
Service Design and Distributed System Reliability in Intelligence Information

System Based on Service-Oriented Architecture

Abstract—This paper presents the model of Intelligence

Information System (IIS) based on a Service-Oriented

Architecture. In this paper we propose the new service’s model,

based on the Intelligence cycle and other systems which are

necessary for gathering Intelligence information and data.

The paper is mostly focused on the system architecture and

services design as a mainstream for definition of the services.

Furthermore, additional attention is dedicated on the

Distributed System Reliability (DSR).

I.INTRODUCTION

NTELLIGENCE Information System Model gives

contribution in Homeland Security and Civil Military

Emerging Risks assessment through the possibility of

providing information in an appropriate way, by imple-

menting pushing and pulling mechanisms into informa-

tion systems, selection of data and creation of information

from raw data that can be used in creating intelligence

products and dissemination reports for the authorities.

I

In the Intelligence Information System, which is based

on SOA, are applications written in different program-

ming language. The service design should provide inter-

operability between applications. It indicates that the ser-

vices written in different programming languages are ca-

pable to communicate. In this connotation, processing el-

ements (web servers, application’s servers, sensors for

collecting data and so on) can create distributed environ-

ment for sharing information. SOA based multi-tier ap-

proach provides legacy systems to be hooked up in a new

infrastructure where the new systems and legacy systems

can communicate without complexity in communication

protocol (SOAP messages).

In the phase of creating distributed systems, it is crucial

to have metric for distributed system reliability. It pro-

vides appropriate distribution of the system’s compo-

nents, because introduced algorithm for distributed sys-

tem reliability shows where the gaps in the systems are.

Also, the designers of a system can achieve higher level

of system reliability using the distributed system reliabil-

ity metric. In the distributed system, each node can

present service and each service can present system, sub-

system or processing element. Consequently, each service

in the architecture has certain value of reliability. These

values of reliability are very important for system design-

ers.

The paper is organized as follows. Section 2 presents

related work about the research presented in the paper.

Section 3 is dedicated to architecture of the system. In the

Section 3 are presented different levels of the system ar-

chitecture and how they are connected. Section 4 presents

service design where it is mostly focused on service inter-

face. Section 5 demonstrates the algorithm for computing

distributed system reliability and we implement GEAR as

an algorithm for the system reliability. Finally, in the Sec-

tion 6, concluding remarks of the paper are presented.

II.RELATED WORK

In [3], the quality attributes of loose coupling and au-

tonomy for services in the context of service-oriented ar-

chitecture are given. In order for services to be influenced

by these quality attributes, an evaluation should be done

during the phase of development of service design. Ac-

cording to [3], the recent research is focused on the tex-

tual description of the desired quality attributes and the

thereby resulting formalized metrics require more infor-

mation than the already available, or are based on theoret-

ical models that hamper their applicability. In this paper,

we present quality indicators for unique categorization,

loose coupling, discoverability and autonomy. Formalized

metrics is created for each quality indicator, in order to

measure service candidates and service design in the Ser-

vice oriented architecture Modeling Language (SoaML)

[4], the standardized language for modeling service – ori-

ented architecture. To illustrate the metrics and to verify

their validity, service candidates and service designs of a

campus guide system as developed at the Karlsruhe Insti-

tute of Technology, are evaluated.

In [6], a study of service reliability and availability for

distributed systems is presented. The study gives an appli-

cation example in order to explain usefulness of the

GEAR algorithm. Furthermore, in the paper is presented

research about reliability of modeled centralized hetero-

geneous distributed system (CHDS). Also, in the paper is

studied implementation of availability function of virtual

machine.

III.ARCHITECTURE OF INTELLIGENCE INFORMATION SYSTEM

General architecture of Intelligence Information Sys-

tem prototype is presented on Figure 1. As a result of sys-

tem complexity, the solution is presented as a layer model

of architecture.

On the lowest level, IIS prototype has distributed sys-

tem which consists of heterogeneous databases. In this

case, most important database for IIS is database which

holds data for users who use it. Intelligence center has re-

sponsibility for this database.

OpenDocument Template for Preparation of Papers for

FedCSIS Conference

Jugoslav Achkoski
Military Academy “General Mihailo Apostlski” –

Skopje, associate member of “Goce Delchev”

University - Shtip str. Vasko Karangelevski NoN,

1000 Skopje, Macedonia

Email: jugoslav.ackoski@ugd.edu.mk

Vladimir Trajkovik
Ss. Cyril and Methodius University, Faculty of

Computer Science and Engineering str. Ruger

Boskovik 16, 1000 Skopje, Macedonia

Email: vladimir.trajkovik@finki.ukim.mk

Position papers of the 2014 Federated Conference on

Computer Science and Information Systems pp. 211–217

DOI: 10.15439/2014F47

ACSIS, Vol. 3

c© 2014, PTI 211

Access to a separate database will be made with appli-

cation logic of module, which is part of internal informa-

tion systems on government institution. This application

should provide interfaces to the integration logic level

[8], [9].

Integration level is a key level for our IIS model. That

level should provide services through workflow which

will be connected with modules of internal information

systems and their transformation into web services. As a

result of provided web services, integration level should

exposed them into appropriate web services registers de-

pending of security level. This level also govern security

polices and polices for exchanging and adopting mes-

sages from different sources, in case of usage in compara-

ble format. Finally, this level is taking care for gover-

nance of the services offered by IIS in a way of transac-

tions when it is needed. With one sentences, this level is

providing the functionality of the services in IIS.

The services should be available for different cate-

gories of users. For the purposes of protecting Intelli-

gence Information System, firewall should be installed

behind this level, which is followed by the level of pre-

sentational logic.

