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Abstract—This paper presents a new parallel approach to
identification of linear repetitive processes based on subspace
algorithms. Parallel realizations of these algorithms are tested
on various graphic cards that use NVIDIA CUDA technology.
The paper describes implementation of subspace identification
algorithms and their parallel speedup, efficiency, throughput,
and delay. The parallel approach to the identification of linear
repetitive processes based on subspace methods, presented in this
paper, is very useful not only for time invariant LRPs but also for
processes with dynamics that changes rapidly from pass to pass.
A simulation example is included to illustrate the effectiveness
of the proposed approach.
Index Terms—state space models, subspace methods, identifica-
tion algorithms, parameter estimation.state space models, sub-
space methods, identification algorithms, parameter estimation.s

I. INTRODUCTION

FOR SEVERAL years, the growth of maximum clock

frequency of digital implementations has stopped, par-

ticularly in general purpose processors. This phenomenon is

presented in [1]. It seems that further progress in computer

system performance is still possible despite reaching the limit

of switching frequency of digital integrated circuits. The

further increase in computing power can be achieved by multi-

plying the number of computational units in multi-core general

purpose Digital Signal Processors (DSP), Grapihics Processing

Units (GPU), and reconfiguration Field Programmable Gate

Array (FPGA) chips [2].

Subspace identification methods are an attractive alternative

to the well-known prediction error methods due to simple

and general parameterizations in the MIMO case. They do

not need any canonical parameterizations as well. Moreover,

no nonlinear optimization is performed and reliable state-

space models for complex multi-input multi-output dynamical

systems are derived directly from the input-output data. Also,

computational complexity of subspace identification methods

is modest in comparison with the well-known prediction error

methods [3], [4], [5], [10]. Subspace identification algorithms

consist of two steps. In the first step, based on the input-

output data, the repetitive process order is determined and the

repetitive process sequence of states (N4SID algorithm) or the

extended observability matrix of system (MOESP algorithm)

are computed [7]. In the second step, the unknown system

matrices are determined.

The repetitive control theory has been an area of intense

research since the beginning of 1990’s and considerable re-

sults have been achieved both in the analysis and synthesis

problems, (see: [6]) for the actual state of art. Contrary to the

LRP control theory, the identification of LRPs has attracted

very limited attention. The aim of this paper is to propose

a new approach to the identification of the LRPs based on

subspace algorithms. In this approach, the order of a LRP and

the unknown process matrices are determined based on the

input and output sequences of the actual pass and the output

sequence of the previous pass using parallel implementations

of N4SID and MOESP identification algorithms.

Parallelization of algorithm for repetitive processes sub-

space identification requires creating and processing Hankel

matrices. The number of processors that is simultaneously

busy depends on the size of matrices storing information

defining the spatial variable, and the time variable determining

the position on the pass, while the length of each pass is

finite [6].

This paper considers the number of processors used,

speedup, efficiency, throughput and computing time of parallel

implementations of subspace identification algorithms and

compares them to the modified sequential versions of MOESP

N4SID algorithms. They were both quantitative and qualitative

indicators describing the identification repetitive processes.

These algorithms are examined using the input-output data

generated by the repetitive process simulator. The paper is

organized as follows. Section 2 presents an introduction to

the identification of discrete deterministic repetitive processes.

Parallel problem identification was formulated, and its solution

based on subspace algorithms is given in Sections 3 and 4.

Section 5 presents the simulation results. The conclusions are

given in Section 6.

II. IDENTIFICATION ALGORITHMS

A. Discrete linear repetitive process model

Consider the state-space model of a discrete linear repetitive

process of the following form:

xk+1(p+ 1) = Axk+1(p) +B0yk(p) +Buk+1(p) (1)

yk+1(p) = Cxk+1(p) +D0yk(p) +Duk+1(p) (2)
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where:

0 ≤ p ≤ α − 1 ∈ Z+ is the independent spatial or temporal

variable,

k ∈ Z+ is the current pass number,

xk(p) ∈ Rn is the state vector,

yk(p) ∈ Rl is the pass profile (output) vector,

uk(p) ∈ Rm is the input vector,

A,B,B0, C,D,D0 are matrices of appropriate dimensions.

To complete process description, it is necessary to specify

the boundary conditions:

xk+1(0) = dk+1

y0(p) = f(p)
where dk+1 ∈ Rn is a vector with known constant entries and

f(p) ∈ Rl

are known functions of p.

Define the following input Hankel block matrix
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Define also the output block matrix Y0|2i−1

y0|2i−1 =
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The number of block rows i should be lager than the maximum

order of the LRP. Define block Hankel matrices Wp and W+
p

consisting of Up and Yp and Y +
p ,respectively:

Wp =

[

Up

Yp

]

(3)

W+
p =

[

U+
p

Y +
p

]

(4)

The state-sequence matrix Xi is defined as

Xi = [xk+1(i) . . . xk+1(i+ j − 1)] (5)

Define the extended observability matrix Γi and the reversed

extended controllability matrix ∆i:

Γi =










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C
CA
CA2

. . .
CAi−1
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(6)

∆i = [Ai−1[BB0] . . . A[BB0] [BB0]] (7)

Assume also that the pair {A,C} is observable and the pair

{A, [BB0]} is controllable. Define the lower block triangular

Toeplitz matrix Hi

Hi =















[DD0] 0 . . . 0
C[BB0] [DD0] . . . 0
CA[BB0] C[BB0] . . . 0

...
...

