
Toward implementing an efficient gateway for

wireless sensor networks

Abstract—Timely and energy efficient data delivery is

important in wireless sensor network applications. To reduce the

probability of wireless sensor network disconnection from user a

lower energy consumption gateway must be used, but data

delivery speed should be maintained as high as possible. So our

purpose is to compare and analyze common approach of building

gateway for wireless sensor network applications, where high

performance ARM boards are used as gateways, with less

common approach, where simple eight bit microcontroller

boards can work as gateway. We develop two similar test-beds

using two available boards – DiGi Wi-9C (high-end) and

ATXmega Xplained-A1 (low-end). We test both boards using the

same data processing algorithm and by measuring delivery speed

and energy consumption we make conclusions. Contrary to our

expectations simple eight bit microcontroller showed even better

results than we had expected. While this board consumed less

energy it guaranteed faster and more stable (little or no delivery

speed deviations) data delivery. Thus we concluded that using

simpler hardware can not only reduce energy consumption, but

ensure high data delivery speed as well.

Keywords—sensor network, gateway, data transmission speed,

energy efficiency

I. INTRODUCTION

IRELESS sensor networks (WSN) enable subtle

monitoring of the environment, buildings and human

activity. Built from small devices about the size of a matchbox,

called sensor nodes, that compute, relay data to each other and

sense phenomena. This allows a user to monitor objects of

interests for long periods of time and in greater detail.

Developing energy efficient protocols and algorithms for

WSNs has always been an important research question, but it is

essential to improve the WSNs connectivity to other networks

for increased usability and WSN system value. By

interconnecting WSN with a global network, like the Internet,

GSM, accessing WSN data can be transmitted from distance –

another building, country or even continent. Thus bringing

closer to realization of Internet of Things (IoT) [8].

W

To enable network interconnection the transition from one

network to the other is required. One of possible options in

WSNs interconnection is by using gateway (GW) – which

basically translates one network data stream to other and vice

versa and additionally can perform data aggregation. In our

study-case it is between TCP/IP and WSN. GW usage relieves

work load from sensor nodes and enables WSN to use

specialized protocols, as well WSNs are more scalable and

elastic to changes [1]. To our knowledge very few different

gateway approaches have been proposed [2,5,7]. They include

a) designed application layer GW for interconnecting WSN

and TCP/IP networks using PXA270 board [2], b) an ARM

based GW for interconnecting WSN and TCP/IP [5] and c)

Samsung S3C2440 400MHz CPU [7]; all of which have been

based on high-end devices. No justification or guidelines have

been provided for the choice of hardware for GW.

The lack of a justification may be due to different

application requirements or researchers assumption that GW

has unlimited energy resources. But there are applications,

mainly outside of cities, where gateways can’t be plugged in

and batteries must be used for GWs as well. One such

application we can mention is equipping tractor with sensors to

achieve autonomous work execution and provisioning users

with most relevant and fresh data. Thus we are interested in –

how the hardware choice for GW impacts performance and

how it influences WSN data transmission when

communicating with user, and network lifetime as well.

Furthermore we wish to provide some easy to apply guidelines

that could be used to make the right choice in GW hardware.

Most common approach for building WSN GW is to use

ARM processor based boards (or other similar high-end

device) running OS, like Linux; this was done in [2,5,7]. From

our experience we know that this approach is more profitable –

because use of OS can reduce application development

expenses and complexity; furthermore, if constant energy

source is available high-end board is a logical choice. But if we

consider WSN system to be energy constrained, that includes

GW as well, choosing or constructing appropriate board must

be done carefully. As far as we know we are first to compare

hardware that is used in building energy constrained GW for

WSN. This may be due to fact that researchers want to check

their developed approach overlooking energy efficiency in

GW.

