
Solving Graph Coloring Problem with Parallel

Evolutionary Algorithms in a Mesh Model
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Abstract—In this paper a parallel evolutionary algorithm
(PEA) for coloring graph vertices is investigated. In the algorithm
we apply a diffusion model of parallelism (DM). Evolutionary
computations are performed in a regular mesh with either a
constant size global population or a constant subpopulation in
a single node. The performance of the PEA-DM is verified
by computer experiments on standard DIMACS graph coloring
instances. For recombination well known crossover and mutation
operators are chosen. Selection mechanisms include standard
roulette and tournament. The results obtained by PEA-DM are
compared with a classical evolutionary algorithm. It is possible
to define dimensions of the rectangular mesh and two types of
additional local connections: boundary enclosures (cyclic mesh)
and diagonal links. The problem of optimal selection of the mesh
configuration as well as global population and subpopulation sizes
is adressed.

I. INTRODUCTION

G
RAPH k–colorability problem belongs to the class of

NP–hard combinatorial problems [14], [20]. This deci-

sion problem is defined for an undirected graph G = (V,E)
and positive integer k ≤ |V | : is there an assignment of

available k colors to graph vertices, providing that adjacent

vertices receive different colors ? With additional assumptions

many variants of the coloring problem can be defined such

as equitable coloring, sum coloring, contrast coloring, har-

monious coloring, circular coloring, consecutive coloring, list

coloring etc. [18], [27]. In optimization version of the basic

problem called GCP, a conflict–free coloring with minimum

number of colors is searched. Intensive research conducted in

this area resulted in a large number of exact and approximate

algorithms, heuristics and metaheuristics [5], [26], [31], [36],

[37]. However, the reported results are often difficult to

compare due to specific assumptions, different algorithms and

their implementation details, tuning of parameters, computing

platforms, test data sets etc. GCP was the subject of Second

DIMACS Implementation Challenge held in 1993 [19] and

Computational Symposium on Graph Coloring and General-

izations in 2002. A collection of graph coloring instances in

DIMACS format and summary of results are available at [38],

[39], [40].

Evolutionary algorithm (EA) is a metaheuristic often used

for GCP [10], [11], [12], [13], [21], [30], [32], [35]. Parallel

versions of evolutionary algorithms (PEAs) were reviewed in

[1]. One popular model is master–slave in which master pro-

cessor assignes portions of computations to slave processors

[6]. Another approach is based on co-evolution of a number

of populations that exchange the genetic information during

the evolutionary process according to a communication pattern

[2], [3], [9]. That approach includes migration and diffusion

models od PEAs.

PEA were applied to many hard optimization problems

(e.g. [1], [28]). Parallel metaheuristics for GCP and related

problems were recently published in [23], [24], [25], [31].

The main purpose of the master–slave model is speeding

up processing of one global population by parallelization of

computations. In the migration model of PEA the model

of interactions between co–evolving populations can affect

the quality of the solution [23]. If speedup is not essential

one can simulate and test migration–based PEA with the

help of a sequential program. An alternative parallel model

is the diffusion model, where evolution takes place among

neighbouring subpopulations. There are many possible neigh-

bourhood patterns. Among them 2–dimentional mesh with

subpopulations placed in its nodes is a typical option because

it corresponds to a model of computations very popular in

parallel procesing, i.e. 2D array of processors.

In this article some results of experiments with PEA in dif-

fusion model for graph coloring problem are described. In the

paper two recombination operators for coloring chromosomes

are used: CEX (Conflict Elimination Crossover) [23] that

reduces the number of color conflicts with the help of selective

copy operations and GPX (Greedy Partition Crossover) [13].

They both are problem–specific crossovers, designed particu-

larly for GCP and passed a series of experimental verification

in EA environment [15], [22].

In experimental part of the paper, widely accepted DIMACS

benchmark graphs were used. The obtained results show

adventages and limitations of PEA in the diffusion mesh model

for hard optimization problems like GCP.

II. GRAPH COLORING PROBLEM

Let us define formally the optimization problem GCP.

