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Abstract—Self-stabilizing algorithms model dis-
tributed systems and allow automatic recovery of the
system from transient failures. The center of a graph
is the set of vertices with the minimum eccentricity.
In this paper we investigate the self-stabilizing algo-
rithm for finding the center of Cartesian product of
K2 and maximal outerplanar graphs.

I. INTRODUCTION

LET G = (V (G), E(G)) be a simple, con-

nected graph with the vertex set V and edge

set E. The distance d(i, j) between nodes i and

j is the length of the shortest path connecting

these two nodes. The maximum distance from a

given vertex i to any other vertex in the graph G

is called the eccentricity ecc(i) of the vertex i.

The set C(G) of the vertices with the minimum

eccentricity is called the center of the graph G

(see Fig. 1).

The Cartesian product G1 �G2 of simple

graphs G1 and G2 is a graph with the vertex set

V (G1 �G2) = V (G1)× V (G2)

and the edge set

E(G1 �G2) = {{(u1, u2), (v1, v2)} |
u1, v1 ∈ V (G1) ∧ u2, v2 ∈ V (G2)∧
((u1 = v1 ∧ {u2, v2} ∈ E(G2))∨
(u2 = v2 ∧ {u1, v1} ∈ E(G1)))}.

In many cases it is important to locate the center

of a graph, especially in distributed systems, where

it allows placing a control center for the minimum

cost of communication with peripherial nodes of

the system. There are several known algorithms

for locating centers in graphs. Bielak and Pańczyk

[1] proposed algorithm finding weighted centroid

in a tree. Farley [6] gave a linear time algorithm

for vertex centers in trees. Also Hedetniemi et

al. [11] gave linear time algorithm for center

problems in trees. Goldman [9] and Kariv and

Hakimi [12] gave an algorithm solving the center

problem in networks.

A lot of research has been realized related

to centers of graphs [14], [15], [3]. Distributed

algorithms were also developed [2], [13]. In this

paper we propose a self-stabilizing algorithm for

locating the center of Cartesian product of com-

plete graph K2 and maximal outerplanar graph.

The problem for maximal outerplanar graphs,

in classical, sequential computing paradigm was

solved by Farley and Proskurowski [7]. Let us

define a maximal outerplanar graph as it was done

in the mentioned paper [7], as a triangularization

of a planar polygon (see Fig. 1). We define K2 as

a complete graph with two vertices.

In a maximal outerplanar graph M =
(V (M), E(M)) every edge p = {i, j} ∈ E(M)
partitions the set of all vertices apart i and j into

two distinct sets inducing connected subgraphs

called sides. One of the sides may be empty. It

is the case when the partitioning edge is a part of

the exterior face of the graph. In fact, all the edges

with one side empty form the unique Hamiltonian

cycle.

Let us note that in a maximal outerplanar graph

every two neighbors i and j have at most two com-

mon neighbors, each of them belonging to distinct
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Fig. 1. Examples of centers (marked as black) in maximal
outerplanar graphs.

sides of the edge {i, j}. Thus, it is sufficient to

represent the side of the edge by one of the two

common vertices adjacent to the edge. If a side is

empty, we set ∅ as its representation.

In the Cartesian product of K2 and any graph G,

we can identify two layers of which every one is

isomorphic to the graph G.

Farley and Proskurowski [7] introduced a notion

of the edge eccentricity. Let us have the node i, its

neighbor j and one of their common neighbors k

(∅ for the one nonexistent if applicable) in a graph

G. For these three values we define e(i, j, k) (edge

eccentricity) in the following manner:

• the absolute value of e(i, j, k) is equal to the

eccentricity of the vertex i in the subgraph

of G induced by Sk ∪{i, j}, where Sk is the

side of the edge {i, j} containing the vertex

k,

• e(i, j, k) is negative integer iff all vertices of

Sk ∪ {i, j} at distance d = |e(i, j, k)| from i

lie at distance d− 1 from the vertex j.

The classical algorithm of Farley and Prosku-

rowski [7] computes the edge eccentricity for

every edge recursively using already computed

values of the eccentricities for adjacent edges. It

starts with outerface edges, for which the edge

i

j

Fig. 2. An example of K2 � maximal outerplanar graph.

eccentricity (on an empty side) is equal to -1. All

the details can be found in [7].

In this paper we propose a self-stabilizing algo-

rithm for finding the center in the Cartesian prod-

uct of K2 and a maximal outerplanar graph. In the

following section we introduce the computational

model used futher in the paper. In section III we

show the notation useful in the algorithm. The

algorithm is presented in section IV and its cor-

rectness and complexity is discussed in section V.

