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Abstract—Artificial intelligence association into brain mag-
netic resonance imaging (MRI) and clinical practices embrace
substantial cancer diagnosis improvement. The advancement of
deep learning has improved the processing and analysis of MRI,
boosting models’ performance, decreasing the destructive effects
of data sources overload, and increasing accurate detection and
time efficacy. However, that specific dataset leads to diverse
research fields such as image processing and analysis, detec-
tion, registration, segmentation, and classification. This paper
proposes a decision-making pipeline for MRI data by combining
image classification and segmentation. First, the pipeline should
correctly produce a correct decision given an MRI image. If the
figure is classified as defective, the pipeline can extract defect
regions and highlight them accordingly. We have implemented
several advanced convolutional neural networks with transfer
learning and residual techniques to address two broad clinical
concerns in one decision-making workflow.

I. INTRODUCTION AND MOTIVATION

T
ODAY, clinical practice is an area of interest and research

where extensive research and technical recommendations

have been developed in response to increasingly complex

challenges [1], [2], [3]. Identifying and analyzing diseases

is increasingly difficult because they are ever more sophis-

ticated. Fortunately, artificial intelligence has revolutionized

clinical practice in many areas such as cancer diagnosis with

medical imaging [4], automatic classification diseases based

on descriptions [5], [6], and maximizing hospital efficiency

[7]. Among many approaches, deep learning has been proven

superior in a wide range of clinical data and practice scenarios.

Regarding MRI, the complex feature can be represented ef-

fectively by utilizing deep learning-based models in detection,

registration, classification, and segmentation problems.

Employing a convolutional neural network (CNN) for image

classification is one of the reasonable rises, and it is an

essential model in developing an automatic disease diagnosis

[8], [9]. Among competitors of the ImageNet challenge in

2012, the deep learning-based model AlexNet proposed by

Krizhevsky et al.[10] won the championship. CNN has become

the backbone architecture for addressing almost all problems

in computer science. Many CNN-based approaches have been

investigated for addressing MRI image classification [11].

Due to CNN’s dominant performance in the MRI classi-

fication domain, people began exploiting CNN for MRI seg-

mentation. More specifically, MRI diagnosis is the subdivision

of different brain regions to detect brain diseases, such as

cancer and Parkinson’s syndrome. Consequently, automatic

segmentation of defect regions in MRI is significantly essential

in everyday clinical routines and medical research [12]. With

the performance of CNN, excellent segmentation approaches

have been developed based on CNN and continuously become

front tier in particular segmentation competitions [13].

However, one interesting research question that someone

might consider is that we should combine several research

domains and develop a practical workflow that supports medi-

cal analysis and recommendation. This article aims to propose

a decision-making pipeline for MRI data by combining image

classification and image segmentation. First, given an MRI

image, the classification part of the pipeline should make a

correct decision. If the brain MRI is classified as defective,

the segmentation part can extract defect regions and highlight

them accordingly. Thus, the Class-Seg workflow is designed

and implemented by leveraging transfer learning, residual

network [14] design, and several state-of-the-art CNN models.

II. BLUEPRINT OF THE MRI CLASS-SEG PIPELINE

As mentioned in the previous section, we propose a machine

learning pipeline to support MRI diagnosis by (i) apply-

ing transfer learning techniques to select the best detection

model and (ii) integrating classification with segmentation in

one channel to improve MRI diagnosis and treatment. The

blueprint of our proposed pipeline is presented in Figure 1.

Here, the MRI dataset is randomly divided without replace-

ment into several portions. Five primarily used CNN models

are selected for the task of classification. Technically, the

CNN part’s weights are transferred from pre-trained models

on ImageNet. The CNN part is freezing out of the back-

propagation process. Then it is flattened and fed into our

proposed dense layers, see Figure 2, where the weights are

learned. The authors implement ResUNet based on UNet

architecture comprising several residual blocks to overcome

the vanishing gradients problems in deep CNN architecture

regarding the segmentation task. We present how classification

and segmentation tasks can be combined in Algorithm 1. Note

in the pseudo-code that phases 1 and 2 correspond to points

(i) and (ii) in this section, respectively. Transfer learning is

applied in phase 1, where multiple models are reused, while

in phase 2, we train the segmentation model from scratch.
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Figure 1. The Proposed Classification-Segmentation Pipeline for Brain MRI.

