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Abstract—In this work we make a comparison between opti-
mized lattice and adaptive stochastic approaches for multidimen-
sional integrals with different dimensions. Some of the integrals
has applications in environmental safety and control theory.

I. INTRODUCTION

MONTE Carlo methods are one of the most commonly

used numerical methods. Their advantages are en-

hanced by increasing the dimensionality. For this reason, they

are a major tool for numerically solving classes of problems

in such important areas as particle physics, engineering chem-

istry, molecular dynamics, and financial mathematics. A major

scientific challenge in the development of modern Monte Carlo

methods is their relatively slow rate of convergence, which in

many cases has the asymptotic O(N−1/2), where N is the

sample size. There are two approaches to improve convergence

- reducing the variance of the estimated value and reducing

the discrepancy of the sequence used. Adaptive strategy and

lattice rules are two different ways to improve the convergence

and has never been compared on this type of multidimensional

integrals before.

II. THE STOCHASTIC APPROACHES

A. Adaptive approach

Adaptive strategy [1], [3], [4], [7] is well known method for

evaluation of multidimensional integrals, especially when the

integrand function has peculiarities and peaks. Let pj and IΩj

be the following expressions: pj =
∫
Ωj

p(x) dx and IΩj
=∫

Ωj
f(x)p(x) dx. Consider now a random point ξ(j) ∈

Ωj with a density function p(x)/pj . In this case IΩj
=

E
[
pj

N

∑N
i=1 f(ξ

(j)
i )

]
= EθN . This adaptive algorithm gives
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an approximation with an error ε ≤ c N−1/2, where c ≤
0.6745σ(θ) (σ(θ) is the standard deviation).

Algorithm

1. Input data: total number of points N1, constant

M (the initial number of subregions taken), constant

ε (max value of the variance in each subregion), con-

stant δ (maximal admissible number of subregions),

d-dimensionality of the initial region/domain, f - the

function of interest.

1.1. Calculate the number of points to be taken

in each subregion N = N1/δ.

2. For j = 1, Md:

2.1. Calculate the approximation of IΩj
and the

variance DΩj
in subdomain Ωj based on N

independent realizations of random variable

θN ;

2.2. If (DΩj
≥ ε) then

2.2.1. Choose the axis direction on which

the partition will perform,

2.2.2. Divide the current domain into two

(Gj1 , Gj2) along the chosen direc-

tion,

2.2.3. If the length of obtained subinterval

is less than δ then go to step 2.2.1

else j = j1 Gj1 is the current domain

right and go to step 2.1;

2.3. Else if (DΩj
< ε) but an approximation

of IGj2
has not been calculated yet, then

j = j2 Gj2 is the current domain along the

corresponding direction right and go to step

2.1;

2.4. Else if (DΩj
< ε) but there are subdomains

along the other axis directions, then go to

step 2.1;

2.5. Else Accumulation in the approximation IN
of I .
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B. Lattice rules

We will use the following lattice point sets

xn =
{ n

N
z
}
, n = 0, . . . , N − 1

where z = (z1, . . . , zn) is the generating vector with dimen-

sionality s. By a lattice rule we mean a rule of the form

IN (f) =
1

N

N−1∑

j=0

f(xj), (1)

where x0, . . . , xN−1 are all points of a lattice L in the

unit hypercube. Lets deal with the problem for approximate

evaluation of the integral:

I(f) =

∫

[0,1)s
f(x)dx,

where f is a real function in [0, 1)s. We consider the case

when f has a periodic extension f̃ in Rs,

f̃ = f(x), x ∈ [0, 1)s,

f̃(x+ z) = f̃ , x ∈ R
s, z ∈ Z

s.

Let

IN (f) =
1

N

N−1∑

j=0

f(xj), (2)

where x0, x1, . . . , xN−1 are points from the lattice L ∈ [0, 1)s.

We define the dual lattice L as

L⊥ = m ∈ R
s : m.x ∈ Z, x ∈ L.

In the case when the lattice has rank 1

L⊥ = m ∈ Z
s : m.x ≡ 0 ( mod N).

Let f can be presented in Fourie series as:

f(x) =
∑

m∈Zs

a(m)e2πim.x, x ∈ [0, 1)s,

where

a(m) =

∫

[0,1)s

e−2πim.xf(x)dx,

and the scalar product m.u = m1x1 +m2x2 + . . .msxs. Let

Eα
s for α > 1 and c > 0 is a class of functions f , for which

the coefficients of Fourier [8] satisfies:

|a(m)| ≦
c

(m1 . . .ms)α
, (3)

where

m = |m|, |m|, m ≧ 1, m = 1, m = 0.

