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Abstract—In recent years measuring instruments have adopted
general-purpose operating systems to offer the user a broader
functionality that is not necessarily restricted towards measure-
ment alone. Additionally the trend to the internet of things from
which measuring instruments are not immune, e.g. smart meters
and traffic enforcement cameras just to name a few, brings forth
security questions.

In this paper, a flexible software system architecture that can
be constructed out of freely available open source software is
presented which addresses these challenges within the framework
of essential requirements laid down in the Measuring Instru-
ments Directive of the European Union. The system architecture
is based on a modular design assuring correct collaboration
between modules by encapsulating them in different virtual
machines and supervising their communication.

I. INTRODUCTION

A
CCORDING to estimations about four to six percent

of the gross national income in industrial countries is

accounted for by measuring instruments which are subject

to legal control [16], e.g. electricity meters, gas meters, etc.

and their related measurements. In Germany alone, this cor-

responds to an amount of 104 to 157 billion Euros each year

[16]. Hence, manipulations of measuring instruments’ software

could have far-reaching financial consequences. Clearly, spe-

cial measures should be considered to secure such instruments.

In the light that around 98% of the world’s computer

systems are embedded devices [4], security in embedded

systems will inevitably play an important role in computer

science. This fact is further supported by the tendency of these

systems to become more and more connected over insecure

networks, e.g. the internet. Challenges in constructing a secure

embedded system arise due to the increase in complexity,

which is driven by the growing demand for improved capa-

bilities, the digitization of manual and mechanical functions,

and interconnectability.

Nowadays, most of the manufacturers of measuring instru-

ments prefer building their software stacks on general purpose

operating systems (GPOSs), like Linux and Windows, due to

the wide availability of device drivers, software infrastructure,

and applications. These systems were not created with high

security-awareness in mind. Their total embedded software

content often exceeds 10 million source lines of code (SLOC).

The alarming danger becomes clear when knowing that tests

place the number of severe bugs in well-written open source

software code at the rate of about one per 2 000 SLOC [3].

Such a high amount of erroneous code consequentially in-

creases the vulnerability of these systems to attackers because

just one bug could be so severe that a sophisticated attacker is

able to run arbitrary code on the measuring instrument. The

National Vulnerability Database1, for example, reveals such

bugs weekly.

First of all, one should have a look at the basic lawful

requirements a measuring instrument in legal metrology has to

meet with respect to security. Here, consumer protection and

the certainty of a correct measurement are most important. A

consumer must be sure that, for example, a fuel dispenser

is not manipulated to charge more than what was fuelled.

Hence in Europe, member states denominate institutions,

called notified bodies, which are responsible to review the

measuring instruments before commissioning. Current scrutiny

in the laboratory concentrates on the validation of correct

measurements from the hardware parts, e.g. physical sensors.

Software analysis is hampered by obstacles like proprietary

software, where source code cannot be checked. The approval

for commission is often given after a "black box" validation

of the sensors, by application of some test-vectors at the user

interface and the sealing of as many interfaces as possible. The

aforementioned fuel dispenser is stated to be not manipulated

as long as no seal is broken. This assumption is too optimistic,

considering that just one open interface, e.g. an USB-port or

WLAN, can allow a sophisticated attacker to run arbitrary code

by exploiting a single vulnerability.

The remainder of the paper is organized as follows. Section

II provides an introductory part about legal metrology. Section

III describes how virtualization can help to construct a suitably

secure embedded system for measuring instruments. Section

IV together with Section V describe our framework before

it is analysed in Section VI. In Section VII, we give a

conclusion and describe further work to be done for the final

implementation.

II. LEGAL METROLOGY

Legal metrology comprises measuring instruments that are

employed for commercial or administrative purposes or for

1Catalogue of software bugs published by the U.S. National Institute of
Standards and Technology, and the U.S. Department of Homeland Security’s
National Security Cyber Division
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measurements which are of public interest. More than 100

million legally relevant meters are in use in Germany [16]. The

majority of them are used for business purposes, in particular

they are commodity meters for the supply of electricity, gas,

water or heat. Other classical measuring instruments, with

which the end user comes into contact, are e.g. counters

in petrol pumps or scales in the food sector. Measuring

instruments are to a large extent also required in the public

traffic system. Examples are speed or alcohol meters. The

commonality of all these applications is that the person ex-

ecuting or being affected by an official measurement cannot

check the determined result, the parties concerned must rather

rely on the accuracy of the measurement. Hence, the central

concern of legal metrology is to protect and ensure that trust.