II. COMPUTATIONAL MODEL

A notion of self-stabilizing algorithms on dis-

tributed systems was introduced by Dijkstra [4].

A survey in the topic can be found in the paper

by Schneider [16], and further details in the book

by Dolev [5]. The notions from graph theory not

defined in this paper one can find in the book by

Harary [10].

A distributed self-stabilizing system consists of

a set of processes called computing nodes and

communication links between them, which we can

be modelled topologically by a graph. We assume

that every node in the system runs the same algo-

rithm and can change the state of the local vari-

ables. These variables determine the local state of

a node. Moreover, nodes can observe the state of

variables on themselves and their neighbor nodes.

The state of all the nodes in the system determines

the global state. In this paper we assume that every

node has unique identificator (id).

Every self-stabilizing algorithm should have a

class of global states defined, that are called the

legitimate states, for which the system is stable,

which means that no action should and can be

done by the algorithm itself. Every other global

state is called the illegitimate and for the algorithm

to be correct there has to be some possibility
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to make a move in this kind of state. Every

possible sequence of moves made by the algorithm

must end up with the legitimate state. Indeed, it

is the aim of every self-stabilizing algorithm to

bring the system to the legitimate (desirable) state,

either after some alteration (from the outside of the

system) of variables in the nodes had been done

or after the system had been started.

Generally, an algorithm consists of a set

of rules. A rule has the form:

label: If guard

then assignment instructions

where definitions of objects.

A guard is a logic predicate which can refer

to variables in the node itself and its neighbors.

A label and a where clause are optional. We say

that a rule is active if its guard is evaluated to

true. A node is active if it contains any active

rule. If there is no active node in the graph, we

say that the system is stabilized. Let us note that

in a stabilized system no move can be made.

One of the required property of a self-stabilizing

algorithm is to make a system stabilized if and

only if its state is legitimate.

We assume that active rules are triggered in an

arbitrary order.

III. NOTATION

The main difficulty in enhancing the algorithm

for locating the center in a maximal outerplanar

graph to the Cartesian product of a maximal

outerplanar graph and K2 is to distinguish nodes

that are placed in the same layer or not. Once

it is done, the basic algorithm for a maximal

outerplanar graphs can be easily adapted.

Theorem 1. For every Cartesian product G =
K2 �M , where M is a maximal outerplanar

graph, the graph induced by C(G) is the same

as the Cartesian product of K2 and the graph

induced by C(M).

Proof: Let x ∈ V (G), then eccG(x) =
eccM (x)+1. Thus, the center of G is the same as

the sum of the centers of both layers of graph G.

There are two types of neighbors (of any node

i ∈ V (G)) in the graph (see Fig. 2). The first

one consist of nodes in the same layer, which

together form triangle faces of a maximal outer-

planar graph. The second, say j, is a neighbor

which belongs to the other layer, we call such two

nodes i, j the pairing nodes.

We define the following predicate to determine

whether any two neighbors are pairing nodes:

pairing(i, j) ⇔ j ∈ N(i) ∧ (N(i) ∩N(j)) = ∅.

We will use this predicate in the definition

of Nl(i), which we define as a set of neighbors

from the same layer (maximal outerplanar graph):

Nl(i) = {j|j ∈ N(i) ∧ ¬pairing(i, j)}.

In the algorithm we will use the following

notation:

n(i) — a variable storing the set of neighbor

nodes (from the same layer) for the node i.

Note that n(i) is a variable, whose value

may be incorrect at the beginning of the

algorithm run, whereas Nl(i) is a set which

is determinable by the node i only, based on

the topology of the network by looking at

connections of node i; it can be computed

only by the node i. Thus the n(i) variable

is set to allow a neighbor to determine other

neighbors of the node i.

c(i, j) — a variable (stored in the node i) which

stores the set of common neighbors for nodes

i and j,

e(i, j, k) — a variable storing (in the node i) the

edge eccentricity for the edge {i, j} and the

side containing the common neighbor k (of

the nodes i and j; k = ∅ for an empty side),

opp(i, j, k) — a variable storing (in the node i)

the representation of the side opposite to k

(against the edge {i, j}),

v(i) — a variable storing (in the node i) the

eccentricity of the vertex i, note that it is not

the edge eccentricity, i.e. in a legitimate state

v(i) = maxk |e(i, j, k)| for any j ∈ N(i),
and v(i) ≥ 1 for any node i.

m(i, j, k) — a pair stored in the node i for inside

the dual vertex {i, j, k}. After stabilization,

its first element is the eccentricity of the

center nodes. The second element of the pair

is the direction, that the information about

the eccentricity of the center comes from.