We define the Zaremba index [12] as

ρ = minm∈L⊥,m 6=0(m1 . . .ms).

The following theorems are key points in analysis the error of

integration in the lattice rule:

Theorem 1: [10] Let L is a lattice with points

x0, x1, . . . , xN−1 in [0, 1)s and m ∈ Z
s. Then

1

N

N−1∑

j=0

e2πim.xj = 1,m ∈ L⊥,

1

N

N−1∑

j=0

e2πim.xj = 0,m /∈ L⊥.

Theorem 2: [12] Let L is a lattice with points

x0, x1, . . . , xN−1 in [0, 1)s. Then for the error of integration

is fulfilled

IN (f)− I(f) =
∑

m∈L⊥,m 6=0

a(m).

When we replace f(x) =
∑

m∈Zs

a(m)e2πim.x in IN (f) =

1
N

N−1∑
j=0

f(xj):

IN (f) =
1

N

N−1∑

j=0

f(xj) =
1

N

N−1∑

j=0

∑

m∈Zs

a(m)e2πim.xj =

∑

m∈Zs

a(m)
1

N

N−1∑

j=0

e2πim.xj =
∑

m∈L⊥

a(m).

and using the definition I(f) = a(0) we will obtain

IN (f)− I(f) =
∑

m∈L⊥,m 6=0

a(m).

Theorem 3: [12] Let L is a lattice with points

x0, x1, . . . , xN−1 in [0, 1)s and let f ∈ Eα
s (c), α > 1. Then

|IN (f)− I(f)| ≦ c
∑

m∈L⊥,m 6=0

(m1 . . .ms)
−α.

The proof of this fact directly leads from the previous

theorem

|IN (f)− I(f)| =
∑

m∈L⊥,m 6=0

|

a(m)| ≦ c
∑

m∈L⊥,m 6=0

1

(m1 . . .ms)α

.

Theorem 4: [12] Let L is a lattice with x0, x1, . . . , xN−1 in

[0, 1)s and let f ∈ Eα
s (c), α > 1 and ρ ≧ 2 is the Zaremba

index. Then

|IN (f)− I(f)| ≦ cd(s, α)ρ−α(log ρ)s−1.

Here we can define the number Rl, l = 1, 2, . . . , which will

show the number of points m ∈ L⊥ for which

m1 . . .ms < lρ

Here we will use the lemma proven by Hua and Wang (1981)

[6]:

Rl ≤ e(s)l(log 3lρ)s−1, l = 1, 2, . . . ,

where e(s) depend only on s.
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From Theorem 3

|IN (f)− I(f)| ≤ c
∑

m∈L⊥,m 6=0

1

(m1 . . .ms)α

The sum on m can be broken down into a sum of collectibles

by E1, E2, . . . , where El is defined by the inequalities

lρ ≤ m1 . . .ms < (l + 1)ρ, l = 1, 2, . . .

By the definition of Rl we have the following inequalities:

∑

m∈L⊥,m 6=0

1

(m1 . . .ms)α
≤

∞∑

l=1

Rl+1 −Rl

(lρ)α
≤

1

ρα

∞∑

l=1

Rl+1

(
1

lα
−

1

(l + 1)α

)
.

We have that

1

lα
−

1

(l + 1)α
= α

∫ l+1

l

x−α−1dx ≤
α

lα+1
,

and using the Lemma of Hua and Wang

|IN (f)− I(f)| ≤
cα

ρα

∞∑

l=1

Rl+1

lα+1
≤

≤
cαe(s)

ρα

∞∑

l=1

(l + 1)(log 3(l + 1)ρ)s−1

lα+1

≤ cd(s, α)ρ−α(log ρ)s−1,

where d1(s, α) depend only on s and α. This proves theorem

4. In the theory of integration lattice rule a key point play

the functions fα, α = 2, 4, . . . . Every function fα is the worst

function [12] for appropriate class Eα
s (1). This functions are

defined by

fα(x) =
∑

m∈L⊥

1

(m1 . . .ms)α
e2πim.x.

Furthermore fα ∈ Eα
s (1), I(fα) = 1. Let Pα(z,N) = Pα

means the error in I(fα). From Theorem 2

Pα(z,N) = IN (fα)− I(fα) =
∑

m∈L⊥,m 6=0

1

(m1 . . .ms)α
.

Now for f ∈ Eα
s (c) according Theorem 3 the error is defined

by

|IN (f)− I(f)| ≤ cPα(N, z), (4)

where α = 2, 4, . . . and the error is fulfilled when f = fα.