In this context, legal metrology does a lasting contribution to

a functioning economic system by simultaneously protecting

the consumers.

The International Organization of Legal Metrology (OIML)

was set up to assist in harmonising such regulations across

national boundaries to ensure that legal requirements do not

lead to barriers in trade. Software requirements for this purpose

are formulated in the OIML D 31 document [21].

WELMEC is the European committee to promote coopera-

tion in the field of legal metrology, for example by establish-

ing guides to help notified bodies (responsible for checking

the measuring instruments) and manufacturers implement the

Measuring Instruments Directive described below.

A. Measuring Instruments Directive

Directive 2014/32/EU of the European Parliament and of

the Council [20], which is based on Directive 2004/22/EC

[19], known as the Measuring Instruments Directive (MID),

are directives by the European Union to establish a harmonized

European market for measuring instruments, which are used

in different member states. The aim of the MID is to protect

the consumer and to create a basis for fair trade and trust

in the public interest. The directive is limited to ten types

of measuring instruments that have a special economic impor-

tance because of their number or their cross-border use. These

are: water meters, gas meters and volume conversion devices,

active electrical energy meters, heat meters, measuring systems

for the continuous and dynamic measurement of quantities

of liquids other than water, automatic weighing instruments,

taximeters, material measures, dimensional measuring instru-

ments, and exhaust gas analysers. The MID defines basic re-

quirements for these measuring instruments, e.g. the protection

against tampering and the display of billing-related readings.

Each measuring instrument manufacturer themselves decide

which technical solutions they want to apply. Nevertheless,

they must prove to a notified body that their instrument

complies to the MID requirements. The notified bodies that

must be embraced by the manufacturers are denominated by

the member states. In Germany, for example, the Physikalisch-

Technische Bundesanstalt (PTB) is such a notified body. The

PTB is furthermore the German national metrology institute

providing additional scientific and technical services, which

is why it achieves the demanded technical expertise needed.

In general, the combination of technical expertise related to

the measuring instruments, competence for the assessment,

monitoring of product related quality assurance systems, and

experience with European regulations, are required. Addition-

ally, it is of particular importance that the notified body is

independent and impartial.

B. WELMEC

WELMEC is the European cooperation responsible for legal

metrology in the European Union and the European Free Trade

Association (EFTA). Currently, representative national author-

ities from 37 countries are part of the WELMEC Committee.

WELMEC Working Groups (WG) are established by the

WELMEC Committee for the detailed discussion of issues of

interest and concerns to WELMEC Members and Associate

Members. Currently, there are eight active Working Groups

and one of them (WG7) is solely responsible for software

questions and issues the WELMEC 7.2 Software Guide. As

of this writing its current version is WELMEC 7.2 Issue 5

[24], with Issue 6 near its completion. The WELMEC 7.2

Software Guide provides guidance to manufacturers and to

notified bodies, on how to construct or check secure software

for measuring instruments. Although it is based on the MID

and its addressed instruments, its solutions are of general

nature and may be applied beyond. The document states that

by following this guide, a compliance with the software-related

requirements contained in the MID can be assumed.

Before constructing a secure measuring instrument software

architecture, it is important to clarify legally relevant parts,

because only these parts are critical, while of course, ensuring

that non-legally relevant parts do not effect legal ones. Ac-

cording to WELMEC 7.2 all modules are legally relevant that

make a contribution to or influence measurement results. These

modules facilitate auxiliary functions like displaying data,

protecting data, saving data, identifying the software, executing

downloads, transferring data, and checking of received or

stored data.

III. CREATING A SECURE SYSTEM

An operating system is the essential component for hard-

ware abstraction in a software system. It acts as an intermedi-

ary between programs and the hardware and, from the security

perspective, plays the most important part in constructing a

secure system. Generally, operating system architectures are

subdivided into two main designs, the monolithic kernel and

the microkernel system architecture2 shown in Figure 1.