...
...

CAi−2[BB0] CAi−3[BB0] . . . [DD0]















(8)

The above block Hankel matrices along with the extended ob-

servability matrix, the reversed extended controllability matrix

and the lower block triangular Toeplitz matrix (3)−(8) play an

important role in the development of subspace identification
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methods. Following Theorem 1 (see: [8]) , the state-space

model (1)− (2) can be reformulated in a matrix form:

Yp = ΓiXp +HiUp (9)

Yf = ΓiXf +HiUf (10)

Xf = AiXp +∆iUp (11)

where Xf = Xi and Xp = X0.

B. Identification Problem

Given α measurements of the input uk+1(p) and the outputs

yk(p) and yk+1(p) measurements generated by the LRP (1)−
(2) determine its order and the matrices A,B,B0, C,D and

D0 up to within a similarity transformation.

Assuming that the augmented input [uk+1(p) yk(p)] is

persistently exciting of order 2i and the intersection of the row

space of Uf and the row space of Xp is empty, the unknown

LRP matrices A,B,B0, C,D and D0 can be computed based

on the results of Theorem 2 (see: [8]) . It can be done in

two different ways using N4SID or MOESP. In both these

algorithms, the order of the process (1)-(2) can be find based

on inspection of the singular value decomposition of the matrix

W1θiW2

W1θiW2 = [U1U2] =

[

S1 0
0 0

] [

V T
1

V T
2

]

(12)

where W1 ∈ Rlixli and W2 ∈ Rjxj are the user defined

weighting matrices and θi is the oblique projection

θi = Yf/Uf
Wp (13)

The order of LRP is equal to the number of non-zero sin-

gular values in S1. The extended observability matrix Γi is

computed from the the following equation

Γi = W−1
1 U1S

1/2
1 T (14)

where T ∈ Rn×n is an arbitrary non-singular similarity

transformation matrix. N4SID calculates the state sequence

Xi from the equation

Xi = Γ†
iθi (15)

where Γ†
i denotes the Moore-Penrose pseudo-inverse of the

matrix Γi. Finally, the matrices A,B,B0, C,D and D0 are

determined solving the following set of equations
[

A [BB0]
C [DD0]

] [

Xi

Ui|i

]

=

[

Xi+1

Yi|i

]

(16)

The state sequence Xi+1 is calculated from the equation

Xi+1 = Γ†
i−1θi−1 (17)

where Γi−1 is the extended observability matrix Γi without

the last l rows and θi−1 is the oblique projection

θi−1 = Y −
f /U−

f

W+
p (18)

In MOESP, the unknown LRP matrices are determined in

two steps. In the first step, A and C are calculated from the

extended observability matrix Γi. In the other step, B,B0, D,

and D0 are calculated solving a set of equations.

III. PARALLEL IMPLEMENTATION OF MODIFIED N4SID

AND MOESP ALGORITHMS

The modified N4SID and MOESP algorithms can be parti-

tioned into the following three modules:

• Input module

• Matrix calculation modul

• Model testing modul

The data input module performs pre-processing operations

in spatial context in fine-grained pipelined architecture. The

detailed time analysis including technological factors can be

found in [9]. The delay in the operations of fine-grained data

(in cycles) can be expressed as

Ft =
α− 1

2
+ r (19)

where r is the delay of additional variables in the passes.

The transport delay can be determined from (19), on basis

of the pass length. The component r corresponds to the delay

resulting from the use of additional variables, synchronizing

data. They are used to distribute evenly the propagation time

between the elements in the matrices. The other modules

are parallelized in a coarse-grained architecture. The transport

delay for operation with coarse-grained data (in cycles) is

Lt = α+ r (20)

Modules of subspace identification algorithms can been

partitioned into the following classes performing parallel op-

erations:

• Class Hankel

• Class oblique projection

• Class SVD

• Class observability

• Class controllability

• Class ABCD

The UML activity diagram (Fig. 1) presents parallelization of

block Hankel matrices for subspace identification of repetitive

processes.

IV. PARALLELIZATION LEVEL INDICATORS

System architecture can be adapted to a particular compu-

tational task in itself is not a determinant of performance or

efficiency.

yk+1(p) = F l(uk(p))||F
l−1(uk(p))||...||F

l(uk)(p)) (21)

||− executing operations simultaneity

F σ− operator, σ ∈ (1, .., l).
Many operations can be performed simultaneously at the

inputs (21).