The values of Pα(z,N) for fixed α are using as indication

of the relative quality of the particular lattice. In the case of

rank-1 lattice

Pα(z,N) =
∑

z.a≡0 ( mod N),a 6=0

1

(m1 . . .ms)α
.

Bakhvalov proves that [12]:

Theorem 5: If P is a lattice point set, with an optimal

generating vector z, for the error of integration we have
∣∣∣∣∣∣∣

1

N

N−1∑

k=0

f

(
k

N
z

)
−

∫

[0,1)s

∣∣∣∣∣∣∣
≤ Cd(s, α)

(logN)β(s,α)

Nα
(5)

for f ∈ Eα
s (c), α > 1 and d(s, α), β(s, α) does not depend

on N .

Bakhvalov (1959) [12] prove that:

Theorem 6: If N is a prime number, there exists generating

vector z, such that

D(N) = O(N−1 logs N),

Pα(z,N) = O(N−α logαs N).

Niederreiter shows [11], if N is not a prime number,there

exist lattice point sets for which:

Pα(z,N) = O(N−α(logN)α(s−1)+1(
N

φ(N)
)), s ≥ 2,

Pα(z,N) = O(N−α(logN)α(
N

φ(N)
+

τ(N)

log(N)
)), s = 2,

Pα(z,N) = O(N−α(logN)α(s−1)(1+
τ(N)

logs−1(N)
)), s ≥ 3,

where φ(N) is the Euler’s totient function and τ(N) is the

number of divisors of N . For prime number from this formulas

leads that there exist z, for which

Pα(z,N) = O(N−α logα(s−1) N).

It is fulfilled the following theorem of Sharygin (1963) [9]:

Theorem 7: For a given lattice rule it is fulfilled that

Pα(z,N) ≥ O(N−α logs−1 N). (6)

When s = 2 there is an optimal construction. Bakhavalov

(1959), Hua and Wang (1960) introduced construction, based

on Fibonacci numbers, which are defined recursively by

F0 = 0, F1 = 1, Fl = Fl−1 + Fl−2, l ≥ 2.

Let N = Fl and z = (1, Fl−1). For the obtained lattice

Bakhavalov and Hua and Wang show that

Pα((1, Fl−1), Fl) = O(F−α
l logFl),

which is optimal according to Sharygin. In 1966 Zaremba [12]

shows that

D(Fl) = O(F−1
l logFl),

which is optimal according to Schmidt (1972) [10]. It is

important that for finding Fl are necessary only O(logFl)
elementary operations. There are different techniques for

optimal constructions when s ≥ 2. Let s = p−1
2 , where

p ≥ 5 is a prime number. If we have the set Q(2 cos 2π
p ),

which is an algebraic field of degree s with basis functions
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2 cos(2πj/p) | j = 1, . . . , s, we construct the sequence ηl, l =
1, 2, . . . , which satisfies:

c−1
s el < ηl < cse

l, c−1
s e−l/(s−1) ≤ |η

(j)
l | ≤ c−1

s e−l/(s−1),

j = 2, . . . , s,

where cs is a constant and η(j) is the conjugate of η. Define

the generating vector by:

ηl =
s∑

j=1

η
(j)
l , h

(l)
j = [ηl2 cos(2πj/p)], j = 2, . . . , s,

where ηl is the number of points and [.] is a function whole

part. With such a choice of z Hua and Wang show that

D(ηl) = O(η
− 1

2−
1

2(s−1)+ε

l ), Pα(z,N) = O(η
−α

2 − α
2(s−1)+ε

l ),

where ε is a preliminary given positive number.

We will construct a lattice L with the following optimized

generating vector. for positive number n:

z = (1, Fn(2), . . . , Fn(s)) (7)

It is fulfilled that Fn(j) = Fn+j−1−Fn+j−2−. . .−Fn , where

Fi are the generalized Fibonacci numbers with dimensionality

s:

Fl+s = Fl + Fl+1 + ...+ Fl+s−1, l = 0, 1, . . . (8)

with initial condition:

F0 = F1 = . . . = Fs−2 = 0, Fs−1 = 1, (9)

for l = 0, 1, . . ..
After simplifying:

z = (1, Fn−1+Fn−2+. . .+Fn−s+1, . . . , Fn−1+Fn−2, Fn−1)
(10)

III. NUMERICAL EXAMPLES

We will test the optimized lattice rule into the following

examples:

Example 1. s=3.
∫

[0,1]3

exp(x1x2x3) ≈ 1.14649907. (11)

Example 2. s= 4.
∫

[0,1]4

x1x
2
2e

x1x2 sin(x3) cos(x4) ≈ 0.1089748630. (12)

Example 3.
∫

[0,1]5

exp(−100x1x2x3)(sin(x4) + cos(x5)) ≈ 0.1854297367.

