k3} in quantities cki,R (for 1≤ i≤ 3). Let the companies

({l1, l2, l3, l4}) demand this product in an quantity of cQ,l j

(for 1 ≤ j ≤ 4) and cpl,l j
(for 1 ≤ j ≤ 4) are intuitionistic

fuzzy limits to the transportation costs of delivery a particular

product from the ki-th source to the l j-th destination. Let some

of the buyers RS = {l1, l2, l3} (RS ⊂ L) become resellers. The

resellers {l1, l2, l3} want to sell quantities of the product not

only purchased, but also from own production or stocks at a

surplus charge c∗l∗
j∗
,q∗ (for 1 ≤ j∗ ≤ 3) for an product unit to

other consumers {u1,u2,u3,u4}, in quantities c∗l∗
j∗
,R∗ (for 1 ≤

j∗ ≤ 3). Consumers need this product in an amount of c∗Q∗,ug

(for 1 ≤ g ≤ 4). Let c∗l∗
j∗
,ug

(for 1 ≤ j∗ ≤ n∗,1 ≤ g ≤ f ) be the

total cost for the purchase of one unit quantity of the product

from the l∗j∗ -th reseller to ug-th destination; x∗l∗
j∗
,ug

± the number

of units of the product, transported from the l∗j∗ -th reseller to

ug-th destination; c∗l∗
j∗
,pu∗ ,( for 1 ≤ j∗ ≤ 3) ± is the price of

a product unit of the l∗j∗ -th reseller; c∗pl∗,ug
,( for 1 ≤ g ≤ 4) ±
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upper limit of the price at which the ug-th consumer wish to

purchase the product.

The purpose of the 2-S IFTP is to meet the requests of

all users {l1, . . . , l4} and {u1,u2,u3} so that the intuitionistic

fuzzy transportation cost is minimum.

All elements of the transportation problem are intuitionistic

fuzzy due to several uncertainties.

Let us apply the proposed approach in the Sect. III.

1) Solution of the First Stage of the 2-S IFTP: Step 1. At

starting of the algorithm for solution of the problem, the cost

IM C is created. cki,l j
(for 1 ≤ i ≤ 3,1 ≤ j ≤ 4) is the IF cost

for transporting a unit quantity of the product from the ki-th

producer to the l j-th user.

C[K,L] =







































l1 l2 l3 . . .
k1 ⟨0.6,0.2⟩ ⟨0.7,0.1⟩ ⟨0.3,0.1⟩ . . .
k2 ⟨0.5,0.3⟩ ⟨0.4,0.1⟩ ⟨0.5,0.1⟩ . . .
k3 ⟨0.4,0.2⟩ ⟨0.3,0.2⟩ ⟨0.6,0.1⟩ . . .
Q ⟨0.4,0.2⟩ ⟨0.5,0.3⟩ ⟨0.6,0.2⟩ . . .
pl ⟨0.65,0.3⟩ ⟨0.6,0.4⟩ ⟨0.75,0.1⟩ . . .

pu1 ⟨⊥,⊥⟩ ⟨⊥,⊥⟩ ⟨⊥,⊥⟩ . . .

. . . l4 R pu

. . . ⟨0.8,0.1⟩ ⟨0.5,0.2⟩ ⟨⊥,⊥⟩

. . . ⟨0.3,0.2⟩ ⟨0.7,0.1⟩ ⟨⊥,⊥⟩

. . . ⟨0.7,0.2⟩ ⟨0.4,0.5⟩ ⟨⊥,⊥⟩

. . . ⟨0.06,0.02⟩ ⟨⊥,⊥⟩ ⟨⊥,⊥⟩

. . . ⟨0.75,0.1⟩ ⟨⊥,⊥⟩ ⟨⊥,⊥⟩

. . . ⟨⊥,⊥⟩ ⟨⊥,⊥⟩ ⟨⊥,⊥⟩

Let xki,l j
is the number of units of the product, transported

from the ki-th producer to l j-th destination (for 1 ≤ i ≤ 3 and

1 ≤ j ≤ 4) and is an element of IFIM X with initial elements

⟨⊥,⊥⟩. The trader wants to satisfy the required quantities of

the users so that the intuitionistic fuzzy transportation cost is

minimum.

Step 2. The conditions for limiting the transportation costs are

checked according to proposed approach in [48]. The problem

is also balanced.

