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Abstract—The Probabilistic Traveling Salesman Problem
(PTSP) is a variation of the classic Traveling Salesman Problem
(TSP) in which only a subset of potential nodes needs to be visited
on any given instance of the problem. The number of nodes to
be visited each time is a random variable. The objective is to
find an a priori tour which minimizes the expected length,with
the strategy of visiting the present nodes in a particular instance
in the same order as they appear in the a priori tour. In this
paper, we survey a number of results obtained for PTSP and we
present the different approaches used for solving it.

I. INTRODUCTION

O
VER the past fifty years, the study of Combinatorial
Optimization Problems (COP) has continued to grow in

importance and has become one of the most active branches
of discrete mathematics. This deterministic model is not ad-
equacy with reality, where often the number of data of the
studied problem is a random variable in [[0; n]].

In the late of 80’s, studies have developed on a class of
combinatorial optimization problems, characterized by the fact
that probabilistic elements are explicitly associated with data
i,e, given an instance of the problem, only a subinstance
of it will eventually be solved. This concept was called
Probabilistic Combinatorial Optimization Problems (PCOPs)
and was initially introduced by Jaillet [1], [2].

There are several motivations for studying the effect of
including probabilistic elements in combinatorial optimization
problems. The two most important motivations are, firstly,
the desire to define and analyze models which are more
appropriate with reality where randomness is a major source
of concern. For example, for many delivery companies, only a
subset of their customers requires a delivery each day. Ideally
we would like to re-optimize, i .e., find an optimal TSP tour
for every day. However, we may not have the resources to do
this, or even if we have them it may be very time consuming
to do that. It is therefore necessary to adopt a model that takes
into account random phenomena. Secondly, the possibility
to analyze the stability of optimal solutions to deterministic
problems when the instances are disturbed by the absence of
certain data.

The first problem studied in the probabilistic combina-
torial optimization problems was the probabilistic traveling
salesman problem [1]. Later, this approach was extended
to other problems such as the probabilistic vehicle routing
problem [3], the probabilistic spanning tree problem [4]. Stud-
ies on this probabilistic approach continued in many others

domains such as the probabilistic maximum independent set
problem [5], [6], the probabilistic longest path problem [7],
the probabilistic minimum vertex covering problem [8], the
probabilistic minimum coloring problem [9], the probabilistic
graph-coloring in bipartite problem [10] and the probabilistic
steiner tree problem [11]. The probabilistic approach has been
extended on the combinatorial problems not defined on graph
such probabilistic bin packing problem [12], [13] and the
probabilistic scheduling problem [14].

In this paper, we interest to the well-known problem
in optimization under uncertainty: the probabilistic traveling
salesman problem (PTSP). The organization of the paper is as
follows: section 2 presents the PCOP and its formulation and
section 3 is devoted to the presentation of the research aspects
of PCOP. Section 4 gives the definition and the formulation
of the PTSP. A review of the main results in the literature
is presented in section 5. Then, solving methods for the
resolution of PTSP are presented in section 6. Finally the last
section gives the concluding remarks.

II. PROBABILISTIC COMBINATORIAL OPTIMIZATION

PROBLEMS

The probabilistic combinatorial optimization problems,
noted PCOP are generalized versions of COP. Formally, a
PCOP is defined as follows: Let Ln = x1, x2, ..., xn a finite
set of data and S a finite set of feasible solutions. Consider
a cost function f : S → R. In this model, we define on Ln

a probability law: each element xi ∈ Ln has a probability of
pi. The problem consists in resolving only on a subset of Ln

and then the size of the problem is a random variable. The
objective is to minimize the expected objective function E[f ]
through all parts I of P (Ln).

The most natural approach that comes in mind is to consider
each potential instance as a new problem defined through the
present data and to optimally solve the instance considered.
This approach is called reoptimization strategy. This ap-
proach is optimal, however, it can be very much time and space
consuming, in particular when the combinatorial optimization
problem considered is NP-hard [15], [16], [17].

It is therefore necessary to adopt another resolution strategy,
which is less costly in terms of computations. This new
approach is called an a priori optimization and has been
introduced in [1], [18]. It consists of determining a solution
of the initial instance, where all data are present, called an a
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priori solution, and applying a strategy called a modification

strategy to adapt as quickly as possible the a priori solution

to the subinstance that must effectively be solved.

III. THE RESEARCH ASPECTS OF PCOP

Since the introduction of probabilities in the formulation of
COP [1], works on this subject have been considerable. Thus,
we will present in this section the different research aspects
addressed to these new problems.