As we mentioned common approach used for GWs, is

based on high performance ARM (32-bit) processors. But there

Gundars Miezitis,
Riga Technical University

Faculty of Computer Science and

Information Technology

Meza str.1/321 LV-1007 Riga,

Latvia

E-mail: gundars.miezitis@rtu.lv

Romans Taranovs,
Riga Technical University

Faculty of Computer Science and

Information Technology

Meza str. 1/3-322 LV-1007 Riga,

Latvia

Email: romans.taranovs@rtu.lv

Position papers of the 2014 Federated Conference on

Computer Science and Information Systems pp. 191–196

DOI: 10.15439/2014F155

ACSIS, Vol. 3

c© 2014, PTI 191

exists a high-performance low-energy consumption 8-bit

microcontroller based boards that could be used for GWs as

well. The comparison of two selected board’s performance

under load conditions, from each end, is main attraction of this

research and conclusions are based on obtained results. By

comparing both boards we hope to obtain results that would

clarify choice of hardware and if it can significantly affect

system operation altogether and relive choice among available

boards leading to more suited GW for.

The rest of the paper is organized as follows. In II we

describe related work. In III we describe constructed test beds

and software for GW testing and methods used for evaluation.

In IV we show and analyze obtained results. In V we have

implemented similar test beds for more detailed comparison.

And finally in VI we conclude our research.

II. RELATED WORK

GWs provide simple and easy to implement

interconnection among two different networks by using

intermediate node between these two networks. In [2] is

designed application layer GW for interconnecting WSN and

TCP/IP networks using PXA270 board. In [4] is proposed

network interconnection address mapping mechanism, simple

structure of GW node and mechanism for multiple GW

selection. Paper focuses on theoretical network interconnection

and GW structure. In [5] is proposed yet another ARM based

GW for interconnecting WSN and TCP/IP. In [6] are discussed

GW mobility aspects when interconnected with GWs. And in

[7] Samsung S3C2440 400MHz CPU is proposed for WSN

GW.

Alternatives include using more complicated, but more

transparent method – TCP/IP protocol over sensor nodes as

presented in [1,4]. In [1] is presented TCP/IP on sensor nodes

a.k.a., overlay concept, for WSNs. In [3] SunSPOTS are

described that are powerful sensor nodes (based on ARM

processor, running at 200 MHz) and runs TCP/IP stack. This

approach uses sensor nodes equipped with a TCP/IP protocol

stack. By implementing TCP/IP stack on sensor nodes, border

between WSN and TCP/IP network becomes blurry and often

is referred as "Internet of Things" [8]. Drawbacks include

increased energy consumption and communication overheads –

because of TCP/IP packet size, due to noisy environment links

between nodes are unreliable, but TCP/IP has been created as

reliable protocol stack. Among advantages are routing and

medium access – they are fully developed and should be easily

adapted.

III. DESCRIPTION OF TEST BEDS

For our research purposes two slightly different test beds

were proposed. Common for both test beds are – sensor nodes,

gateway (interconnected controller and sink node) and main

computer, located in local network. Due to low energy

consumption – ultra-low-power MCU, low-power radio

module and protocol stack – SimpliciTI – eZ430-RF2500

boards were chosen as sensor nodes [9]. Connection between

sensor nodes and gateway are wireless, but connection

between gateway and main computer can be both – wireless or

wired, as long as it ensures TCP/IP stack. Due to

implementation simplicity wired – TCP/IP – connection

setting was used.

To enable gateway connection with sensor nodes, controller

board must be connected with one sensor node, called sink

node, trough available hardware communication interface –

this is widely used approach in GW interconnection. For us

two possibilities exist – SPI (Serial Peripheral Interface) and

USART (Universal Synchronous Asynchronous Receiver

Transmitter). SPI is more suited for applications that require

faster data delivery, while USART is more common

communication interface and will be frequently available, but

with more communication overhead. SPI speed is directly

affected by boards source clock and generally can be derived

as – maximum transfer speed is half of used clock speed (this

is true for selected boards, but not for all

microcontrollers/processors in general). Due to fact that sensor

node maximum clock frequency is 16 MHz, maximum SPI

transfer frequency is chosen as 8 MHz. But using higher

sensor node clock frequency will lead to faster energy source

depletion – developer must choose from these tradeoffs.

Based on common test bed assumptions DiGi Wi-9C board

test bed is depicted in Fig. 1. and Xplained board test bed is

depicted in Fig. 2. The difference can be seen in Fig. 2. – new

board had to be included – ENC28J60-H – because Xplained

board doesn’t have built-in Ethernet support.

A. Design challenges

After choosing all hardware to test implementation, a few

design challenges had to be overcome, as described below.