The IM C is transformed in this form following the IF

algorithm in [48]:

C[K,L] =







































l1 l2 l3 . . .
k1 ⟨0.6,0.2⟩ ⟨1,0⟩ ⟨0.3,0.1⟩ . . .
k2 ⟨0.5,0.3⟩ ⟨0.4,0.1⟩ ⟨0.5,0.1⟩ . . .
k3 ⟨0.4,0.2⟩ ⟨0.3,0.2⟩ ⟨0.6,0.1⟩ . . .
Q ⟨0.4,0.2⟩ ⟨0.5,0.3⟩ ⟨0.6,0.2⟩ . . .
pl ⟨0.65,0.3⟩ ⟨0.6,0.4⟩ ⟨0.75,0.1⟩ . . .

pu1 ⟨⊥,⊥⟩ ⟨⊥,⊥⟩ ⟨⊥,⊥⟩ . . .

. . . l4 R pu

. . . ⟨1,0⟩ ⟨0.5,0.2⟩ ⟨⊥,⊥⟩

. . . ⟨0.3,0.2⟩ ⟨0.7,0.1⟩ ⟨⊥,⊥⟩

. . . ⟨0.7,0.2⟩ ⟨0.4,0.5⟩ ⟨⊥,⊥⟩

. . . ⟨0.06,0.02⟩ ⟨⊥,⊥⟩ ⟨⊥,⊥⟩

. . . ⟨0.65,0.3⟩ ⟨⊥,⊥⟩ ⟨⊥,⊥⟩

. . . ⟨⊥,⊥⟩ ⟨⊥,⊥⟩ ⟨⊥,⊥⟩

For solving the first stage we can apply the zero-point

algorithm for IFTP with IFIMs C and X , outlined in [48].

Step 3. The intuitionistic fuzzy optimal solution, presented

by the IM Xopt is non-degenerated, it includes 6 occupied

cells. The IM Xopt has the following form:

Xopt =















l1 l2 l3 l4
k1 ⟨0,1⟩ ⟨0,1⟩ ⟨0.5,0.2⟩ ⟨0,1⟩
k2 ⟨0.4,0.2⟩ ⟨0.1,0.8⟩ ⟨0.1,0.4⟩ ⟨0.06,0.02⟩
k3 ⟨0,1⟩ ⟨0.4,0.5⟩ ⟨0,1⟩ ⟨0,1⟩

.

(6)

The optimal intuitionistic fuzzy optimal solution

Xopt [K∗,L∗,{xki,l j
}] is obtained. The optimal intuitionistic

fuzzy transportation cost is:

AGIO1
⊕(max,min))

(

C({Q,pl,pu1},{R,pu})⊗(min,max) Xopt

)

= ⟨0.4,0.2⟩

(7)

or

AGIO2
⊕(∧2)

)

(

C({Q,pl,pu1},{R,pu})⊗(∨2) Xopt

)

= ⟨0.464,0.006⟩.

(8)

The degree of membership (acceptance) of this optimal so-

lution is equal to 0.4 (or 0.464) and its degree of non-

membership (non-acceptance) is equal to 0.2 (or 0.006).

The ranking function R, defined in (3), we can use to

rank alternatives of decision-making process. For the obtained

optimal solution by IFZPM, the distance between the opti-

mal solution to the pair ⟨1,0⟩ is equal to R⟨0.4;0.2⟩ = 0.42

(R⟨0.464;0.006⟩ = 0.41).

2) Solution of the Second Stage of the 2-S IFTP: To find

the optimal solution for the second stage, we propose the

following algorithm, described by program code, which is a

part of Microsoft Visual Studio.NET 2010 C project.

Step 4. The following cost IFIM C∗[L∗,U ] is created:

C∗ =







































u1 u2 u3 . . .
l1 ⟨0.27,0.73⟩ ⟨0.23,0.77⟩ ⟨0.19,0.81⟩ . . .
l2 ⟨0.17,0.83⟩ ⟨0.29,0.71⟩ ⟨0.29,0.71⟩ . . .
l3 ⟨0.24,0.65⟩ ⟨0.24,0.6⟩ ⟨0.2,0.65⟩ . . .
Q∗ ⟨0.45,0.3⟩ ⟨0.4,0.2⟩ ⟨0.15,0.013⟩ . . .
pl∗ ⟨0.82,0.1⟩ ⟨0.8,0.1⟩ ⟨0.85,0.1⟩ . . .
pu∗1 ⟨⊥,⊥⟩ ⟨⊥,⊥⟩ ⟨⊥,⊥⟩ . . .