A. Study of complexity of the different strategies

This research aspect concerns advanced study of the border
between easy PCOP and PCOP hard. Most PCOP have been
proven as difficult problems: like the probabilistic gener-
alization of the shortest path which is NP-hard while the
deterministic version is in P and very easily solvable [18].
An interesting line of research is to try to find for a given
COP case in which the probabilistic version remains easy, for
example Bellalouna and al [19] found particular cases for the
PTSP to be solved in an easy way.

B. Asymptotic behaviour

The asymptotic analysis of PCOPs (when the size of the
problem tends to infinity) is an important and successful area
of research. The results obtained in this field are very useful
for several reasons, they allow to obtain approximations for
problems of very large size, analyze the performance of some
heuristics and finally to explore the boundary between good
and bad algorithms in the probabilistic sense. An Asymptotic
study was proposed for the first time by Jaillet [20] for the
probabilistic traveling salesman problem. The 2-dimensional
probabilistic bin packing problem was asymptotically studied
by Bellalouna and al. [13].

C. Stability Analysis

Several research works studied the stability of COPs. For
example, the studies of Hromkowic [21], Forlizzi and al. [22]
etc. The objective is to study the interdependence between a
solution of a given COP and the parameters that define the
problem. For the probabilistic version, we call a PCOP stable
if the real random variables associated to the re-optimization
strategy and to the a priori strategy follow the same law.

Several studies have been devoted to the study of stable
problem. We quote here Bellalouna [23], who has interested
to the study of stability of the probabilistic traveling salesman
problem , Boria and al [24] studied the stability of probabilistic
min spanning tree in complete graph, Bouyahia and al [14]
analyzed the stability of the probabilistic scheduling problems.

D. Solving methods

Several algorithms were implemented for the resolution
of PCOP and have shown very satisfactory performance.
Exact methods have been used to solve the POCP such as
exact branch and bound algorithm developed by Rosenow
[25] for the probabilistic traveling salesman problem. Besides
that, approximate methods have received wide interests in
researchers’effort to solve large scale PCOP. Among the

applied approximate methods we cite the work of Bertsi-
mas [3] who proposed and analyzed heuristics for probabilistic
vehicle routing problem. In the works of Bellalouna and
al ([23], [26], [12]) algorithms based on classic heuristics
were proposed for the probabilistic bin packing problem.
Metaheuristics were also used to solve POCP for example for
probabilistic traveling salesman problem simulated annealing
and tabu search were implemented [26]. A Tabu Search was
implemented by Gendreau and al. [27] for the vehicle routing
problem with stochastic demands and customers. Experimental
studies allow to choose the best parameters for these solving
methods in the probabilistic framework.

IV. DEFINITION OF THE PTSP

The Probabilistic Traveling Salesman Problem (PTSP) is a
variation of the classic Traveling Salesman Problem (TSP) and
is introduced for the first time by Jaillet [1] in which only a
subset of the nodes may be present in any given instance of
the problem. The goal is to find an a priori tour of minimal
expected length, with the strategy of visiting the present nodes
in a particular instance in the same order as they appear in the
a priori tour ([20], [28], [29]). The TSP can be treated as a
special case of the PTSP. The main difference between PTSP
and TSP is that in PTSP the probability of each node being
visited is between 0 and 1 while in TSP the probability of
each node being visited is 1. In a given instance, the nodes
present should be visited based on the sequence of the a priori

tour while the others nodes will simply be skipped.
A formulation of the problem is the following [1]: We are

given an a priori PTSP tour t through n points of a given graph
G. Each point i is present with a probability pi independently
of the others. Let d(i, j) the distance between points i, j and
we assume, without loss of generality, that the a priori tour is
T = (1, 2, ..., n, 1), then our problem is to find an a priori tour
through all n potential nodes, which minimizes the expected
length of a specific a priori PTSP tour T , denoted E[LT ] :

E[LT ] =
n∑

i=1

n∑

j=i+1

dijpipj

j−1∏

k=i+1

(1− pk)

+
n∑

j=1

j−1∑

i=1

djipipj

n∏

k=j+1

i−1∏

k=1

(1− pk) (1)

When all points i have the same probability of presence(pi =
p ∀i) ,we note q = 1 − p. In this case the expected length
E[LT ] is:

E[LT ] = p2
n−2∑

r=0

qrLT r (2)