In a monolithic kernel system architecture, the entire oper-

ating system is working in privileged mode sharing a single

memory space with the system software, such as file systems

and complex device drivers with direct access to the hardware -

2Often another architecture is mentioned, e.g. Windows is sold as a hybrid
kernel architecture, combining aspects of a microkernel and a monolithic
kernel architecture. We consider this kernel to be a "smaller" monolithic
kernel, because in contrast to a microkernel many (nearly all) operating system
services are in kernel space, like in a monolithic kernel.
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Fig. 1. Comparison between a microkernel (left) and a monolitic kernel
design (right)

in Figure 1 the privileged mode is under the horizontal lines.

The advantage of this architecture is performance, because

user applications are able to access most services, e.g. I/O

devices and TCP/IP networking, with a simple and efficient

system call. The disadvantage of this approach is the resulting

large Trusted Computing Base (TCB). The TCB refers to those

parts of a system (software and hardware) which are needed

to ensure that it works as expected. Therefore, it must be

trustworthy.

In the microkernel design, the microkernel is the only

software executed at the most privileged level. Hence, in

contrast to a monolithic design, services are implemented in

separate processes - in Figure 1 represented as yellow circles.

The motivation to place as much functionality as possible in

separate protection domains, not running in privileged mode,

is to gain stability because, for example, a crash in the network

stack that would have been fatal for a monolithic system is now

survivable. Consequently, the goal of this architecture is to

keep the TCB small and under control as even well-engineered

code can have several defects per thousand SLOC [3]. Hence,

a bigger system has inherently more bugs than a small system

and often a bigger attack surface. For comparison, modern

microkernels have around 15K SLOC and less, the monolithic

kernel of Linux (version 3.6) at least 300K SLOC to a

maximum of 16M SLOC, depending on the configuration.

A. Virtualization

A major drawback in constructing a new software system

on a microkernel is that drivers and software libraries available

for known GPOSs, e.g. Linux which uses a monolithic kernel

design, need to be ported, or in the worst case, completely

rewritten. Virtualization seems to be the right solution to

incorporate the best implementations of both architectures in

a single system. Virtualization can be divided into two main

approaches [13]. Pure virtualization - sometimes also referred

to as faithful or full virtualization - supports unmodified

guest operating systems, running atop another kernel, safely

encapsulated. The advantage of this approach is that closed-

source operating systems are directly executable. Commod-

ity processors often do not have adequate support for pure

virtualization, requiring complex technologies, such as binary

translation, to be used [1]. For the second approach, called

para-virtualization, the guest operating system is presented

with an interface that is similar but not identical to the un-

derlying hardware to make virtualization possible. To improve

performance the guest operating system is often modified. The

approach used depends on the guest operating system that

should be employed and the hardware features available.

In the past, embedded systems used to be relatively sim-

ple devices and their software was dominated by hardware

constraints, which made virtualization unattractive. Nowadays,

most embedded systems have the characteristics of general

purpose systems and increasingly have the power to actually

run applications built for PCs. This power together with the

low development costs for a board combined with virtualiza-

tion technologies like ARM TrustZone [5] makes virtualization

in the embedded world - and therefore in measuring instru-

ments - attractive.

A strong motivation for virtualization is security. By running

an operating system in its own environment safely encapsu-

lated - a so called virtual machine (VM) - the damage of an

attack is restricted to this virtual machine because access to

the rest of the system can be prohibited, as shown in Figure

2.

Fig. 2. Left VM’s general-purpose operating system (GPOS) is compromised
by a pernicious application. Due to isolation the other VMs are not vulnerable

The access is not just restricted to the VM, the whole

hardware access can be redirected through the underlying

kernel through virtualized device drivers, preventing direct

communication with the hardware or any hardware access

at all. This isolation can only be assumed if the privileged

software managing the virtual machines, called virtual ma-

chine monitor (VMM) or hypervisor3, is correctly imple-

mented. A microkernel, because of its minimality principle,

seems to be a good choice for implementing a hypervisor

[9, 17, 15, 10, 8, 22].