Sm =
T1

Tm
(22)

where:

Sm− the speedup ,

T1− the execution time of the sequential algorithm,

Tm− the execution time of the parallel algorithm with m
processors
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Fig. 1. UML activity diagram parallelized block Hankel matrices

For the evaluation of computational tasks performance in

multi-core systems speedup formula was used, (22).

In multiprocessor systems, the actual value of the speedup

is less than the theoretical (based on the number of proces-

sors) due to communication overheads and the need to share

resources such as memory and buses. This property describes

a model of efficiency, which is a measure of concurrent use

of resources

Em =
Sm

m
(23)

where:

Em− the speedup efficiency with m processors Em ∈ (0; 1).
In the ideal case, the efficiency (23) is 1.0 which means

that the speedup is proportional to the number of processor or

computing elements.

In the assessment of computing activity is often used as a

criterion of time needed to process a specific task or quantum

computing. The concept of throughput was introduced, which

corresponds to the number of data processed per time unit.

P =
Dn

t
(24)

where:

P− throughput,

Dn− the number of computed data,

t− measurement time.

Relative to the computing system has the ability to compute

the limit, usually in the long term. Throughput (24) relative

to the computing system has the ability to compute the limit,

usually in the long term.

V. SIMULATION EXAMPLE

Consider a simple example to illustrate the proposed ap-

proach. The following LRP of the fourth order is identified:

A =









1.516 −0.755 0.125 −0.001
1 0 0 0
0 1 0 0
0 0 1 0









C =
[

0.048 0.072 −0.006 −0.001
]

B =









1
0
0
0









B0 =









−0.571
−0.142
−0.453
−0.258









D =
[

0
]

D0 =
[

0.2
]

with zero boundary conditions y0(p) = 0, p = 1, ..., 4x105,

and the initial conditions xk+1(0), k = 1, ..., 20, defined

as a uniformly distributed pseudorandom sequence on the

interval [0,2.5]. The LRP is exited with a uniformly distributed

pseudorandom sequence on the interval [0,1] and its output

disturbed by a pseudorandom sequence of normal distribution

with mean 0 and standard deviation 0.0001. To identify

selected data from two consecutive passes and N4SID and

MOESP parallelized algorithms were used. Computing schems

of paralellized algorithm is:

Stage A - Input-output block Hankel matrices

Stage B - SVD, observability matrix, controlability matrix,

calculation of A,B,B0, C,D,D0 and QSR matrices

Stage C - Test module

The tables 1,2,3,4 show the comparison of the indicators of

speedup, throughput, delay of parallel performance algorithm

for the sequential algorithm.

TABLE I
EVALUATION OF THE PARALLEL ALGORITHM—SPEEDUP FOR m = 255

Parallel algorithm

Stage A B C

0,086[s] 0,105[s] 0.049[s]

Sequential algorithm

Stage A B C

0,61[s] 0,42[s] 0.34[s]

TABLE II
EVALUATION OF THE PARALLEL ALGORITHM—EFFICIENCY FOR m = 255

Stage A B C

0,028[s] 0,015[s] 0.027[s]

TABLE III
EVALUATION OF THE PARALLEL ALGORITHM—TRANSPORT DELAY FOR

m = 255

Sequential algorithm Parallel algorithm

1,2[s] 0,17[s]

TABLE IV
EVALUATION OF THE PARALLEL ALGORITHM—THROUGHPUT FOR

m = 255

Sequential algorithm Parallel algorithm

0,6[GFlop/s] 18,79[GFlop/s]

The algorithms were tested on a PC computer with Gen-

uine Intel CPU T2300 @ 1,66 GHz, and 1536 MB RAM

NVIDIA GTX 460 graphic card. Figure 2 shows the speedup

of a parallelized algorithm N4SID and in Figure 3 MOESP
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Fig. 2. Speedup of the parallel MOESP algorithm

Fig. 3. Speedup of the parallel N4SID algorithm

parallelized algorithm speedup as a function of the number of

measurements of α. The pass length was changed from 5 to

700 and the run time for the sequential modified algorithm

N4SID and MOESP and their parallel versions was measured.

Based on these measurements, the speed up was evaluated.

Speedups, shown in Fig. 2 and 3, are equal to formally calcu-

lated speedups of parallel algorithms. Parallel implementations

run about 5-6 times faster than their sequential versions.

VI. CONCLUSIONS

For Stages 1 and 3, the following indicators: speedup Sm,

throughput P and computational efficiency Em increase. At

the same time, the transport delay L decreases. For Module

2, speedup, throughput P , and efficiency decrease while the

delay transport increases. This comes from the calculation

of the system order using SVD decomposition. Speedups,
shown in Fig. 2 and 3, are equal to formally calculated

speedups of parallel algorithms. Parallel implementations run

about 5-6 times faster than their sequential versions. Transport

delay is interpreted as the time of calculation. The speedup

and throughput efficiency are good candidates for indices to

evaluate the degree of parallelization. A parallel algorithm may

be useful in selecting fast and using less resources algorithm

for identification of stationary linear repetitive processes.
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