Where LT r =
n∑

i=1

d(i, T r(i)). T r consists in jumping r points

from the initial tour T , therefore T r is formed by pgcd(n, r+
1) sub-tours. T r(i) the point after i along the permutation T r,
thus LT r is the length of the permutation T r. We note that
T 0 is the tour T and LT 0 is the length of the tour T .
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V. REVIEW OF PREVIOUS RESULTS

In [1], Jaillet derived several theoretical properties of
optimal tours including the fact that such a tour may intersect
itself. In [20], he bounded the relationship between optimal
PTSP and TSP solutions. The analysis presented in [20]
implies that under specific conditions the optimal PTSP and
TSP solutions coincide. Later, others works examined some
further properties of the PTSP and improved some bounds
proved by Jaillet.
In this section we briefly review here the previous results.

A. Properties of PTSP

The TSP is a special case of the PTSP in which all
the nodes are present ;so it is interesting to understand
the relationship between the TSP and PTSP. In Jaillet’s
dissertation he found very special cases where TSP is stable.

Property 1. The optimum TSP tour is guaranteed to solve
the PTSP optimally for problems with only 5 or fewer points
(and with only 3 or fewer points when the matrix of distances
between points is not symmetric).

Property 2. When the n points lie at the corner points of
a convex n-gon then TSP is stable.

In [20] he exhibited examples where TSP is a very bad
solution for PTSP. Let us denote by TPTSP the optimal PTSP
tour and by TTSP the optimal TSP tour.

Property 3. Given D = (dij) the distance matrix through
the n points. If D satisfies the triangle inequality, if the number
of deterministically present points is m, then for m ≥ 1 or
(for m = 0 and n prime) :

E(LTPTSP
) ≥ p(1− (1− p)n−1)LT 0

PTSP

(3)

E(LTTSP
)−E(LTPTSP

)

E(LTPTSP
) ≤ 1−p

p

L
T0

PTSP

−L
T0

TSP

LTTSP

≤ 1−p
p2

These bounds are the best possible. We note that if p is
close to 1, the error 1−p

p
is close to zero and therefore the

TSP tour is a very good approximate solution for the PTSP.
If p is very small the error 1−p

p
tends to infinity and there is

no information about the behavior of the optimal tour under
TSP as solution for PTSP.

The PTSP seems much more complex than the TSP, The
following results underscore the point that the probabilistic
aspects of the PTSP induce some characteristics which are
distinctly different from those of the TSP:

Property 4. For Euclidean plane, the optimal PTSP tour
may intersect itself .

Property 5. The dynamic programming approach proposed
for TSP fails to solve the PTSP.

Property 6. Given h = (l, ...n) a path through n vertices,
if h is decomposed into two paths h1 = (1, ..k) and h2 =
(k, ..., n) and if we note h = h1 ⊕ h2 then :

E(Lh1⊕h2
) ≤ E(Lh1

) + E(Lh2
) (4)

Functional associated to PTSP is not additive and we cannot
decompose the PTSP into sub problems. The optimality
principle is not verified.

Bellalouna [23], [26] found special cases where the problem
is polynomial and showed that under some conditions on the
distance matrix denoted C, TSP is stable.

She gave conditions on the constant matrices of the form
cij = ai + bj basing on a result of Berenguer [30], showing
that constant matrices are the only matrices where all the
permutations of vertices have the same length.

Property 7. Constant matrices are the only ones that have
the same expectation for every a priori tour T :

E(LTPTSP
) = p(1− (1− p)n−1)LT 0

TSP

(5)

In this case PTSP is polynomial.

Let us call a matrix C small if there exist two vertices, a
and b, such that cij = min{ai, bi}, i, j = 1.....n. C is called
small with distinct values where ai and bj are all distinct. In
this case, let di be the i − th smallest value between the 2n
values ak and bj ; D = {d1, .....dn}, D = {dn+1, .....d2n}
and d =

∑n

i=1 di. The vertices can be partitioned into four
sets: D2 = {i : ai, bi ⊆ D}, Do = {i : ai, bi ⊆ D}, Da = {i :
ai ∈ D, bi ∈ D}, Db = {i : bi ∈ D, ai ∈ D}.

We remind Gabovitch’s theorem [47] where he shows that
for small matrices the TSP is an easy problem. In particular,
he shows that the length of the optimal tour is equal to d if
and only if D satisfies one of the following conditions:
(i) D2 6= ∅,
(ii) D = {al.....an},
(iii) D = {b1.....bn}.