For given graph G(V,E), where : V — set of graph

vertices, |V | = n, and E — set of graph edges, |E| = m,

the optimization problem GCP is formulated as follows: find

the minimum positive integer k, k ≤ n, and a function

c : V −→ {1, . . . , k}, such that c(u) 6= c(v) whenever
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Fig. 1. Exemplary graph G(V,E)

(u, v) ∈ E. The obtained value of k is refered to as graph

chromatic number χ(G).
Similarly, graph edge coloring problem for given graph

G(V,E) can be defined. One can find solution to mimimum

edge coloring by solving vertex coloring problem for edge

graph Ge(Ve, Ee) associated with the given graph G(V,E)
[18], [26]. An exemplary graph G(V,E) with ten vertices is

shown in Fig.1.

In graph coloring problem k–colorings of graph vertices

are encoded in chromosomes representing set partitions with

exactly k blocks. There are two equivalent notations for vertex

colorings that are commonly used in algorithm design.

In assignment representation available colors are assigned

to an ordered sequence of graph vertices. Thus, the vector

c=<c[1],c[2], . . . ,c[n]>. represents a vertex coloring. For the

graph in Fig.1, an optimal 3–coloring is denoted by vector

c=<1,2,3,2,3,1,2,3,2,1>.

In partition representation a vertex coloring is a unique

sequence of partition blocks in Hutchinson representation

[16]. Each block of partition p does correspond to a single

color. Elements inside each block are ordered in increas-

ing lexicographic order, and all blocks are ordered increas-

ingly according to the value of their first element. For our

graph the same optimal 3–coloring is denoted by partition

p={1,6,10}{2,4,7,9}{3,5,8}.

III. MODELS OF PARALLEL EVOLUTIONARY ALGORITHMS

There are many models of parallelism in evolutionary al-

gorithms: master–slave PEA, migration based PEA, diffusion

based PEA, PEA with overlaping subpopulations, population

learning algorithm, hybrid models etc. [4], [6], [7], [8], [17],

[29], [33], [34].

The above models are characterized by the following crite-

ria:

• number of populations : one, many;

• population types : disjoint, overlaping;

• population topologies : various graph models;

• interaction model : isolation, migration, diffusion;

• recombination, evaluation of individuals, selection : dis-

tributed/local, centralized/global;

• synchronization on iteration level: synchronous/asyn-

chronous algorithm.

The most common models of PEA are:

• master-slave : one global population, global evolutionary

operations, fitness functions computed by slave proces-

sors);

• massively parallel (cellular): static overlapping subpop-

ulations with a local structure, local evolutionary opera-

tions and evaluation;

• migration (with island as a submodel): static disjoint

subpopulations/islands, local evolutionary operations and

migration;

• diffusion (with mesh as a submodel); static disjoint

subpopulations/nodes, local evolutionary operations and

migration;

• hybrid : combination of one model on the upper level and

other model on the lower level (the speedup achieved in

hybrid models is equal to product of level speedups).

A. Migration Model of Parallel Evolutionary Algorithm

Migration models of PEAs consist of a finite number

of disjoint subpopulations that evolve in parallel on their

"islands" and only occasionally exchange evolutionary infor-

mations under control of a migration operator. Co–evolving

subpopulations are built of individuals of the same type and

are ruled by one adaptation function. The selection process is

decentralized.

In the model the migration is performed on a regular

basis. During the migration phase every island sends its

representatives (emigrants) to all other islands and receives

the representatives (immigrants) from all co–evolving subpop-

ulations. This topology of migration reflects so called "pure"

island model. The migration process is fully characterized by

migration size, distance betweeen populations and migration

scheme. Migration size determines the emigrant fraction of

each population. This parameter is limited by capacity of

islands to accept immigrants. The distance between migrations

determines how often the migration phase of the algorithm oc-

curs. Three migration schemes may be applied: no migration,

migration of randomly selected individuals and migration of

best individuals of the subpopulation.

B. Diffusion Model of Parallel Evolutionary Algorithm

The diffusion model of PEA is a fine-grained EA [6] with

its global population distributed on a 2D mesh of size w× z,

where subpopulations are placed in the mesh nodes (cells). The

crossover operation is local in that sense, that the recombined

chromosomes are members of subpopulations in the closest

neighbourhood, i.e. have distance 1 in the underlying graph

G(V, E). Solutions with outstanding fitness function are able

to "diffuse" step by step in the graph across the whole global

population. The implementation of PEA-DM in diffusion

model can be either synchronous or anynchronous on a parallel

machine with shared memory. Parent chromosomes can be

selected for recombination at random, but it is recommended

to choose at random only the first parental population, all next

should be selected on the basis of the fitness function of all

chromosomes in the neighbourhood .
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Fig. 2. A simple rectangular mesh of size w × z.