Figure 2. Our proposed dense layers to be trained with MRI dataset.

III. TRANSFER LEARNING

Transfer learning technique is to reuse the pre-trained

models learned in one or more different domains and utilize

the knowledge to enhance learning in any other domain [15],

[16]. Reusing a trained model that solves a problem similar

to your data source is very versatile. It allows a machine

learning approach to be applied to data drawn from a wide

range of different sources from the one upon which it has

initially been trained [17], [18], [19]. It might take weeks to

train modern CNN models with millions of parameters fully.

Transfer learning proposed many re-trained options such as

fine-tuning model weight, freezing layers, and even re-train

from scratch. It shortcuts a lot of network design and training

by transferring a trained set of parameters from a predefined

category and re-weights the model’s parameters from new

data. This technique, called inductive transfer learning, aims to

effectively improve training in the target domain by practicing

knowledge transferability from many other sources. By re-

updating weights, the effects of dissimilar observations will

be reduced, and it might thus produce a more objective

approach. Every CNN-based model consists of two parts, a

series of convolutional-pooling layers as the tail and sequences

of dense layers as the head. One transferability strategy is

to transfer the learned parameters to the tail and freeze it.

Flatten is applied at the tail’s last layer before integrating it

into the head. Backpropagation and parameters update is done

within the head. In Figure 3, we present the key difference

between traditional machine learning and the adoption of

transfer learning.

IV. EXPERIMENTS

A. Experimental MRI Dataset

We have exploited our proposed classification-segmentation

pipeline on the most reputable brain MRI segmentation

dataset1. By the time we conducted this paper, there had

been 42 code solutions and six discussions on the dataset.

However, none developed a systematic pipeline for the dual

task of binary classification and image segmentation. The

1GB contains 7860 brain MRI figures manually annotated

with fluid-attenuated inversion recovery (FLAIR) abnormality

1https://www.kaggle.com/mateuszbuda/lgg-mri-segmentation
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Algorithm 1 The proposed classification-segmentation

pipeline.

1: Phase 1: Train classification model

2: Splitting MRI dataset into 70%-15%-15% training, vali-

dation (val.), test sets

3: for each model to apply transfer learing do

4: Transfer pretrained weights from ImageNet to the CNN

part and freeze it

5: Integrate the proposed dense layers, see Figure 2

6: Optimize Equation 2

7: end for

8: Get the best classification model, called model 1

9:

10: Phase 2: Train segmentation model

11: Defect MRI images are split into 70%-15%-15% training,

val., test(*) sets

12: Optimize Equation 3

13: Get the optimal segmentation model, called model 2

14:

15: Phase 3: Class-Seg combination

16: for Each image i in test(*) do

17: if model 1 predicts i as non-defect then

18: Continue

19: else

20: model 2 segments the defect region

21: end if

22: end for

Figure 3. In a), different models for seperated tasks. In b) one apporach can
be re-used for many tasks.

segmentation masks. First, the dataset was collected from 110

patients included in The Cancer Genome Atlas lower-grade

glioma collection. Then, the images with at least one possible

FLAIR sequence and genomic cluster are selected.

B. Loss Functions

In the previous section, the authors have mentioned that

the pipeline consists of two distinct tasks: first, the model

should correctly classify defective images from normal ones;

second, after the image is classified as defected, it is fed into

segmentation to reveal the region of abnormality. Hence, the

pipeline applies two different loss functions: categorical cross-

entropy loss to address binary classification scenario and Focal

Tversky [20] loss which is highly recommended for handling

imbalanced data and small regions-of-interest segmentation.