B. Policies of a Secure System

Multiple Independent Levels of Security/Safety (MILS) is a

high-assurance security architecture based on the concepts of

separation and controlled information flow. The foundation

of the system is a small kernel - as used in our design

3In this paper we do not differentiate between a VMM and a hypervisor
as sometimes done. Both refer to the underlying (micro-)kernel.
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- implementing a limited set of critical functional security

policies. This special kernel, often called separation kernel

or partition kernel, implements the policies for information

flow control, data isolation, damage limitation, and periods

processing [2].

• Information flow control ensures that information cannot

flow between partitions unless explicitly permitted by the

system security policy

• Data isolation ensures a partition is provided with mech-

anisms whereby isolation within it can be enforced

• Damage limitation ensures that a bug or attack damaging

a partitioned application cannot spread to other applica-

tions

• Periods processing ensures that information from one

component is not leaked into another one through re-

sources, which may be reused across execution periods

As stated in Section III, modern monolithic kernels and whole

GPOSs consist of tens (sometimes hundreds) of millions of

SLOC. Hence, they are too difficult and expensive to evaluate.

The separation kernel, which, with sometimes no more than

10K SLOC, is small enough to be thoroughly evaluated and

mathematically verified for the highest assurance level. The

applications managing sensitive data are then built on top of

the secure separation kernel. An advantage of this approach is

its modularity, allowing software of varying security demands

to run on the same microprocessor by means of software

partitioning through the kernel. This way the MILS security

policies are also stacked, meaning that a module layered

atop the separation kernel cannot circumvent the enforced

restrictions which the separation kernel defines for it.

IV. OUR FRAMEWORK

Our proposed framework, shown in Figure 3, consists of

three parts. The big block on the right is the VM for the non-

Fig. 3. Framework

legally relevant software (N) and the block next to it is the

VM for the legally relevant software (L). In the L VM all the

computations that are needed for the measurement procedure

are executed, e.g. image processing in a traffic enforcement

camera. The N VM is only allowed to run software that has

no measurement purpose, e.g. like showing the manual or

starting a calculator. This strict separation ensures that non-

legally relevant software has no effect on the legally relevant

one, as postulated in the MID. On the left hand side the

smaller blocks form our framework. Their general purpose is

to supervise the communication between the L/N VM and the

hardware. These modules can be native microkernel processes

or VMs themselves. In our opinion the VM approach seems to

be the better one, because communication between the indi-

vidual VMs can take place through network protocols already

implemented in the GPOS and the GPOS device drivers can

be used [6, 10]. Through the implemented network stacks

virtual private networks (VPNs) can be created to encrypt

communication. The VM approach even allows modules to be

transferred out to different computers, creating a distributed

system over a network. A disadvantage of this concept is the

invalidation of the minimal implementation principle, which

should be counteracted by using minimal configurations for

the GPOS.

Our framework consists of inclusively legally relevant mod-

ules, fulfilling legally relevant functions, as demanded in the

WELMEC 7.2 Guide and mentioned in Section II-B. The

mapping of the functions to the modules is as follows:

• Displaying data: Secure GUI

• Protecting data: Key & Signature Manager

• Saving data: Storage Manager

• Identifying the software: Inspector

• Executing downloads: Download Manager

• Transferring data over network: Connection Manager

• Recording modifications: Logger

The Communication Monitor redirects queries from and to

the I/O devices, e.g. sensors and keyboard. Finally the Event

Monitor is a watchdog, running availability checks of the

software to dynamically spot manipulations.

A. System Requirements

The confidence of a user in a modular system is based on

their confidence in the individual system components. Thus an

important aspect of the system is the necessity of a secure boot

mechanism, where all modules are checked for authenticity

and integrity. Only starting from an untampered kernel on

an untampered central unit, the kernel can check the other

modules for authenticity. In the case of measuring instruments,

where seals are used to detect hardware manipulation, the

boot-loader should lie on a separate tamper-proof sealed

storage unit, that is not readable/writeable for the other system

components. The first check then starts at the boot process

where, for example, the hash value, e.g. SHA-2, of the kernel

binary is calculated and checked with the pre-calculated value

stored in the storage unit of the boot-loader. If the two values

are identical, the kernel can be loaded and starts with similar

tests on the individual modules.