If for the dual vertex {i, j, k} the informa-

tion comes from the region incident to the
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Fig. 3. Visualization of the rule 4.

edge {i, j}, then the direction is equal to

opp(i, j, k). In the case the information about

the center eccentricity comes originally from

the dual vertex {i, j, k}, then we set the

direction to ∅.

IV. THE ALGORITHM

In this section we present the rules of our

algorithm (see Fig. 4). The first rule assigns the set

of all neighbors of the node i in the same layer

to its variable n(i). Thanks to this, a node can

know neighbors (in the same layer) of its neigbor,

which is exploited in further rules. The second rule

assigns in a node i the set of common neighbors

in the same layer with node k: c(i, k).
The rule 3a assigns outside edge eccentricity

and sides of an edge. Rules 3b and 4 compute

edge eccentricities according to [7] and both of

them set v(i) to proper value (see Fig 3).

The rule 5 propagates the minimum eccentricity

through all the graph. The idea of the inside

dual tree is used [8]. The information about the

minimum eccentricity is propagated through the

dual tree.

Note that in the rule 5 we used the function

MinEcc(i, j, k), returning the value of m(i, j, k).
The MinEcc function is defined as follows

(see Fig. 5):

Two projection functions are used in the above

function: fst((a, b))
def
= a and snd((a, b))

def
= b,

which take the first and second element of the

pair, respectively.

The MinEcc function computes the minimum

value over eccentricities and the direction that it

Function MinEcc(i,j,k)

1 v := v(i)
2 dir := ∅
3 if fst(m(k, i, j)) < v ∧ snd(m(k, i, j)) ∈
{opp(k, j, i), ∅} then

4 (v, dir) := m(k, i, j)
5 end if

6 if fst(m(j, i, k)) < v ∧ snd(m(j, i, k)) ∈
{opp(j, k, i), ∅ } then

7 (v, dir) := m(j, i, k)
8 end if

9 if fst(m(i, j, opp(i, j, k))) <
v ∧ snd(m(i, j, opp(i, j, k))) 6= k then

10 v := fst(m(i, j, opp(i, j, k)))
11 dir := opp(i, j, k)
12 end if

13 if fst(m(i, k, opp(i, k, j)) <
v ∧ snd(m(i, k, opp(i, k, j))) 6= j then

14 v := fst(m(i, k, opp(i, k, j))
15 dir := opp(i, k, j)
16 end if

17 return (v, dir)

i

k

j
1

5

2

3

4

?

Fig. 5. The visualization of computation of the func-
tion MinEcc(i, j, k). The numbers stand for the order of
checking (and assigning if necessary) values of m(·, ·, ·).
The order above is: 1. (v(i), ∅) (lines 1–2 of the MinEcc

function), 2. m(k, i, j) (lines 3–5), 3. m(j, i, k) (lines 6–8),
4. m(i, j, opp(i, j, k)) (lines 9–12), 5. m(i, k, opp(i, k, j))
(lines 13–16). The question mark stands for m(i, j, k), which
is the computed value.

comes from for the triangle region specified by

three parameters i, j, k (see Fig. 5). The first step

is to consider the node i itself as a candidate with

the minimum value of the eccentricity available in

the neighborhood. In this case the direction would
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1: If n(i) 6= Nl(i)
then n(i) := Nl(i)

2: If ∃k∈n(i)c(i, k) 6= n(i) ∩ n(k)
then c(i, k) := n(i) ∩ n(k)

3a: If ∃j∈n(i)(|c(i, j)| = 1 ∧ (e(i, j, ∅) 6= −1 ∨ opp(i, j, ∅) 6= k ∨ opp(i, j, k) 6= ∅))
then e(i, j, ∅) := −1
opp(i, j, ∅) := k

opp(i, j, k) := ∅
where {k} = c(i, j)

3b: If ∃j∈n(i)(|c(i, j)| = 1 ∧ (e(i, j, k) 6= d ∨ v(i) 6= max(|e(i, j, k)|, 1))
then e(i, j, k) := d

v(i) := max(|e(i, j, k)|, 1) where

q =

{

−(1 + e(j, k, opp(j, k, i))) if e(j, k, opp(j, k, i)) > 0,

e(j, k, opp(j, k, i)) otherwise

d =

{

|e(i, k, opp(i, k, j))| if |e(i, k, opp(i, k, j))| ≥ |q|,

q otherwise

{k} = c(i, j)
4: If ∃j∈n(i)(|c(i, j)| = 2 ∧ ∃k∈c(i,j)(e(i, j, k) 6= d ∨ opp(i, j, k) 6= l ∨ opp(i, j, l) 6= k ∨ v(i) 6=

max(|e(i, j, k)|, |e(i, j, l)|)))
then e(i, j, k) := d

opp(i, j, k) := l

opp(i, j, l) := k

v(i) := max(|e(i, j, k)|, |e(i, j, l)|)
where

q =

{

−(1 + e(j, k, opp(j, k, i))) if e(j, k, opp(j, k, i)) > 0,

e(j, k, opp(j, k, i)) otherwise

d =

{

|e(i, k, opp(i, k, j))| if |e(i, k, opp(i, k, j))| ≥ |q|,

q otherwise

{k, l} = c(i, j)
5: If ∃j,k∈n(i)(k ∈ c(i, j) ∧m(i, j, k) 6= MinEcc(i, j, k))

then m(i, j, k) := MinEcc(i, j, k)