And if the length of the optimal tour is different from d then
the length of the optimal tour equals d

′

= d − dn + dn+l if
and only if D

′

= D∪dn+l{dn} satisfies one of the following
conditions:
(i’) D

′

2 6= ∅, where D
′

2 is defined analogously to D2,
(ii’) D

′

= {a1.....an},
(iii’) D

′

= {b1, .....bn}.
Based on the results of Gabovitch [31], Bellalouna [23]

gave conditions under which the TSP is stable.

Property 8. Let C be a small matrice.Then T
′

PTSP = T
′

TSP

if and only if [(dn = bl)∨[(dn = al)∧(dn−1 = b )]∧[(dn+l =
an) ∨ [(dn+l = bn) ∧ (dn+2 = an)]]. In this case:

E(LTPTSP
) = p(1− (1− p)n−1)d

′ − p2(dn+1 − dn) (6)
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Property 9. Let C a small with distinct values and consider
the following conditions:
(cl) [dn 6= b1] ∧ [(dn 6= a1) ∨ (dn−1 6= (b1))] ∧
[(dn+1 = an) ∨ (dn+1 = bn) ∧ (dn+2 = an)]
(c2) [(dn = b1) ∨ (dn = a1 ∧ dn−1 = b1)] ∧
[(dn+1 6= an) ∧ (dn+1 6= bn) ∨ (dn+2 6= an)]
Then if (cl) is verified, we get:

E(LTPTSP
) = p(1− (1− p)n−1)(d+ an)

−p2
n−2∑

r=0

qrmax(an−r, b1) (7)

On the other hand, if (c2) is verified, we have:

E(LTPTSP
) = p(1− (1− p)n−1)(d− b1)

+p2
n−2∑

r=0

qrmin(an, b1+r) (8)

Bellalouna [23] was also based on the result of
Lawler [31]to prove the stability of TSP. Lawler [31]
showed that for triangular inequality matrix the TSP is easy
then transport problem.

Property 11. Let C a non negative matrix and verifies the
triangular inequality, if 1 et n are presents and the shortest
path between 1 and n is ( l , n ) then TSP is stable.

Property 12. Let C a non negative matrix and for i <
j we have ci,j ≤ Ck,j ∀k i+1 ≤ k ≤ j−1 then TSP is stable.

In Bellalouna’thesis [23], Christofides heuristic for
TSP [31] was studied and it is proved that its approximation
ratio is bounded by a constant even for the case of PTSP.

Property 13. If the TSP matrix is positive and verifies the
triangular inequality and if X is a random variable representing
the number of present vertices and verifying Pr(W ≤ n−k−
1) = 0 and Pr(W = n − k) > 0 then Christofides heuristic
is an heuristic in the worst case for the PTSP.

E(LCTSP
)

E(LTPTSP
)
≤ 3

2
[1 +

k2(k + 1)

n− 2
] (9)

where LCTSP
is the tour provided by Christofides’ algo-

rithm.
Basing on research of Bellalouna relating to the small

PTSP [23], [26] a study of particular cases which can be solved
in an easy way was addressed in [19].

Let T [i] the ith city of the tour T, i ∈ {1, ..., n}, T [i − 1]
is the predecessor of T [i] and T [i+1] is the successor of T [i].

Property 14. Let C be a small matrix with distinct values,
suppose that D2 = {1}, D0 = {n} and Db = ∅. Without loss
of general information,let a1 < a2 < ... < an−1 < an. Then:
TSP is stable if and only if an−1 < b1 and
an < min{bi}2≤i≤n−1

Property 15. Let C be a small matrix with distinct values,
suppose that D2 = {1}, D0 = {n} and Db = {}. Without
loss of general information,let a1 < a2 < ... < an−1 < an
and b1 < ... < bn−1 Then:

TPTSP = T ∗
TSP

B. Bounds

Bertsimas and Howell [16] improved the best upper and
lower bounds for PTSP in three cases: 1) pi = p , 2) pi 6= pj
and 3) p1 = 1, pi 6= pj .

1) The case pi = p. They proved that the bounds proved
by Jaillet for n prime (3) holds even if n is not prime.

Result 2. If TPTSP is the optimal PTSP tour,then for n not
prime (n = 2k + 1):

E[LTPTSP
] ≥ pLTPTSP

(1 + (1− p)2k−1 − (1− p)k(2− p))
(10)

2) The case pi 6= pj . In the case of unequal probabilities,
they obtained lower bounds for the expected length of the
PTSP by using a mathematical programming rather than a
combinatorial approach. They used an idea suggested by
Berman and al. in [33].