After a successful boot process confidential conversation

channels between the VMs must be established. The most

important system requirement is a correct microkernel / VMM,

that enforces isolation of the VMs and has no covert commu-

nication channels. It must be impossible to subvert the VMM

or to attack other VMs through a compromised VM. The

microkernel needs to assign unique unchangeable identifiers

to the virtual network interface controllers of the VMs and

must create buffers for every virtual connection the system
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needs. The buffers are not directly accessible by the VMs,

they only simulate a network transmission.

There must be a mechanism to switch from legally relevant

to non-legally relevant mode. A hardware switch accessible

by the VMs would be an example. If the switch is set to legal

mode, every input from devices that can be used for non-

legally relevant tasks, e.g. a keyboard, would be redirected

to the non-legally relevant VM, and to the legally relevant

VM, the other way around. Another method would be to use

a touch screen that is divided into legally relevant parts and

non-legally relevant ones.

The scheduler implemented must ensure fixed runtimes for

every VM to ensure worst-case response times and to mini-

mize the potential for denial-of-service attacks. A measuring

instrument is a real time system, meaning that, if within a

maximum time frame measuring tasks are not completed,

failure has occurred. Therefore, absolute worst-case execution

times (WCET) for the VMs must be guaranteed. An advantage

of our system and of embedded systems in general is their

static behaviour. The amount of needed VMs remains constant

over the whole execution time, therefore a static schedule can

be declared from the beginning. A temporal partition schedule

should be applied [11], assuring that VMs do not starve, i.e.

do not get execution time. Each VM is provided a window

of execution within the repeating timeline. In our framework

some VMs, e.g. the Connection Manager that is responsible

for redirecting interrupts, could be split into more than one

window of execution. In this way, the system can react faster

to input devices.

B. Distributed System View

As already mentioned, we have built a virtual distributed

system in which the VMs communicate through a virtual

network. The microkernel ensures that the network is reliable,

hence for the transport layer protocol we can use UDP. For

security reasons the network layer protocol used when a VM

communicates with the Connection Manager should be IPsec

in Transport Mode. To encrypt the packets IPsec uses the

mechanism Encapsulating Security Payload (ESP), encrypting

the payload by the symmetric encryption algorithm AES-

CBC with the keys, that are being managed by the Key &

Signature Manager. Communication between other VMs is not

that critical and, therefore, does not need encryption.

For the application layer a protocol must be defined that

encapsulates the commands and data. Thereby every VM could

use its own protocol or interpretation of payload, e.g. the

Storage Manager accepts requests like storing data to disk or

getting data from disk, which other VMs do not need. Hence,

every VM needs to know the structure of the protocols which

other VMs use, if they want to communicate with each other.

Each VM has a server application that listens to a predefined

port to receive and afterwards respond to the queries. In our

architecture, the VMs fulfil client and server duties because

they redirect tasks to and process tasks for other VMs, which

makes them so called servents. The VMs can be divided into

three core layers: the user interface layer, the processing layer,

and the data layer. Tasks for the user interface are executed

by the Communication Manager that redirects I/O from and

to devices, the Secure GUI, which displays the graphical user

interface (GUI), and the Connection Manager communicating

to the outer world. The processing is done by the L/N VMs,

the Inspector, the Event Monitor, and the Download Manager.

Finally the data is managed by the Key & Signature Manager,

the Logger, and the Storage Manager. If the scope is to

construct a real distributed system, the only modules needed

on the measuring instrument are the user interface layer VMs

and the Event Monitor, all the other modules can be outsourced

to other machines.4

V. DESCRIPTION OF THE INDIVIDUAL MODULES

By dividing the framework into modules, it can be tailored

individually for every measuring instrument. For example, if a

measuring instrument does not need a download mechanism,

the Download Manager should be removed and if it does not

need network access, the Connection Manager is unnecessary.

Besides the L VM, the modules every measuring instrument

needs, are the Key & Signature Manager, the Inspector, the

Logger, the Communication Monitor, and the Event Monitor.

A closer look at the individual modules is given below.