First was connecting sink node to gateway controller. No

free SPI interface was available, because in Texas Instruments

board drivers interface was used for other purposes. One

possibility is to implement software SPI to connect both

boards. Drawback of this is that transfer of data is slower than

it is possible with hardware SPI. Second was to introduce SPI

imitation mode, where incoming data were modulated from

board that imitates sensor node functionality with maximum

transfer rates.

The second challenge was interconnection of XMEGA

XPLAINED-A1 and Ethernet controller ENC28J60-H. No

TCP/IP stack was implemented on ATXmega’s, but fortunately
for ATmegas there were examples - uIP. So we had to port

existing TCP/IP example to work with ATXmega. Although

this wasn’t done perfectly basic communication between PC
and XMEGA XPLAINED-A1 was possible and worked

without bugs.

Third was related to SPI driver on DiGI board. Available

SPI driver for Linux operated only in master mode so both GW

controllers were implemented in master mode and sink node as

slaves. This means that sink node has to buffer data that are to

be forwarded to GW controller so that they are always ready

for sending after master node request.

Ethernet 10/

100

Digi ConnectCore Wi-9c based

WSN gateway

Wi-Fi b/g UART

SPII2CParallel

Sensor node

eZ430-RF2500

Main computer

Sensor node

eZ430-RF2500

Sensor node

eZ430-RF2500

Sensor node

eZ430-RF2500

Wireless Sensor Network

Fig. 1. ConnectCore Wi-9C test bed.

192 POSITION PAPERS OF THE FEDCSIS. WARSAW, 2014

AtXmega 128A1 Sensor node

eZ430-RF2500

Main computer

Sensor node

eZ430-RF2500

Sensor node

eZ430-RF2500

Sensor node

eZ430-RF2500

Wireless Sensor Network

Ethernet chip

ENC28J60-H

SPI

SPI #1SPI #2

Ethernet

10 Mbps

AtXmega 128A1 based

gateway

Fig. 2. ATxmega128A1 based gateway integration into WSN an

interconnection with main computer.

B. Gateway operation algorithm for testing purposes

Based on proposed test beds, GW operation algorithm was

developed that could ensure valid and reliable results. This

algorithm is depicted in Fig. 3.

Algorithm executes after following steps:

1) Setting up board – variables, hardware communication

interfaces and Ethernet interface.

2) Testing cycle can begin. It is repeated 100 times to ensure

large sample count.

a) Each test cycle consists of reading data from sink

node using SPI or USART (depend on executed test).

From each sink node 20 bytes are read. Assuming that

each sensor node has sent value of 12 bits long

(sensor nodes Analog to Digital converter resolution),

10 sensor nodes have sent measured value to sink

node.

b) After reading sensor node data it is inserted in

predefined UDP (User Datagram Protocol) packets

payload;

c) And data are sent to user via Ethernet connection.

Begin

Set up board;

Set up SPI;

Set up Ethernet;

For (i=0;i<100;i++)

For (j=0;j<20;j++)

True

Read data from

sink node

True

Prepare UDP packet

Send UDP packet to

user PC

End

False

Fig. 3. Gateway test program’s flowchart.

Developed algorithm had to be implemented on both

boards. Linux API (Application Programming Interface)

functions and C/C++ were used due for DigGi Wi-9C while

pure C was used for ATXMeaga board. We came to

conclusions that using API makes programming less

complicated and application development faster.

C. Tools used for data delivery speed measurement

Network protocol analyzer - Wireshark - was used as a tool

to measure data transfer speed on user side. By using this

application we can see what data we have received trough

Ethernet interface and at what speed. It makes data checking

and result processing easier.

But using Wireshark can only show total data transfer speed

on user PC. If data transfer speed between sink node and

gateway controller must be measured reliably, logic analyzer,

that is connected to communication wires and captures

transferred data, must be used. Here, data transfer time and

amount can be measured, using logic analyzers software, to

calculate data transfer rate. We used Intronix LA1034

Logicport logic analyzer.

IV. RESULTS AND EVALUATION

In this section we will discuss main results obtained after

testing GW in proposed test beds. In all following figures

transfer speed is depicted in kBps and time in ms.