Fig. 4. The self-stabilizing algorithm for finding the center in K2 �maximal outerplanar graph.

be ∅ as it does not come from other region. In

the second and third step, the node i checks the

neighbor nodes k and j as a candidates for the

minimum value. If the values in the nodes k or j

come from regions incident to the edges {i, k} or

{i, j}, they are not trusted. It is to ensure that no

wrong value can last in the region infinitely long

time (number of moves). And last two steps, the

values from two neighbor regions (incident to i)

are checked.

V. CORRECTNESS AND COMPLEXITY

Now we prove some properties of the algorithm.

We assume that n is the number of nodes in a layer

(a maximal outerplanar graph) of the graph.

Lemma 1. Algorithm consisting of rules 1–4

stabilizes in O(n2) number of moves.

Proof: The stabilization of the rule 1 is obvi-

ous as the guard does not depend on variables in

neighbor nodes. So the rule 1 gets inactive in finite

time. The rule 2, depends only on static (after sta-

bilizing of the rule 1) information computed by the

rule 1. Hence it stabilizes in limited by a constant

number of moves per node, as rule 1 does.

The same applies to rule 3a, as it depends on

variable values computed by two former rules,
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because it is for an outerface edge (i.e. the edge

belonging to Hamilton cycle), which is an initial

case of the recursive classical algorithm. Once the

c(i, j) is properly computed in the node i, it never

changes. Thus if any of the variables e(i, j, ∅),
opp(i, j, ∅) or opp(i, j, k) is in a wrong state,

then all are correctly computed and also never

change.

Now all the nodes have got rules 3a and 3b

inactive. Then we consider the rule 4. Note that

this rule is applicable only for graphs bigger than

a triangle. Suppose there are two adjacent edges

lying on an outerface of the graph. There has to be

the third edge, which is also adjacent to them, and

the edge eccentricities of this edge stabilize with

rule 4. This is the first layer of proper rule 4 com-

putation. Each next layer of proper computation

of rule 4 depends on a previous layer. We have a

finite graph, so the rule 4 stabilizes. As each layer

of computation of rule 4 takes O(n) moves and

there are O(n) layers, it all takes O(n2) moves.

The last layer of computation stabilizes by rule 3b,

as it reaches the another outerface of the graph.

The following lemma describes the situation

after stabilization of rules 1–4.

Lemma 2. If the phase 1–4 has stabilized a sys-

tem, then phase 5 will stabilize in O(n2) number

of moves.

Proof: The pessimistic case would be if every

dual vertex had wrong value for variable v(i) —

for example as a result of start up of the system —

and having also wrong values of m(·, ·, ·) for every

dual vertex (representing a region of the layer,

i.e. maximal outerplanar graph). Let us assume

that every v(i) is less than the proper minimum

eccentricity and there are no nodes i, j such

that v(i) = v(j). Then the pessimistic order of

propagation of the m(·, ·, ·) values would be when

the value v(i) spreads the first (for some i) which

is the biggest among all the other v(k) (for all

nodes k except i) but still it is less then the proper

minimum eccentricity.

The above propagation takes O(n) moves.

Note that now the dual tree is filled with improper

value of some v(i). But there are n − 1 wrong

candidates of the minimum eccentricity to spread

left. Once again, the pessimistic case would

be when the next value to propagate was the

maximum among all the candidates, which is less

then the spread in the tree.

Each of these phases takes O(n) moves and

there are O(n) phases, so all pases of rule 5 run

in O(n2) moves.

Now we can formulate the following theorem.

Theorem 2. The algorithm takes O(n4) number

of moves to stabilize.

Proof: The computation in each of layers is

independent, so by Lemmas 1 and 2 we get the

result.

VI. CONCLUSIONS

In this paper we proposed a self-stabilizing

algorithm for finding the center of the Cartesian

product of graph K2 and a maximal outerplanar

graph. We hope the method similar to the pre-

sented here can be applied to other classes of

graphs. The open question is if there exists an

algorithm with better complexity — number of

moves bringing a system to the legitimate state.
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