. . . u4 R∗ q∗ pu∗

. . . ⟨0.65,0.35⟩ ⟨0.4,0.2⟩ ⟨0.1,0 ⊥⟩ ⟨0.5,0.3,⊥⟩

. . . ⟨0.67,0.33⟩ ⟨0.5,0.3⟩ ⟨0.1,0⟩ ⟨0.31,0.27⟩

. . . ⟨0.56,0.1⟩ ⟨0.6,0.2⟩ ⟨0.15,0⟩ ⟨0.25,0⟩

. . . ⟨0.2,0.013⟩ ⟨⊥,⊥⟩ ⟨⊥,⊥⟩ ⟨⊥,⊥⟩

. . . ⟨0.85,0.1⟩ ⟨⊥,⊥⟩ ⟨⊥,⊥⟩ ⟨⊥,⊥⟩

. . . ⟨⊥,⊥⟩ ⟨⊥,⊥⟩ ⟨⊥,⊥⟩ ⟨⊥,⊥⟩

where L∗ = {l1, . . . , l3,Q
∗, pl∗, pu∗1} , U =

{u1, . . . ,u4,R
∗,q∗, pu∗} and all elements are IFPs. The

quantities of product purchased on the first stage by the

resellers from the set RS are set in the column R∗ of the

matrix C∗.
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We also define

X [LJ ,U ] =















u1 u2 u3 u4

l1 ⟨0,1⟩ ⟨0,1⟩ ⟨0,1⟩ ⟨0,1⟩
l2 ⟨0,1⟩ ⟨0,1⟩ ⟨0,1⟩ ⟨0,1⟩
l3 ⟨0,1⟩ ⟨0,1⟩ ⟨0,1⟩ ⟨0,1⟩















,

LJ = {l1, l2, l3} , U = {u1,u2,u3,u4} and for 1 ≤ j∗ ≤ 3,

1 ≤ g ≤ 4: xl∗
j∗
,ug

= ⟨ρl∗
j∗
,ug
,σl∗

j∗
,ug
⟩ are the number of units

of the product, transported from the l∗j∗ -th reseller to ug-th

destination.

Step 5. The average prices of the resellers l1, l2, l3 to purchase

a single quantity of product are calculated. The IFIM C∗[L∗,U ]
is changed as follows:






































. . . R∗ q∗ pu∗

l1 . . . ⟨0.4,0.2⟩ ⟨⊥,⊥⟩ ⟨0.5,0.3⟩
l2 . . . ⟨0.5,0.3⟩ ⟨⊥,⊥⟩ ⟨0.31,0.27⟩
l3 . . . ⟨0.6,0.2⟩ ⟨⊥,⊥⟩ ⟨0.25,0⟩
Q∗ . . . ⟨⊥,⊥⟩ ⟨⊥,⊥⟩ ⟨⊥,⊥⟩
pl∗ . . . ⟨⊥,⊥⟩ ⟨⊥,⊥⟩ ⟨⊥,⊥⟩
pu∗1 . . . ⟨⊥,⊥⟩ ⟨⊥,⊥⟩ ⟨⊥,⊥⟩







































Step 6. The column pu∗ of the matrix C∗ contains the final

selling prices of a unit quantity of the product together with

its mark-up above the purchase price. The elements c∗l∗ j∗,ug

(for 1 ≤ j∗ ≤ 3, 1 ≤ g ≤ f ) of the matrix C∗ contain the

final selling price per unit of product, including the unit price

and its transportation price from the l∗ j∗-th reseller to ug-th

destination. C∗ obtains the following form:

C∗ =







































u1 u2 u3 . . .
l1 ⟨0.32,0.55⟩ ⟨0.28,0.55⟩ ⟨0.24,0.7⟩ . . .
l2 ⟨0.2,0.7⟩ ⟨0.32,0.55⟩ ⟨0.32,0.6⟩ . . .
l3 ⟨0.28,0.65⟩ ⟨0.28,0.6⟩ ⟨0.2,0.65⟩ . . .
Q∗ ⟨0.45,0.3⟩ ⟨0.4,0.2⟩ ⟨0.15,0.013⟩ . . .
pl∗ ⟨0.82,0.1⟩ ⟨0.8,0.1⟩ ⟨0.85,0.1⟩ . . .
pu∗1 ⟨⊥,⊥⟩ ⟨⊥,⊥⟩ ⟨⊥,⊥⟩ . . .