Fig. 3. A cyclic square mesh of size 4× 4.

In the simple mesh model presented in Fig. 2 graph edges

represent connections between nodes. Boundary nodes have

a limited communication ability, because they have smaller

vertex degrees then internal nodes of the graph G(V, E). For

instance, for the square mesh of size 4×4 the mesh containes

75 % of boundary nodes. Similarly, for the mesh 5× 5 there

is 64 % of boundary nodes, for the mesh 8 × 8 there is

43 % of boundary nodes, for the mesh 10 × 10 there is 36

% of boundary nodes, for the mesh 15 × 15 there is 25 %

of boundary nodes, for the mesh 20 × 20 there is 19 % of

boundary nodes, etc. The lowest degree have the four corner

nodes.

It is reasonable to expect that the mesh size and node

degree in the graph shall influence the PEA-DM performance.

Propagation time of good solutions across the whole network

increases with the network size. The simplest way to eliminate

node degree irregularities in the ordinary mesh is to add cyclic

connections to boundary nodes (boundary enclosures), The

resulting cyclic mesh 4× 4 is depicted in Fig. 3.

The structure of 2D mesh is very popular since it can be im-

plemented in MIMD computers. The sizes of the mesh can be

variable within certain ranges. The number of communication

chanels for each node processor is 4. That value is constant

and does not depend on the number of processors. Maximum

distance between processors in the cyclic mesh is 0,5(w+z).

In order to increase node degree in the cyclic mesh an

additional connections are to be added. In Fig. 4 extra diagonal

Fig. 4. A cyclic square mesh of size 4× 4 with extra diagonal connections.

Algorithm 1 EA for a subpopulation in diffusion model

Require: cell position in the mesh, subpopulation size and

chromosome parameters

Ensure: best coloring in Pt+1

t ← 0; [reset iteration counter]

2: initialization of subpopulation Pt;

evaluation of subpopulation Pt;

4: while not termination condition do

parents Tt ← selection from Pt and its neighbourhood;

6: offspring population Ot ← crossover and mutation on

Tt;

evaluation of {Pt ∪Ot};

8: Pt+1 ← selection from {Pt ∪Ot};

best ← best coloring in Pt+1;

10: t ← t+ 1;

end while

connections are shown. In this way degrees of internal nodes

increase from 4 to 8 and degrees of boundary nodes increase

from 4 to 6, except the corner nodes which degrees increase

only by one, from 4 to 5. It is possible to complete the network

connectivity by adding diagonal cycles for boundary nodes.

In such architecture, for the regularity of the extended cyclic

mesh, we pay in longer iteration time of PEA-DM.

IV. RECOMBINATION OPERATORS

In this section a collection of crossover, mutation and

selection operators is introduced that can be used in our

PEA-DM. Two recombination operators: CEX, GPX and the

mutation operator First Fit were designed especially for GCP.

The mutation Transposition is more versatile. Other efficient

recombination operators were proposed in [32]. The cost

function is adapted for PEA-DM. All examples given in this

section refer to the graph instance shown in Fig.1.

A. Conflict Elimination Crossover

In conflict–based crossovers for GCP the assignement rep-

resentation of colorings is used and the offspring tries to copy

conflict–free colors from their parents. The operator CEX

(Conflict Elimination Crossover) reveals some similarity to

the classical crossover. Each parental chromosome p and r is
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partitioned into two blocks. The first block consists of conflict–

free nodes while the second block is built of the remaining

nodes that break the coloring rules.

The last block in both chromosomes is then replaced by

corresponding colors taken from the other parent. This recom-

bination scheme provides inheritance of all good properties of

one parent and gives the second parent a chance to reduce

the number of existing conflicts. However, if a chomosome

represents a feasible coloring the recombination mechanism

will not work properly. Therefore, the recombination must be

combined with an efficient mutation mechanism. As a result

two chromosomes s and t are produced. The operator CEX

is almost as simple and easy to implement as the classical

crossover (see Algorithm 2).

Behaviour of the CEX crossover is shown in Example 1.