(13)

Example 4. s= 7.

∫

[0,1]7

e
1−

3∑

i=1
sin(π

2 .xi)
.arcsin(sin(1)+

7∑
j=1

xj

200
) ≈ 0.75151101.

(14)

Table I
RELATIVE ERROR FOR 3 DIMENSIONAL INTEGRAL

N crude t,s adapt t,s lattice t,s

103 3.62e-2 0.007 4.82e-3 0.17 1.21e-3 0.006

104 1.67e-3 0.07 1.07e-3 1.44 5.04e-4 0.07

105 8.60e-4 0.74 1.52e-4 10.9 5.34e-6 0.66

106 5.12e-4 6.12 5.11e-5 131 7.85e-7 7.02

107 3.15e-4 60.1 2.34e-5 1094 8.89e-8 79.7

Table II
RELATIVE ERROR FOR 3 DIMENSIONAL INTEGRAL FOR PRELIMINARY

GIVEN TIME

time in sec. crude adapt lattice

1 1.05e-3 7.96e-3 2.34e-6

5 6.84e-4 8.14e-4 8.47e-7

10 4.79e-4 1.82e-4 4.89e-7

100 1.57e-4 7.04e-5 6.53e-9

Example 5. s= 15.

∫

[0,1]15

(
10∑

i=1

x2
i )(x11 − x2

12 − x3
13 − x4

14 − x5
15)

2 ≈ 1.96440666.

(15)

Example 6. s= 25.

∫

[0,1]25

4x1x
2
3e

2x1x3

(1 + x2 + x4)2
ex5+···+x20x21 . . . x25 ≈ 108.808.

(16)

Example 7. s= 30.

∫

[0,1]30

4x1x
2
3e

2x1x3

(1 + x2 + x4)2
ex5+···+x20x21 . . . x30 ≈ 3.244540.

(17)

The results are given in the tables below. We have used lap-

top CPU Core i7 4710HQ at 2.5GHz. The first group of tables

contains information about the method used, the relative error

obtained, the number of conversions required, and the CPU

time required to compute the integral. The second group table

contains information about the computational complexity. A

comparison is made, which shows what relative error each of

the used algorithms gives at a predetermined time. From these

results it can be concluded that the lattice method is the most

efficient for computing multidimensional integrals of smooth

subintegral functions due to the low computational complexity

and high accuracy in comparison with the simple Monte Carlo

algorithm (crude) and the adaptive approach (adapt). The crude

Monte Carlo is the basic and simplest possible Monte Carlo

approach. Such kind of applications appear also in some

important problems in control theory.

It can be seen that by increasing the dimension, the opti-

mized lattice rule gives the best results (Table I-VII), and the

advantage is more clearly pronounced for a preliminary given

computational time (Table II, Table IV).
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Table III
RELATIVE ERROR FOR 4 DIMENSIONAL INTEGRAL

N crude t,s adapt t,s opt. lattice t,s

104 9.31e-3 0.08 1.11e-3 1.97 8.61e-5 0.07

105 4.37e-3 0.78 1.44e-4 20.1 3.69e-5 0.99

106 7.87e-4 5.86 5.63e-5 210 2.86e-6 5.22

107 4.31e-5 50.1 9.11e-6 2035 3.38e-7 58

Table IV
RELATIVE ERROR FOR 4 DIMENSIONAL INTEGRAL FOR PRELIMINARY

GIVEN TIME

time in sec. crude adapt opt. lattice

5 8.61e-4 5.24e-3 8.47e-7

20 2.31e-4 1.44e-4 4.89e-7

100 2.21e-5 8.21e-5 4.53e-8

The lattice method is not applicable to functions with

singularities as we will see from the numerical experiments

in this section. Let the following model function be given:

f(x) = (1 +
d∑

i=1

ai xi)
−(s+1). (18)

The class of test functions in question belongs to a package

proposed by Genz [5]. Each individual class of the package

is characterized by a peculiarity in computational terms. The

selected set of functions has a single local maximum near one

of the vertices of the multidimensional single cube, similar to

some model functions describing the change in the concentra-

tions of pollutants in the air. The parameters ai are evaluated,

using variables a′i, uniformly distributed in [ 1
20 ; 1−

1
20 ], and the

relation a = c a′. The constant c is parameter of computational

complexity [1], selected so that the ”sharpness” of the local

maximum is controlled by the following norm ||a||1 = 600
s2 .