. . . u4 R∗ q∗ pu∗

. . . ⟨0.7,0.1⟩ ⟨0.4,0.2⟩ ⟨0.1,0 ⊥⟩ ⟨0.05,0.3,⊥⟩

. . . ⟨0.7,0.1⟩ ⟨0.5,0.3⟩ ⟨0.1,0⟩ ⟨0.03,0.27⟩

. . . ⟨0.6,0.1⟩ ⟨0.6,0.2⟩ ⟨0.15,0⟩ ⟨0.038,0⟩

. . . ⟨0.2,0.013⟩ ⟨⊥,⊥⟩ ⟨⊥,⊥⟩ ⟨⊥,⊥⟩

. . . ⟨0.85,0.1⟩ ⟨⊥,⊥⟩ ⟨⊥,⊥⟩ ⟨⊥,⊥⟩

. . . ⟨⊥,⊥⟩ ⟨⊥,⊥⟩ ⟨⊥,⊥⟩ ⟨⊥,⊥⟩

Step 7. The problem is balanced. Then the requirements for

an upper limit on the price at which consumers have the

opportunity to purchase the necessary quantities of the product

are checked. After execution of the algorithm, presented

in [48], with the obtained cost IFIMs C∗ and X∗, we obtain

the following optimal plan X∗[LJ ,U,{x∗l∗
j∗
,ug
}] for the second

stage of the problem:














u1 u2 u3 u4

l1 ⟨0,1⟩ ⟨0.35,0.65⟩ ⟨0,1⟩ ⟨0,1⟩
l2 ⟨0.45,0.3⟩ ⟨0.05,0.6⟩ ⟨0,1⟩ ⟨0,1⟩
l3 ⟨0,1⟩ ⟨0.15,0.23⟩ ⟨0.15,0.013⟩ ⟨0.2,0.013⟩















,

The intuitionistic fuzzy optimal solution, presented by the

IM X∗
opt is non-degenerated, it includes 6 occupied cells. The

optimal intuitionistic fuzzy transportation cost at the second

stage is calculated by:

AGIO1
⊕(max,min))

(

C∗
({Q∗,pl∗,pu∗1},{R∗,q∗,pu∗})⊗(min,max) X∗

opt

)

= ⟨0.28,0.1⟩

or AGIO2
⊕(∧2)

)

(

C∗
({Q∗,pl∗,pu∗1},{R∗,q∗,pu∗})⊗(∨2) X∗

opt

)

= ⟨0.31,0.04⟩,

where ∨2 and ∧2 are the operations from (1). The degree of

membership (acceptance) of this optimal solution is equal to

0.28 (or 0.31) and the its degree of non-membership (non-

acceptance) is equal to 0.1 (or 0.04). For the obtained optimal

solution by IFZPM, the distance between the optimal solution

to the pair ⟨1,0⟩ is equal to R⟨0.28;0.1⟩ = 0.58 (R⟨0.31;0.04⟩ =
0.57).
Step 8. The optimal intuitionistic fuzzy transportation

cost for the problem is calculated by: ⟨0.4,0.2⟩ ⊕(max,min)

⟨0.28,0.1⟩( or ⟨0.31,0.4⟩) = ⟨0.4,0.1⟩( or ⟨0.4,0.4⟩).
The degree of membership (acceptance) of this optimal

solution is equal to 0.4.

The example illustrates the reliability of the proposed algo-

rithm in Section III to the studied 2-S IFTP.

V. CONCLUSION

The apparatus of IMs provides the ability to expand the

existing transportation problems to formulate non-existent

ones to find strategic decisions for logistics management

in uncertain environment. It is proposed for the first time,

extending the approach in [48], to model and find the optimal

solution of a 2-S IFTP using the concepts of the IMs and IFSs.

The formulated IFTP has additional constraints: upper limits

to the transportation costs and a surplus charge on reseller

sales prices. The proposed algorithm for solution of the 2-S

IFTP is illustrated with a numerical example. The advantages

of the proposed algorithm are that it can be easy generalized

to the multidimensional intuitionistic fuzzy TPs [23] and also

can be applied to both the TP with crisp parameters and with

intuitionistic fuzzy ones. In the future, we will extend the

proposed approach to the interval-valued intuitionistic fuzzy

TPs [25] and will apply it over real life TPs.
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