Example 1

Two parents represent different 5–colorings of a graph

with 10 vertices i.e. sequences p=<5,2,3,4,1,4,2,5,1,3>, and

r=<1,4,5,2,3,3,5,4,2,5>. Vertices with color conficts are

marked by bold fonts. Thus, the chomosome p has 6 vertices

with feasible colors and 4 vertices with color conflicts while

the chomosome r has 7 vertices with feasible colors and 3

vertices with color conflicts.

Replacing the vertices with color conflicts by vertices taken

from the other parent we obtain the following two chromo-

somes: s=<5,2,5,2,1,3,2,5,1,5> and t=<1,4,3,2,3,3,2,4,2,3>.

(see Fig. 5)

It is observed that obtained chromosomes represent now two

different 4–colorings of the given graph (reduction by 1 with

respect to initial colorings) and the number of color conflicts

is now reduced to 2 in each chromosome.

B. Greedy Partition Crossover

The method called Greedy Partition Crossover (GPX) was

designed by Galinier and Hao for recombination of colorings

or partial colorings in partition representation [13]. It is

assumed that both parents are randomly selected partitions

with exactly k blocks that are independent sets. The result

is a single offspring (a coloring or partial coloring) that is

built successively in a greedy way. In each odd step select

the maximum block from the first parent is selected. Then

the block is added to the result and all its nodes from the

both parents are removed. In each even step the maximum

block is selected from the second parent. Then the block is

added to the result and all its nodes from the both parents are

Algorithm 2 The crossover operator CEX

Require: V , p, r
Ensure: s, t

s ← r; t ← p;

2: b ← x;

copy block of conflict-free vertices V p
cf from p to s;

4: copy block of conflict-free vertices V r
cf from r to t;

p=<5,2,3,4,1,4,2,5,1,3> r=<1,4,5,2,3,3,5,4,2,5>

s=<5,2,5,2,1,3,2,5,1,5> t=<1,4,3,2,3,3,2,4,2,3,>
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Fig. 5. An illustration of CEX crossover (see Example 1)

removed. The procedure is repeated at most k times since in

some cases the offspring has less blocks then the parents. This

possibility is not considered in the original paper [13]. Finally,

unassigned vertices (if they exist) are assigned at random to

existing blocks of partition.

The first parent is replaced by the offspring while the second

parent is returned to population and can be recombined again

in the same generation. GPX crossover is performed with a

constant probability.

C. Mutation Operators

Two types of mutation operators described in literature

are used. Transposition (T) is a classical type of mutation

that exchanges colors of two randomly selected vertices in

the assignment representation. The second mutation operation

called First Fit (FF) is designed for colorings in partition

representation and is well suited for GCP. In First Fit mutation

one block of the partition is selected at random and we try to

make a conflict–free assignment of its vertices to other blocks

using the heuristic First Fit. Vertices with no conflict–free

assignment remain in the original block. Thus, as a result of the

mutation First Fit the color assignment is partially rearranged

and the number of partition blocks is often reduced by one.

D. Selection Operator

Selection process maintains constant size of population

selected by means of a fitness function.

In the first phase of EA, when no initial information

is available, the quality of a solution is measured by the

following cost function:

cost(c) = conflicts(c) · colors(c), (1)

where:

c – is the current coloring,

conflicts(c) – is the number of conflicts in c,
colors(c) – is the number of colors in the c.
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In the second phase of the algorithm, for conflict–free

colorings conflicts(c) = 0 and cost(c) = 0. Therefore, in that

case the cost function is computed by the following formula:

f(c) = conflicts(c) + colors(c) + p(c), (2)

where the penalty function p(c) equals:

p(c) =

{

2 · (colors(c)− best), if colors(c) ≥ best
0, if colors(c) < best

(3)

and:

best – is a number of colors in the best individual so far.

The proportional (roulette) selection can be performed in

two phases of the algorithm with the fitness function 1/f(p).
Alternatively, the tournamet selection can be performed in both

phases of the algorithm on randomly selected individuals from

subpopulations with the analogous fitness function.