Categorical cross-entropy (CCE) loss is a softmax activation

plus a cross-entropy (CE) loss. The CE is defined as follows

in a binary classification problem.

CE =
C=2∑

i=1

yi log(si) = −y1 log(s1)−(1−y1) log(1−s1), (1)

where yi, si, and C are the groundtruth, the predicted CNN

score and the number of class respectively. Then CE plus

softmax activation which yields CCE as follows.

CCE = −

C∑

i

yi log(f(s)i), (2)

where f(s)i =
esi∑
C
j e

sj
.

The focal Tversky (FT) loss is defined as follows.

FT =
C∑

i

(1− Ti)
1

γ , (3)

where γ = 4

3
by default as described in [20]. Ti is denoted as

follows.

Ti =

∑N

j=1
pjigji + ϵ

∑N

j=1
pjigji + α

∑N

j=1
pjīgji + β

∑N

j=1
pjigjī + ϵ

,

(4)

where N provides the total number of pixels in an image.

ϵ is numerical stability.pji is the probability that pixel j is

of the lesion class i, while pjī is that of non-lesion class i.

The same meaning is applied to gji and gjī. α and β are

tunable hyperparameters to shift the recall emphasis in case

of large class imbalance. In our experiments, we set the value

of α = 0.7 and β = 0.75.

C. Experimental Results

For the task of classification, the authors have deployed

5 well-known CNN models in computer vision community,

e.g. ResNet50 [21], ResNet50V2 [21], InceptionResNetV2

[22], EfficientNet [23], and MobileNetV2 [24]. These models

are easily called using TensorFlow API [25]. While in the

segmentation task, the authors implement ResUNet [26], one

of the most state-of-the-art segmentation models. The authors

run three times for each approach and report the average

scores. The classification and segmentation performance of

all models have presented in Table I. We illustrate several

segmentation samples in Figure 4.

In Table I, the first five models are used to select the best

candidate for the classification task. The best solution is the

InceptionResNetV2 model, which achieves 95% of accuracy.

The authors report the number of trainable parameters, the

average training duration, the accuracy score on the test set,

and two basic F1-score schemes [27]. Turning to segmentation,
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Table I
CLASSIFICATION AND SEGMENTATION PERFORMANCE OF ALL MODELS.

Model
Trainable params

(million)

Training time

(minutes)
Test Acc.

Micro avg

F1-score

Macro avg

F1-score

ResNet50 59.452.162 15.04 0.93 0.93 0.92

ResNet50V2 59.436.930 13.36 0.88 0.88 0.86

InceptionResNetV2 70.795.106 27.78 0.95 0.95 0.95

EfficientNetB0 27.342.206 13.48 0.66 0.67 0.43

MobileNetV2 25.558.530 09.33 0.41 0.42 0.37

Val. Tversky

ResUNet 1.206.129 0.63 0.89 - -

Figure 4. The Result of the Segmentation Process. From left to right in each row, the original MRI figure, annotated groundtruth mask on defect region, the
overlapping of them, the predicted mask provided by the segmentation process, and the predicted overlapping.

the authors implement ResUNet because of the speed, high

performance.We report the Tversky score for this task.

D. Reproducibility

The authors have conducted all experiments on Google

Colab. GPU runtime type has been activated by default.

We encourage further reproducibility by engaging readers by

revealing all models’ weights and architecture. Regarding the

paper’s length restriction, the authors add additional materials

and other experiment resources in our GitHub repository2.

V. CONCLUSION

We have described and implemented the proposed Class-

Seg workflow by leveraging transfer learning and residual

network together with several state-of-the-art convolutional

neural models. We aim to combine the classification and

segmentation of brain MRI into a single clinical practice.

To our knowledge, we are the first to combine two research

2https://github.com/duongtrung/Class-Seg-Brain-MRI

directions on the well-known Kaggle brain MRI dataset, in

which more than 40 code solutions have been investigated.

Intensive experiments have been conducted to develop a

clinically acceptable automatic workflow for better brain MRI

diagnosis.
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