A. Full communication link speed test

This test evaluates full communication path – from sink

node to user PC, and speed performance of both selected

gateway boards. Obtained results: Figure 4 a) shows, that by

using ATXmega128A1 based GW, data transfer is almost eight

times faster than DiGi board in 8MHz imitation mode and

more than two times faster in software SPI mode. Even

ATXmega128A1 software SPI mode is working faster than

DiGi hardware SPI, which implies that ATXmega board can

perform data forwarding with less overhead. Furthermore, it

was measured that ATXmega128A1 gateway uses around 300

mA while DiGi gateway uses around 800 mA while operating

as gateway.

Obtained results were different than what we had

anticipated. We had expected that with DiGi board data

transfer from sink node to user PC would be faster, but as we

can see in Figure 4 a) this assumption was incorrect. To make

sure that results are correct, test was performed for four more

times and average values were presented. During these tests we

noticed that DiGi board values deviates more than ATXmega.

But in discussion about deviation we go into more details later.

We can see that by choosing simpler hardware board data can

be transferred even faster and with less energy consumed.

There are few drawbacks in our tests. First, we are aware

that to receive more general results, more than two boards

should be compared, but due to resource limitation it is not

possible. When paper was prepared Atmel had released even

more energy efficient and faster SAM4L boards, which could

perform even better in these tests. Second, Linux kernel that

was used wasn’t fully real time kernel, unfortunately present
Linux kernel did not support real time patch. Thus further

researches should be done to confirm our results. Third, sensor

nodes with free hardware SPI should be used to avoid imitating

this connection or implementing software SPI.

As we mentioned earlier common approach is to choose

powerful ARM based boards, but when implementing real

application gateways these results should be taken into

GUNDARS MIEZITIS, ROMANS TARANOVS: TOWARD IMPLEMENTING AN EFFICIENT GATEWAY 193

account, because this could ensure longer network operation

and thus smaller network maintenance costs.

B. Sink node to gateway connection

This connection was tested by sending large data amount

(4000 bytes) from sink node to gateway controller and average

transfer speed calculated and results were depicted in Figure 4

b). DiGi board in hardware/imitation SPI mode present small

connection speed improvements compared to software SPI

mode – only about two times. While ATXmeag128A1 gateway

in software SPI mode already was three times faster than DiGi

board and in hardware/imitation SPI mode more than twenty

five times faster than software SPI mode.

This might be a little unexpected, but when we observed

logic analyzers measured data, the gap in average transfer

speeds was clear. ATXmega board had no delays between

transmitted sink node bytes while DiGi board had random (at

least we didn’t notice any regularity) delays between byte
transmissions. We want to remind that gateway controller acts

as master due to DiGi limitations – it does not support SPI

master mode, while ATXmeg board does not have this

limitation.

C. Gateway to user PC connection

Connection was tested by sending large amount of UDP

packets (100 packets) from gateway controller to user PC and

network analyzer Wireshark was used for measuring transfer

speed and results are depicted in Figure 4 c). From results it is

seen that ATXmega board can transfer data two times faster

than DiGi board. When performing this test we noticed that

DiGi gateway has great variation in transfer speed, even as

much as two times which is depicted in Figure 5 c). From both

previous tests we can see that DiGi has more deviations which

reduce total delivery speed.

D. Communication speed tests for gateway

These results present same tendency what was seen in full

communication cycle, i.e. ATXmega based gateway transfer

data faster than DiGi based gateway. This in the end leads to

faster total speed.

Due to differences in presented results, we came to

conclusion that total transfer time is formed out of three

different components, of witch second is indirectly observable:

a) Time to transfer data from sink node to gateway – data

transfer using SPI interface;

b) Time to switch between communication streams in

gateway – copying data from SPI buffer to Ethernet

buffer;

c) Time to transfer data from gateway to user PC – data

transfer using Ethernet UDP packets;

Thus introducing additional time that can influence total

transfer speed.

E. Switching between communication streams

Based on obtained connection speeds, switching between

communication streams was calculated and depicted in Figure

4 d). It was performed equally for all tests, which shows that

DiGi board is yet again deviating while aggregating data.

With this our test was concluded and interesting and new

results were obtained. Due to limited resources we have, we

invite other researchers to perform their own tests and compare

results.