V. COMPUTER EXPERIMENTS

For computer experiments several graph instances were

used that are available in the web archives [38], [39]. They

are collections of graphs in DIMACS format with known

parameters m, n and usually χ(G).
In our program PGA-DM for GCP diffusion models of PEA

can be simulated. It is possible to set up most parameters of

evolution, monitor evolution process in each node and measure

both the number of generations and time of computations. In

order to avoid misunderstanding we always report throughout

the paper the total execution time of the sequential simulation

of the PGA. In the preprocessing phase we converted list of

edges representation into adjacency matrix representation. The

program generates detailed reports and basic statistics [22].

All computer experiments were performed on a computer with

AMD Athlon 2000 processor (1,67 GHz, 512 MB RAM). The

performance of the processor was never a critical factor.

The research was focused on the diffusion model of PEA. In

the experiments the following aspects of this model were taken

into consideration: 1. comparison of PEA-DM versus EA with

respect to quality of solution, number of iterations and time

of computation. 2. influence of mesh size for constant node

population solution; 3. comparison of acyclic versus cyclic

square meshes.

In all experiments and for all crossover operators we used

constant crossover probability = 0.8 and mutation probability

= 0.1.

A. Comparison of PEA-DM with EA

In the first experiment PEA-DM was tested against tradi-

tional EA. The jean(80, 254, 10) graph was used. Classical

EA was obtained as a special case in the program PEA-DM

for GCP with parameters: mesh size = 1×1, population size =

320, initial number of colors = 2, CEX crossover, FF mutation

and Tournament selection. In diffusion PEA the mesh size =

8×8 and node subpopulation = 5. Computations were repeated

30 times. Termination condition was either optimal coloring

for χ(G) = 10 or the number of iterations = 1000. All results

of the comparison were collected in Table I.

In all experiments a conflict–free coloring was reached for

the given graph. Optimal colorings were more likely to happen

with PEA-DM. Average time of computations for obtaining a

conflict–free coloring was lower for EA. Execution times of

1000 iterations in PEA-DM and EA were close to each other:

the average execution time for EA was 202,7 [s]; for PEA-DM

it was 204,3 [s].

B. PEA-DM with a constant population size in a node

In the second experiment PEA-DM was investigated for

various sizes of acclic square mesh, constant population size

=5 in all nodes and initial number of colors = 2. Two DIMACS

graphs were used for this configuration of the program PEA-

DM : huck(74,301,11) and queen6.6(36,290,7). Computations

were conducted with the following settings: random initial

population, CEX crossover, FF mutation and Tournament

selection. All experiments were repeated 10 times. Termination

condition was either finding an optimal graph coloring (χ(G)
is known for both graphs) or 5000 iterations completed. The

computational results are presented in Table II (columns B, W,

A contain the best, the worst, and the average results obtained

in 10 experiments, respectively).

For huck graph and mesh size 4× 4 only in 5 experiments

(5/10) a conflict–free coloring was obtained and only 2 optimal

colorings. For the mesh size 6×6 all colorings were conflict–

free and half of them was optimal. For bigger mesh sizes a

higher percentage of optimal coloring was obtained in a shorter

time.

For queen6.6 graph conflict–free colorings were possible

starting from the mesh size 6 × 6 (6/10). For bigger mesh

sizes more conflict–free colorings were found with less colors

used. However, due to graph difficulty the PEA-DM was not

able to find any optimal solution with χ(G)=7 colors. The

minimal coflict–free coloring was found with the number of

colors = 8.

In conclusion, the efficiency of the PEA-DM with constant

population size in a node strongly depends on the size of

the mesh. For small meshes small global population (rather

tens then hundreds of individuals) can not provide sufficient

diversity of solutions. The bigger mesh size implies in general

more computations (longer processing time), but usually less

iterations and sufficient diversity of population to achieve a

satisfactory solution. The optimal mesh size for huck graph is

14× 14. The other possibility to improve PEA-DM efficiency

is to increase the population size in nodes. Thus, PEAs with

small meshes and bigger population sizes in nodes become

similar to PEAs in migration models, where the optimal

number of populations is moderate. No mesh of optimal

size was found for queen6.6 graph. For this graph the PEA

efficiency can be improved with bigger subpopulations and

higher number of iterations.

C. PEA-DM with a constant global population size

Taking into account results of the previous experiments the

constant global populations size was set to 700, approximately.

The are minor deviations from that size due to variable mesh
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TABLE I
COMPARISON OF EA AND PEA-DM

graph algo– colo– cost / number of iterations / time
G(V,E) rithm rings min max avg. std. dev.