A. Event Monitor

The Event Monitor is an autonomous watchdog timer that

ensures correctness in the event of a delay that could harm

the measurement. In extreme cases, it even deletes or marks

measurements as invalid. Additionally, the Event Monitor can

advise the Inspector to automatically check the system for

integrity, which then reports errors to the Logger or advises

the Event Monitor to shut down the system. Every module

announces to the Event Monitor in fixed intervals that it is

sane. If a module is not responding, the Event Monitor can

restart it. For restarting VMs or shutting down the system,

the Event Monitor needs special access rights that no other

module has.

B. Key & Signature Manager

The Key & Signature Manager is responsible for assuring

confidentiality and integrity by managing the public keys of the

VMs which want to communicate to the outside world over the

Connection Manager. The Key & Signature Manager serves

as a certification authority (CA), assigning and dispensing

public keys to the corresponding VMs, which are in turn used

to negotiate a symmetric key. The manager should have, as

every module has, exclusive rights to a portion of the storage

device to hold sensitive information. Every VM has its own

key database holding the symmetric keys. If a public key gets

changed, the manager informs the other VMs to renegotiate

a symmetric key. If a key is compromised, the certificate

can be invalidated and the respective VM can be prompted

to regenerate a key pair and to transmit the new public key

4When using an open network reliability is not ensured, therefore TLS
should be used as the transport layer protocol, which the Connection Manager
should enforce for network communication.
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to the manager. Only an authorized entity should be able to

command the Key & Signature Manager in this way, even

a sealed hardware switch could be possible that needs to be

broken to allow the reassigning of keys.

Furthermore, the manager incurs the protection of legally

relevant data by holding the keys for file system data en-

cryption and the hash values of the SoftwareIDs for integrity

checks at boot and runtime.

C. Connection Manager

The Connection Manager is the only VM with physical

network access. All data transmitted from and into the network

goes through this module. Hence, the Connection Manager

is critical from a security point of view. The manager is a

firewall for the system, analysing received data and, according

to its rules, redirecting the packets to the appropriate VM. For

this purpose, a well-defined protocol must be established. If a

packet does not conform to the protocol or the firewall rules,

it is discarded.

Another one of its duties is the encryption of legally

relevant data in transit, by building up a VPN to only trusted

end-points. Data coming from other VMs is itself already

encrypted by the symmetric keys the individual VMs have

pre-negotiated with the end-points, and cannot be read out

by the Connection Manager. It can only be redirected. In this

way a compromised Connection Manager is not able to modify

data. Non-legally relevant data can be send unencrypted, but

firewall rules for outgoing packets should be obeyed.

D. Inspector

The Inspector serves as a remote attestation server for

market surveillance. A measuring instrument shall be de-

signed to allow surveillance control by software after the

instrument has been placed on the market and put into use.

Hereby, software identification shall be easily provided by

the measuring instrument. To achieve these requirements the

Inspector module is indirectly accessible through the network.

The Connection manager redirects the network packets after

checking if an authorized person is connected to the device.

After connection establishment the Inspector module can ad-

vise the Storage Manager to check the file-system and the

individual measurements for integrity, to transmit and check

the identifications of all modules, to advise the Logger to print

out the logging, to check for enough storage capacity and if

needed to check the other modules for malware. Finally, it can

advise the Key & Signature Manager to invalidate and incur

public keys.

E. Download Manager

In legal metrology, legally relevant software can only be

updated if the software update was checked prior to download

on the device, and afterwards by breaking a seal. Downloads

for non-legally relevant parts are allowed without new check-

ing. In our system architecture this is no problem due to the

strict isolation. Before legally relevant software is updated, the

Download Manager checks if the sealed hardware switch for

downloading legally relevant software is set. If this hardware

switch is set, measuring must be disabled. For non-legally

relevant updates it only must be ensured that the computational

time the download mechanism needs, does not disturb correct

measuring. Therefore the Download Manager should get a

minimum running time, if a non-legally relevant software

download is performed.

