Logo PTI Logo rice

Proceedings of the 2021 Sixth International Conference on Research in Intelligent and Computing

Annals of Computer Science and Information Systems, Volume 27

Control design of an UAV–Q based on feedback linearization and optimum modulus methods

, ,

DOI: http://dx.doi.org/10.15439/2021R20

Citation: Proceedings of the 2021 Sixth International Conference on Research in Intelligent and Computing, Vijender Kumar Solanki, Nguyen Ho Quang (eds). ACSIS, Vol. 27, pages 1722 ()

Full text

Abstract. In the paper, we present the formulation of quadrotor control loops that are based on a decomposition into a cascade structure and the use of feedback linearization and optimum modulus methods to determine controller parameters. The dynamic model used in this paper considers the dynamics of the propeller rotor drive systems. The propeller rotor drive systems are considered as a linear actuated system. After the synthesizing of the controllers is completed, the system is simulated in MATLAB/Simulink. The results from this work can be useful for the development of autonomous algorithms for UAV-Q (Unmanned Aerial Vehicle---Quadrotor). The research results serve as the basis for control algorithms development for other similar systems.

References

  1. A. J. Fossard and D. Normand-Cyrot (Eds.). "Nonlinear Systems", Vol. 3: Control, Springer, (1996).
  2. A. Isidori, “Nonlinear Control Systems”, 3rd Edition, Springer, (1995).
  3. S.-K. Kim, K.-G. Lee, and K.-B. Lee, “Singularity-free adaptive speed tracking control for uncertain permanent magnet synchronous motor”, IEEE Transactions on Power Electronics, vol. 31, no. 2, pp. 1692-1701, (2016).
  4. J.J. Slotine and W. Li, “Applied Nonlinear Control”. Englewood Cliffs, NJ: Prentice-Hall, (1991).
  5. J. Ghandour, S. Aberkane, J-C. Ponsart, "Feedback Linearization approach for Standard and Fault Tolerant control: Application to a Quadrotor UAV Testbed", Journal of Physics: Conference Series 570, (2014).
  6. Utkin V., Guldner J., Shi J., Sliding Mode Control in Electromechanical Systems, CRC Press LLC, (1999).
  7. Pedro Castillo, Rogelio Lozano and Alejandro E.Dzul, "Modelling and Control of Mini-Flying Machines", Springer, Compiègne, France, (2004).
  8. Ali Emadi, "Advanced Electric Drive Vehicles", CRC Press is an imprint of Taylor & Francis Group, an Informa business, Springer International Publishing; USA, (2016).
  9. S. Bouabdallah, P. Murrieri, and R. Siegwart, "Design and control of an indoor micro quadrotor". In Robotics and Automation, Proceedings. ICRA'04. IEEE (2004).
  10. Hyeonbeom Lee and H. Jin Kim, "Trajectory Tracking Control of Multirotors from Modelling to Experi- ments: A Survey", International Journal of Control, Automation and Systems, pp. 1-12, (2017).
  11. Tommaso Bresciani, "Modelling, Identification and Control of a Quadrotor Helicopter", master thesis, October (2008).
  12. László Keviczky, Ruth Bars, Jenő Hetthéssy, "Csilla Bányász, Control Engineering: MATLAB Exercises", Springer Nature Singapore Pte Ltd, USA ISSN 1439-2232, (2019).
  13. M.Navabi, HMirazei, "Robust optimal adaptive trajectory tracking control of quadroto helicopter", Lat. Am. J. solids struct. vol 14 No 6 Rio de Janeiro June (2017),
  14. Luo, Shaohua, Gao, Ruizhen, Chaos control of the permanent magnet synchronous motor with time-varying delay by using adaptive sliding mode control based on DSC, Volume 355, Issue 10 Pages 4147-4163, July (2018).
  15. Ключев В. И, Теория электропривода Учебник для вузов Изд. Энергоатомиздат, 3-е (2001)
  16. Б. К. Чемоданов - Следящие приводы Т1, 2.- М.: Изд. МГТУ им Баумана (1999).