EA 30/30 colors 10 13 11,23 0,68
conflict– it 19 345 46,56 57,05

free t[s] 3,8 68,7 9,42 11,35
2/30 colors 10 10 10 0

jean optimal it 37 39 38 1,41
|V|=80 (7%) t[s] 7,0 7,7 7,35 0,50
|E|=254 PEA-DM 30/30 colors 10 15 11,17 0,89
χ(G)=10 conflict– it 26 471 180,1 216,4

free t[s] 7,0 94,7 36,56 0,68
4/30 colors 10 10 10 0

optimal it 68 153 97,5 39,64
(14%) t[s] 14,5 32,3 20,3 8,1

TABLE II
PEA-DM WITH CONSTANT POPULATION SIZE IN A NODE = 5

Graph mesh size 4 × 4 6 × 6 8 × 8

B W A B W A B W A
colors 11 13 12 11 13 11,6 11 12 11,4

it 26 1440 336,8 5 4594 1022,3 3 1748 262,3
t[s] 1,2 67,5 17,4 0,5 515,6 115,1 2,7 317,3 54

mesh size 10 × 10 12 × 12 14 × 14
huck B W A B W A B W A

|V|=74 colors 11 11 11 11 11 11 11 11 11
|E|=301 it 6 74 38 4 75 32,7 8 29 16,6
χ(G)=11 t[s] 1,6 20,9 11 1,4 32 14 5,2 16,6 9,6

mesh size 16 × 16 18 × 18 20 × 20
B W A B W A B W A

colors 11 11 11 11 11 11 11 11 11
it 15 48 23,7 5 37 20,4 8 25 16,4

t[s] 10,8 34,8 17,5 4,9 34,3 18,8 8,2 28,4 17,3

mesh size 4 × 4 6 × 6 8 × 8
B W A B W A B W A

colors - - - 8 11 9,8 8 11 9,2
it - - - 49 4596 1990 10 4507 1529

t[s] - - - 2,2 185,5 89,5 0,6 319,5 108
mesh size 10 × 10 12 × 12 14 × 14

queen6.6 B W A B W A B W A
|V|=36 colors 8 10 8.9 8 10 8,8 8 9 8,5
|E|=290 it 60 2933 638 7 3580 694,2 31 1725 762,4
χ(G)=7 t[s] 6,2 319 69,2 1 552,7 197,5 6,3 360,2 150,3

mesh size 16 × 16 18 × 18 20 × 20
B W A B W A B W A

colors 8 9 8,3 8 9 8,1 8 8 8
it 49 936 428,3 59 886 469,6 130 917 627,9

t[s] 13 250,8 115,6 19,9 299,3 158,5 54,2 380,3 260,9

size. Two DIMACS graphs were used for this configuration of

the program PEA-DM : games120(120, 638, 9) and david(87,

406, 11). Computations for games120 graph were conducted

with the following settings: random initial population, CEX

crossover, FF mutation and Tournament selection. All exper-

iments were repeated 10 times. Termination condition was

either finding an optimal graph coloring or 500 iterations

completed. Both acyclic and cyclic meshes were considered.

The computational results are presented in Table III (columns

B, W, A contain the best, the worst, and the average results

obtained in 10 experiments, respectively).

For games120 graph the optimal coloring were found for all

acyclic mesh sizes. Only for the mesh 4× 4 a single solution

was not optimal. Changing the mesh size does not influence

the computational time of PEA-DM. In average 500 iterations

lasted about 450 [s]. Also the time of finding solutions was

not influenced.

A variant of PEA-DM with 12 × 12 mesh and CEX

crossover replaced by GPX was also tested for games120

graph. Unfortunately no conflict–free coloring was found, even

with 1500 iterations.