An upload can take place through different interfaces. If

the download is started through the ethernet interface, the

Connection Manager receives the request and redirects the

download to the partition of the Download Manager through

the Storage Manager. If another interface is used, e.g. USB,

the data goes through the Communication Monitor. After

the download is finished the respective module informs the

Download Manager that checks the update on its partition for

authenticity and integrity through hash values. If everything is

correct the Download Manager advises the Storage Manager to

copy the update to the legally relevant or non-legally relevant

partition, respectively. Afterwards, the Download Manager

reports the download to the Logger and advises the Event

Monitor to restart the legally and/or non-legally VM.

F. Communication Monitor

The Communication Monitor supervises the queries from

and to the I/O devices. This module ensures that user input and

software cannot influence measurement data in an unwanted

way, that peripheral devices can only be accessed by legally

relevant software, and that the transmission of data from the

legally relevant VM to the non-legally relevant one is licit.

If an input device is allowed to send data to the non-legally

relevant VM, a switch must be set as described in Section

IV-A.

This Monitor serves as a kind of firewall for internal

communication of the legally relevant VM, blocking packets

that do not conform to well-defined rules and checking that

confidential data is not transmitted to the non-legally relevant

VM. The communication monitor is the only VM that has

direct access to the peripheral devices besides the physical

network card (accessible by the Connection Manager),the

display (accessible by the Secure GUI) and the storage device

(accessible by the Storage Manager). Other modules can just

communicate with each other through their virtual network

cards. An interrupt from an input device is first directed to

the Communication Monitor, which in turn translates it to a

network package and sends it to the legally relevant VM.

G. Secure GUI

Non-legally relevant output must be unambiguously marked

to distinguish it from legal one. The Secure GUI supervises

this output to the screen and is the only VM that can write

directly to the screen. One possible way is to define selected

parts of the screen to the legally relevant software that cannot

be changed by the non-legally relevant VM. Another solution

is to change the running mode via a hardware switch. Hence,

when the switch is set non-legally relevant software cannot

write to the screen. In either case the Secure GUI module
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conducts the buffering for both VMs. For that purpose the

legally relevant and the non-legally relevant VMs could each

have their own virtual video card driver which redirects

requests to the Secure GUI, which in turn visibly separates

the output for the user. Another solution is to communicate

the screen output through the virtual network cards, by using

a well-defined protocol to winnow the screen output data from

other message data. By using this solution, the Secure GUI

communicates the same way with the VMs as every other

module and no extra driver must be written, respecting the

minimality principle.

H. Storage Manager

The Storage Manager is the only VM with access to the

storage device. Every other module that wants access to its

storage partition must send the read and write commands

through network packets. The Storage Manager assures strict

isolation of the individual module’s stored data in use. It

checks the module’s file permissions, making sure that no

illicit manipulation of data takes place. It is also responsible

for the encryption of data-at-rest, making the file-system data

unreadable if the key is unknown. In the case of errors, the

Storage Manager informs the Logger and in extreme cases,

e.g. no storage capacity and nothing can be deleted, the Event

Monitor to shut down the system.

I. Logger

The Logger is responsible for tracking interventions. On

interventions and errors the other modules inform the Logger,

by sending him a network packet. This massage is then

concentrated to an aligned format and transmitted to the

Storage Manager. On demand the Logger sends its log-file

to the Inspector, which in turn may send it to the Secure GUI,

the Connection Manager or the Communication Manager to

transmit it to other devices.

VI. ANALYSING THE SYSTEM

We analyse the system by showing that the policies that

should be implemented according to MILS, to be specific,

data isolation, information flow control, damage limitation and

periods processing, are upheld.

A. Data Isolation

Data isolation is generally enforced by the component archi-

tecture principle and by using a theoretical verified separation

kernel as our VMM. Hence, data isolation between the VMs

can be presumed. As we also enforce the least privileged

principle, our untrusted VMs running the variable software,

i.e. the L and N VMs (see Section IV) have no direct access

to the outside world. Their software must be checked by an

independent expert validation, as done by the notified bodies,

to ensure data isolation inside the VMs. Data-at-rest security

is managed by the Storage Manager, which is responsible for

the isolation and encryption of data on the storage device.