Intuitively we believed that DiGi board would perform

better due to fact that it runs faster and has greater resources,

but as results indicate we were mistaken – low-end board with

less resources outperformed high-end ARM board when

operating as gateway performing data delivery from WSN to

user PC in local network. Furthermore achieves this with less

energy consumed. This is particularly important when gateway

must work by using battery and possibly if application requires

gateway to be mobile. Next step could be examination of

mobility impact on gateway and WSN collaboration. Of course

there are few factors that should be taken into account. First,

delivery speed decreases if more data control – filtering,

aggregation must be performed, because data handling time

increases. Second, if distance from WSN to user increases,

delivery speed most likely will decrease, because route

increases and more network devices must be employed to send

data.

V. ALTERNATE GATEWAY CONNECTION AND GATEWAY SPEED

DEVIATION TESTS

To make results more detailed and comparable to other

settings we continued our test with:

a) Transfer speed variation calculations for both

connections;

b) Replacing SPI with UART, which is more common

interface;

While transfer speed from sink node to user PC was

measured, speed variations were calculated from min and max

speed values from these observed results and depicted in

Figure 5 a), b) and c). As can be seen in these three figures,

ATXmega128A1 gateway variants very little and is even

constant in some connections, but DiGi gateway variations

highly greater than ATXmega GW. We think this is due to OS

which needs to allocate/reallocate different resources which

can introduce different and somewhat random delays in

performance. This implies that DiGi can’t be used for reliable

(in sense of guaranteed data delivery time) communication

because transfer speed can wary and guaranteed can be only

lowest transfer speed. Thus when higher guaranteed data

transfer rates should be guaranteed no OS should be used.

Since many sensor nodes use UART interface performance

using this interface was measured as well. One drawback of

UART in comparison with SPI is that UART frame has only

80% of useful data (8N1) in its frame while SPI has 100% -

meaning only data is transferred. The same as in first test full

communication link transfer speed between sink node and user

PC were performed. Results are depicted in Figure 5 d). If

compared with results from Figure 4 b) it is possible to see,

that even ATXmega software SPI mode performs faster than

UART. Although UART is more freely available, if transfer

speed is important criterion it is advised not to use it.

A few lessons that were learnt during implementing

presented GW were obtained. First, programming DiGi board

was much faster and easier, because more examples are

available for Linux, both for Ethernet and SPI. While

ATXmega programming took a lot longer and debugging was

more complicated. Second, even theoretically less powerful

device can outperform high end device if certain conditions are

met. Third, choosing gateway components can be difficult, but

in the end it can present better performance as was seen in our

case.

Our future work includes building a mobile gateway that

could be used in wireless sensor network to relay local data to

user and this research makes a contribution to the kind of board

194 POSITION PAPERS OF THE FEDCSIS. WARSAW, 2014

a) b)

c)

d)

Fig. 4 Average transfer speed: a) from sink node to user PC; b) from gateway to sink node; c) from gateway to user PC; and d) average switching time between

communication streams in gateways

a) b)

c) d)

Fig. 5 Speed variation in a) sink node to user PC communication; b) sink node to gateway communication; c) gateway to user PC communication; and d) transfer

rate from sink node to user PC using UART at 115200 baud rate

GUNDARS MIEZITIS, ROMANS TARANOVS: TOWARD IMPLEMENTING AN EFFICIENT GATEWAY 195

we should be using when implementing mobile gateway, i.e.

we will consider using 8 bit microcontroller based gateway,

since a lower energy consumption will provide longer

operation. Most important resource for this type gateway is

energy, although by using mobility gateway could be recharged

more easily. Amongst new challenges could be adding wireless

capabilities to this gateway.

VI. CONCLUSIONS

Our paper presents comparison of two different gateways

envisioned for use in wireless sensor networks. Main concern

that is investigated is choosing suitable hardware for gateway.

Common approach, as we have seen in previous researches is

to choose ARM based boards that run Linux OS. We suggested

using less complex and less powerful board thus reducing

energy consumption and furthermore data transfer rate

shouldn’t decrease significantly. Two available boards were

chosen – ATXmega Xplained-A1 and DiGi Wi-9C board – and

compared in similar test beds performing identical task –

forwarding data from wireless sensor network sink node to user

PC.