Result 3. If TPTSP is the optimal PTSP tour, then

E[LTPTSP
] ≥ z∗ (11)

where z∗ is the optimal solution to the transportation problem.

z∗ = min
∑

i,j

xi,jd(i, j) ,

s.t
∑

i

xi,j = pj(1−
∏

k 6=i

(1− pk)) ,

∑

j

xi,j = pi(1−
∏

k 6=i

(1− pk)) ,

xi,j ≥ 0

For the upper bound Bertsimas and Howell [16] used the
triangle inequality:

Result 4. Under the triangle inequality,

E[LTPTSP
] ≤ LTSP (12)

3) The case p1 = 1, pi 6= pj . In this case they improved
the bound (12) if the triangle inequality holds:

Result 5. Under the triangle inequality, any tour T satisfies

E[LT ] ≤
n∑

i=2

pi[d(i, 1) + d(1, i)] (13)

Bellalouna [23] gave also bounds for PTSP based on the
work of Jaillet [1], who showed that the inequality (3) in the
case where the number of points is prime. Bellalouna gave
Similar results for any n.
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Result 6 Let TPTSP the optimal PTSP tour, if n = 2k+ 1
then:

E[LTPTSP
] ≥ p2LT 0

PTSP

1− (1− p)n−1

1− (1− p)k
(14)

Result 7. Let TPTSP the optimal PTSP tour and n = 2k >
6 then:

E[LTPTSP
] ≥ p2LT 0

PTSP

1− (1− p)n+hr0

1− (1− p)n
(15)

and gcd(n, r0+1) = 1 ⇒ ∃(hn, hr0)/nhn+(r0+1)hr0 = 1.

C. Asymptotic results

In [2], [17] Jaillet presented an interesting analysis of the
PTSP in the plane in order to find convergence results for
PTSP similar to those demonstrated by Beardwood and al [34]
for TSP.R

We note x = {x1, x2, ...} a sequence of points of R2 and
xn = {xi, ..., xn}. If the position of the points is random
then the sequence is represented by X = {X1, X2, ...}.

Result 1. Let X be a sequence of points uniformly and
independently distributed within the unit square [0, 1]2 and
each point has probability p of being present, independently
of the others then there is a constant c(p) as:

lim
n→∞

E(LTPTSP
(xn, p))√
n

= c(p) (16)

where

β
√
p ≤ c(p) ≤ min(β, 0.9204

√
p)

β is the TSP constant in the theorem of Beardwood and al [34],
who showed that 0.625 ≤ β ≤ 0.9204.

VI. SOLVING METHODS

There are several algorithms for solving PTSPs. Some
papers use exact algorithms to solve PTSPs to optimality,
we cite Berman and Simchi-Levi [33] who suggested a
lower bound and explained how to combine this bound with
a branch-and-bound algorithm to find an optimal a priori
tour, Laporte and al. [35] who proposed an exact branch
and cut algorithm based on an integer two-stage stochastic
programming formulation to solve to optimality instances
involving up to 50 vertices. Most approaches in the PTSP
literature focus on heuristics that efficiently find good but not
necessarily optimal solutions, these include Clarke and Wright,
nearest neighbor [36], spacefilling curve, 2-OPT and 1-Shift
techniques ([16], [37], [38], [39]). Recently, metaheuristics
have been proposed to solve the PTSP such as simulated
annealing algorithm [40], scatter search algorithm ([41], [42]),
Ant Colony Optimization ([41], [43], [44], [45]) Greedy Ran-
domized Adaptive Search Procedure (GRASP) ([46], [47]),
A hybrid Honey Bees Mating Optimization (HBMO) [48],
iterative local search algorithms ([49], [50]), memetic algo-
rithms [50].

VII. CONCLUSION

Probabilistic Combinatorial Optimization problems are very
suitable and real-life problems where probabilities are asso-
ciated with the data. In this paper we have interested on the
PTSP the first problem studied in PCOP and we have surveyed
the main results obtained on it include their combinatorial
properties, bounds and asymptotic results. We have also pre-
sented the different solving methods for PTSP. A wide variety
of exact and approximate algorithms have been proposed for
solving it. Exact algorithms can only solve relatively small
problems. As for the approximate methods, a number of
heuristics and metaheuristics have proved very satisfactory
for large problems. Nowadays, approximate algorithms are the
main interests of many researchers who still trying to find the
best algorithm which give a very good approximate solution
in a proper running time.
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