B. Information Flow Control

Every VM is provided with a virtual network interface

for communication. The separation kernel ensures that no

other communication is possible. Information from the outside

world, i.e. from peripheral devices and network, go through

the Communication Monitor and the Connection Manager,

respectively. These VMs, in turn, communicate with the other

VMs after carefully checking conformity to a well-defined

protocol, as mentioned in Section IV-B, and checking access

permissions enforcing the least privileged principle. Through

unique network card numbers (MAC-address) the commu-

nication partners are known and cryptography protects the

confidentiality and integrity of their communication.

C. Damage Limitation

The directly exposed VMs are the Communication Monitor

and the Connection Manager, because they are the only VMs

accessible through peripherals from which attacks could be

mounted (NIC, USB, SD, ...). These, in turn, have no direct

access to the storage device and no access to measurement data

as the least privileged principle is applied. To prevent damage,

the minimal implementation principle must be followed, hence

the modules, which are not just processes but VMs with

GPOSs, must have minimal configurations. A verified network

stack and network interface card driver would drastically

reduce the attack vectors.

As described in section III-A, virtualization adheres to the

component architecture principle, limiting the damage to the

respective VM in which it occurs. Additionally, independent

expert validation by the notified bodies ensures damage limi-

tation in the legally relevant VM.

Another measure taken is monitoring performed by the

Event Monitor. If a VM does not conform to its predefined

rules, the Event Monitor notices the misbehaviour and takes

action, e.g. reloading and restarting the module. In the worst

case, the Event Monitor can shut down the system.

D. Periods Processing

The separation kernel must ensure that no hidden channels,

through which information could leak out, are present. These

could arise due to scheduling because the VMs run consecu-

tively often using the same resources, e.g. shared caches.

Another way of getting secret information is to exploit

variations for covert channels or side channel attacks. In

general, side channel attacks benefit from variations, e.g. in

timing, power consumption, electromagnetic emanation and

temperature, to gain information of a cryptosystem. A high-

awareness security system should be tested for side channel

attacks and should take sophisticated attacks into account,

e.g. cache-based side channel analysis [18]. A covert channel

exploits the same variations as a side channel attack but is used

by malicious processes to exchange information. For example,

a VM could try to reduce or extend its execution time, which

then can be analysed by the ensuing VM to gain information.

Most of the counter-measures are taken by the separation

kernel or can be taken care of by special hardware. Covert
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channels that arise due to the scheduling policy must be con-

sidered separately. As mentioned in Section IV-A, a partition

schedule should be employed to eradicate timing variations in

the scheduling process because every VM has its fixed running

window, which cannot be released. To ensure that a VM cannot

delay the beginning of the execution time of the ensuing VM,

e.g. by a system call before the end of its execution window,

a time buffer is needed between the VMs.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented a framework for a new se-

cure system architecture for measuring instruments in legal

metrology. We constructed our architecture by analysing the

requirements for measuring instruments demanded in the

MID and the WELMEC 7.2 Software Guide, combined with

methodologies and concepts from high-assurance software

systems, i.e. MILS. To harness device drivers and network

stacks of general purpose operating systems we came to the

conclusion that virtualization is the right solution to combine

security with usability. We took a three-pronged approach.

First, we separated the legally relevant parts from the irrelevant

ones by putting them in different virtual machines. Second, we

made sure that their virtual machines have no direct access

to I/O devices. Lastly, we constructed a secure framework

which provides services to these VMs. This framework, also

consisting of separated VMs, monitors the information flow,

correctly delegates requests from and to I/O devices, and helps

control agencies to verify instruments in commission.

A. Future Work

To show the feasibility of our approach, we have started to

build a system atop a L4-microkernel. In our opinion, the L4-

microkernel family is a good choice because it is widely used

and consists of third generation microkernels. One of these

microkernels (seL4) is even fully verified [12] inferring that

classical security threats against operating systems, like buffer

overflows, null pointer dereferencing, arithmetic overflows,

arithmetic exceptions, pointer errors and memory leaks, are

not possible. Another positive aspect of many L4-microkernels

is that a binary compatible para-virtualized Linux is available.

For our demonstrator (PandaBoard Rev. A3) we used L4Linux

running atop the open source Fiasco.OC L4-microkernel which

yields good results even for real-time applications [14].

Our main goal is to construct a configurable framework,

applicable for every measuring instrument under legal control.
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