As obtained results imply using less powerful board

without OS, can ensure smaller energy consumption and even

increase data delivery speed, thus being more suited for

wireless sensor network applications where data delivery speed

is important. Furthermore, using the same board results are

more stable over time, i.e. delivery speed is the same today as

was yesterday. Further advantages of using less complex

hardware is that overall costs for wireless sensor network can

be reduced. Among disadvantages – programming becomes

more complex when no API (which is in OS case) is used;

possible that gateway must be designed by developer, because

not always all necessary hardware is included in one board.

One more conclusion is from observing variations in

results. Especially among sink node and GW when SPI is used.

We observed that random delays between transferred data

bytes was present. To our believes this is one of main reason

why in the end ATXmega board outperformed DiGi board.

Greatest drawback of OS based solutions is that to operate OS

some user invisible processes are performed and some delays

are introduced leading to uncertainty which is undesired in

timely applications.

Lastly we want to mention some tradeoffs we encountered

and observations we saw during developing our first gateways

and give other developers some pointers what type of board

would be more suited for certain applications:

1) If implementation should be done in short time preferable

are boards with OS, like Linux. Because using API

noticeably decreases development time. Furthermore using

API provides wider application possibilities faster.

2) If gateway should ensure less energy consumption or little

as possible speed deviation, or more control over hardware

then board with no OS should be used (as seen in paper

even less powerful board can be feasible).

3) If wireless sensor network costs are important then less

powerful board can be used.

ACKNOWLEDGMENT

This work has been partly supported by the European Social

Fund within the project «Support for the implementation of
doctoral studies at Riga Technical University

REFERENCES

[1] Lei, Shu and Jin, Wang and Hui, Xu and Cho, Jinsung and Lee,

Sungyoung. Connecting Sensor Networks with TCP/IP
Network. Springer-Verlag. p. 330--334 2006
http://dx.doi.org/10.1007/11610496_44

[2] Song, Ping and Chen, Chang and Li, Kejie and Sui, Li. The
Design and Realization of Embedded Gateway Based on WSN.
IEEE Computer Society. p. 32--36 2008
http://dx.doi.org/10.1109/CSSE.2008.889

[3] Guinard, Dominique and Trifa, Vlad and Pham, Thomas and
Liechti, Olivier. Towards Physical Mashups in the Web of
Things. IEEE Press. p. 196--199 2009
http://dl.acm.org/citation.cfm?id=1802340.1802386

[4] Han, Yanyan and Li, Deshi and Chen, Jian and Wang, Tianyu.
Research on Wireless Sensor Network and Carrying Network
Integration Based on Gateway. IEEE Computer Society. p. 748--
751 2011 http://dx.doi.org/10.1109/iThings/CPSCom.2011.18

[5] Ye, Dun-fan and Min, Liang-liang and Wang, Wei. Design and
Implementation of Wireless Sensor Network Gateway Based on
Environmental Monitoring. IEEE Computer Society. p. 289--
292 2009 http://dx.doi.org/10.1109/ESIAT.2009.194

[6] Shakya, Mukesh and Zhang, Jianhua and Zhang, Ping and
Lampe, Mattias. Design and Optimization of Wireless Sensor
Network with Mobile Gateway. IEEE Computer Society. p. 415-
-420 2007 http://dx.doi.org/10.1109/AINAW.2007.146

[7] Zhu, Qian and Wang, Ruicong and Chen, Qi and Liu, Yan and
Qin, Weijun. IOT Gateway: BridgingWireless Sensor Networks
into Internet of Things. IEEE Computer Society. p. 347--352
2010 http://dx.doi.org/10.1109/EUC.2010.58

[8] Atzori, Luigi and Iera, Antonio and Morabito, Giacomo. The
Internet of Things: A Survey. Elsevier North-Holland, Inc.. p.
2787--2805 2010
http://dx.doi.org/10.1016/j.comnet.2010.05.010

[9] eZ430-RF2500 Development Tool: User's Guide, Texas
Instruments Inc., Dallas, TX, 2009

196 POSITION PAPERS OF THE FEDCSIS. WARSAW, 2014