For david graph the conflict–free colorings were found for

all acyclic mesh sizes, but no optimal colorings were met. The

best average results were obtained for 4× 4 mesh (141,4 [s])
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TABLE III
PEA-DM WITH APPROX. CONSTANT GLOBAL POPULATION SIZE = 700

Graph population size 4 × 4 × 43=688 6 × 6 × 19=684 8 × 8 × 11= 704

acyclic mesh B W A B W A B W A
colors 9 10 9,1 9 9 9 9 9 9

it 25 482 221,5 46 297 149 68 397 211,1
t[s] 22 433 232,1 35,5 236,6 117,9 61,7 359,7 190,5

population size 10 × 10 × 7=700 12 × 12 × 5=720
acyclic mesh B W A B W A

colors 9 10 9,1 9 9 9
games120 it 58 405 185 68 380 217
|V|=120 t[s] 44,7 314,6 152,2 63 352,5 201,5
|E|=638 population size 4 × 4 × 43=688 6 × 6 × 19=684 8 × 8 × 11= 704
χ(G)=9 cyclic mesh B W A B W A B W A

colors 9 10 9,2 9 9 9 9 9 9
it 12 329 119,4 19 156 131,7 32 234 120,6

t[s] 12,9 362,5 120 16,2 131,7 81,3 28,7 232,6 110
population size 10 × 10 × 7=700 12 × 12 × 5=720

cyclic mesh B W A B W A
colors 9 9 9 9 9 9

it 87 307 167,2 44 306 178,6
t[s] 76,8 273 155 40 280 163

population size 4 × 4 × 43=688 6 × 6 × 19=684 8 × 8 × 11= 704
acyclic mesh B W A B W A B W A

colors 13 15 13,7 13 14 13,9 14 15 14.1
it 39 493 301,9 123 449 264 151 348 233

t[s] 27 355 216,6 88,5 327 190,1 103 271 168,7
population size 10 × 10 × 7=700 12 × 12 × 5=720
acyclic mesh B W A B W A

colors 14 14 14 14 15 14,4
david it 121 476 197,7 142 364 225
|V|=87 t[s] 85,9 337 141,4 122 288,4 196,5
|E|=406 population size 4 × 4 × 43=688 6 × 6 × 19=684 8 × 8 × 11= 704
χ(G)=11 cyclic mesh B W A B W A B W A

colors 11 16 13,8 13 15 14,2 13 14 13,9
it 56 400 193,4 94 496 223,3 82 426 205

t[s] 41 397 160,5 63 317 148,8 64 336 161
population size 10 × 10 × 7=700 12 × 12 × 5=720

cyclic mesh B W A B W A
colors 13 15 13,9 13 15 13,8

it 90 483 220,4 119 456 263,4
t[s] 73,4 392 179,3 105 396 229

and the worst were received for 12× 12 mesh (229 [s]).

The above experiments were repeated for cyclic meshes.

It results, that in general a smaller number of iterations is

sufficient for the same result. Only for david graph and 10×10
mesh the number of iterations increases but the smaller number

of colors is received. In other cases the number of colors is

similar for acyclic and cyclic meshes. It seems that using PEA-

DM with cyclic meshes is advantageous, since the number of

iterations decreases and the time of computations decreases

too. One exception is david graph and cyclic 10×10 and 12×
12 meshes when longer computations lead to colorings with

lower number of colors. Computational time for performing

the same number of iterations is longer for cyclic meshes.

One can expect that with extra diagonal connections the pro-

cessing time for one iteration in cyclic meshes will increase,

but on the other hand it is quite possible that the computed

solutions will be closer to optimal in terms of the required

number of colors.

VI. CONCLUSIONS

From the above experiments results that efficient computa-

tions with diffusion-based PEA in mesh model are obtained

in configurations with relatively small cyclic meshes with

sufficiently large global population what is very similar result

as that obtained in migration-based PEA in island model. For

instance, 2 × 2 mesh with cross connections is equivalent to

the migration model with four islands, if subpopulations in

mesh nodes and on islands are of equal size.
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[27] Kubale, M. (Ed.): Graph colorings, American Mathematical Society,
2004. DOI: 10.1090/conm/352

[28] Levine, D.: A parallel genetic algorithm for the set partitioning problem,
Argonne Nat. Lab., Argonne, IL, 1996.

[29] Lis, J.: Parallel genetic algorithm with the dynamic control parameter,
Evolutionary Computation, ICEC’1996, Proceedings of the Interna-
tional Conference, IEEE Computer Society, 1996, pp.324–329. DOI:
10.1109/ICEC.1996.542383

[30] Lorena, L. A. N.—Filho, G. R.: Constructive genetic algorithm for
graph coloring, Proc. Asia Pacific Operarions Research Symposium
APORS’97, 1997.
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