The adaptive approach is effective for such a class of functions

- functions with computational features in a local subdomain

of the field of integration.

Table V
RELATIVE ERROR FOR 5 DIMENSIONAL INTEGRAL

N crude t,s adapt t,s opt. lattice t,s

103 2.10e-2 0.007 2.15e-3 0.27 1.75e-4 0.007

104 4.52e-3 0.07 2.01e-3 2.43 1.28e-5 0.06

105 1.19e-3 0.64 8.91e-4 25.2 9.50e-6 0.61

106 9.47e-4 6.06 2.92e-4 219.5 5.47e-7 5.98

107 6.38e-4 59.9 8.21e-5 2043 7.71e-8 58.4

Table VI
RELATIVE ERROR FOR 7 DIMENSIONAL INTEGRAL

N crude t,s adapt t,s opt. lattice t,s

104 1.47e-2 0.11 1.07e-3 2.07 2.19e-4 0.11

105 8.26e-3 1.02 7.51e-4 19.3 6.87e-5 0.99

106 1.76e-3 10.1 6.30e-5 194 7.39e-6 9.81

107 9.85e-4 96.3 2.34e-5 1861 8.89e-7 94.2

Table VII
RELATIVE ERROR FOR 15-DIMENSIONAL INTEGRAL

N crude t,s adapt t,s opt. lattice t,s

103 6.31e-2 0.09 3.16e-3 9.24 5.34e-2 0.08

104 4.30e-2 0.95 1.49e-3 88 1.22e-3 0.93

105 2.77e-2 9.70 5.76e-4 847 3.08e-4 9.65

106 2.13e-3 95.8 1.29e-4 8235 1.37e-5 96.9

The results obtained after applying the simple(crude) and

adaptive Monte Carlo algorithm for integrals of 5 and 18 are

given in Table VIII and Table IX, respectively. The efficiency

of the adaptive and lattice algorithms is studied.

In both tables, the value N denotes the total number of

conversions in the entire domain for the ordinary algorithm,

for the adaptive algorithm, and for the algorithm using a

plurality of lattice types. The total number of conversions

and approximately the same time to calculate the integrals

is actually the basis for comparing the presented results. A

number of realizations of the random variable have been

chosen so that the times for obtaining an approximate value

of the integral are close. The obtained results confirm the

reduction of the variance - the adaptive algorithm needs much

fewer implementations and gives more accurate results than

the ordinary Monte Carlo and the lattice type algorithm, but

it is significantly slower (see Table IX).

IV. CONCLUSION

A comprehensive experimental study is done for multidi-

mensional integrals with applications in ecology. The numer-

ical experiments show that the optimized lattice rule is more

efficient for multidimensional integrals of smooth functions.

The adaptive approach is more efficient for multidimensional

integrals with peculiarities and peaks which have applications

in air pollution modelling.
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Table VIII
RELATIVE ERROR FOR s = 5, I[f ] = 2.12e-06, a = (5, 5, 5, 5, 4).

adapt crude opt. lattice
N IN [f ] (s) N IN [f ] (s) N IN [f ] (s)

102 3.7735e-03 0.33 105 5.4858e-02 0.27 1346269 9.7135e-02 0.38

103 1.2877e-03 1.44 106 3.8207e-02 1.22 3524578 6.7594e-02 1.32

104 4.2452e-04 10.75 107 3.3962e-03 12.3 14930352 1.5377e-02 15.07

105 4.7169e-05 142.18 108 9.4339e-04 124.2 102334155 2.9245e-03 134.58

Table IX

RELATIVE ERROR FOR s = 18, I[f ] = 9.919e-06, a =

(
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,
2
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2
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1
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,
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1
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4
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,
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1

9
,
1

9
,
2

27
,
2

27
,
1

9
,
1

9
,
4

27
,
1

9
,
1

9

)

.

adapt crude opt. lattice
N IN [f ] (s) N IN [f ] (s) N IN [f ] (s)

10 9.2341e-04 15.7 107 4.5367e-03 13.6 14930352 7.1579e-02 14.7

102 8.0653e-05 142 108 2.0163e-03 140 102334155 1.3096e-02 144.1

103 1.0081e-05 1408 109 5.0480e-04 1353.5 1134903170 7.8883e-03 1344.3

[9] I.F. Sharygin (1963) A lower estimate for the error of quadrature
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