The presentation level can be implemented in a form of

portal, which can offer: list of web services over approach

to service registries, integration of web services with e-

mails or directly as far procedure call of the applications

(RPC) in a standard format (XML), but also as a ordinary

HTML text for separated union of services – users. Ex-

changing information with external information systems

is achievable through communication network, where IIS

model is protected with another additional firewall. In this

way, maximum protection from unexpected system fail-

ures is accomplished [8], [9].

IV.SERVICE DESIGN

In the process of service design it is possible services to

be implemented in an existed platform or in the new plat-

form, which will be created as a state-of-the art solution

with straightforward purpose. This distinction is impor-

tant, because our model allows web service to be imple-

mented in both of these cases. Exploiting the services in

such a way allows easy building of novel modules within

information systems architecture and additionally, allows

taking a pace with a contemporary ICT technology.

We propose coupling as a way for measuring service

design. In the Intelligence Information System achieved

desired level of coupling allows integration of subsystems

and sensors as service providers with minimum number

of connections between services. For example, if new

sensor is added to the system, the communication that

should be established between sensor and application

server or other processing elements in the system does not

imply that every server should establish communication

with the new sensor [11].

In terms of service granularity (scope of functionality

exposed by the services), it is the most convenient to cre-

ate coarse-grained interfaces that implement a complete

business process.

The coarse-grained interface should provide access to

the data from different software artifacts and processing

elements in the system depending of the user require-

ments [7]. It indicates that in the IIS sensors and other

hardware components, which should be connected, have

to exchange information in order to provide information

for the senior decision makers or other end users. These

components are based on different programming language

(C++, JAVA, C and so on) and if the service’s interface is

not implemented in the applications, they could not ex-

change their data types. For instance, if application is

written in JAVA and interface for this application is cre-

Fig 1. Prototype of Intelligence Information System Architecture

212 POSITION PAPERS OF THE FEDCSIS. WARSAW, 2014

ated in JAVA, then application written in C++ could not

use this JAVA interface, because data types (string, inte-

ger, float and so on) in JAVA and C++ are not treated in

the same way. In our approach, the service’s interface is

based on XML, because applications written in different

languages can exchange their data using WSDL (Web

Service Definition Language). WSDL provides interoper-

ability between applications.

A.Service contract based approach

The Service oriented architecture Modeling Language

(SoaML) specification defines UML profile and meta-

model for designing services within service-oriented ar-

chitecture. Goals of SoaML refer to support activities at

the stage of modeling and designing services and invoke

them in model-driven development approach (MDA). It

should support SOA in business and IT perspectives

[1], [2].

SoaML specification defines three different types of

approaches for specifying services:

• The simple interface based approach uses an UML

interface to specify a one-way service interaction

[1] [2].

• The service contract based approach extends an

UML collaboration to specify a binary or n-ary

service interaction [1], [2].

• The service interface based approach extends a UML

class to specify a binary or n-ary service interaction

[1], [2].

Different SoaML approaches recommend usage of di-

vided UML parts which mean that reading SoaML speci-

fication is not understandable. Because of the reasons pre-

viously mentioned, problems in designing information

systems emerge in software engineering [1].

A service contract based approach defines service spec-

ifications that define functions of service stakeholders

(consumer and provider) and interface that implements

these functions. In order to fulfill services’ tasks inter-

faces must implemented services’ function. Interfaces are

types of ports in service-oriented architecture that re-

quires each stakeholder to accomplish its task in the ap-

propriate service contract [1].

The service contract based approach increases the

UML collaboration in the model that present structured

part of services’ interactions. It can be used for specifying

services that include contractual obligation, i.e. an agree-

ment between two or more parties, which is relevant for

circumstances of already established interaction patterns

between the participants. These interaction patterns are

used for exchanging messages and specifying interfaces

between participants [1].

In order to demonstrate service contract based ap-

proach we are using services that make part of Intelli-

Fig 2. Specification of the Direction service, consisting of two roles, their

respective consumer and provider interface type, and the corresponding

ports on the participants

 Fig 3. Specification of the Intelligence service contract, Fig 4. Specification of the Intelligence service choreography

 consisting of three roles, the respective consumer interface

 and the two provider interface types

JUGOSLAV ACHKOSKI, VLADIMIR TRAJKOVIK: SERVICE DESIGN AND DISTRIBUTED SYSTEM RELIABILITY 213

gence Information System. Services should contribute in

defining a binary service contract, a multi-party service

contract and a compound service contract that contributes

to explaining service contract based approach. First, we

suppose that Direction service contract can be modeled as

two independent service contracts. One of them should

specify an interaction for placing directions and another

one should specify an interaction for taking directions in

the process of intelligence information collection. Fig-

ure 2 shows specification of Direction service contract,

consisting of two roles, namely their respective consumer

and provider interface: DirectionPlacer and Direction-

Taker [1].

The service contract shows that there is dependency be-

tween these two types of interfaces and they have to be

modeled with UML dependencies. Participants use inter-

action in service contract and fulfill their tasks through

appropriate interface. The binding between these inter-

faces is established by ports. From the role bindings in the

services architecture we deduce that the Authorities have

a request port typed by the DirectionPlacer interface, and

the Information Collector has a service port typed by the

DirectionTaker interface.

In this example service contract presents packing of

two interfaces, providing that two interfaces are part of

one service specification and not specified as a two inde-

pendent service specification as two separate interface.

Furthermore, it is recommended that a behavior on ser-

vice contract is specified, i.e. a service choreography or a

service protocol. Actually, there is a disagreement on

whether a specification of service choreography should be

used for understanding design of service interface in or-

der to support exchanging message. SoaML is agnostic

with regards to behavioral modeling and basically states

that any UML behavior, e.g. interaction models, activity

models or state machines, can be used [1].

The service contract based approach is convenient for

specifying interaction between two or more roles that are

introduced for establishing an agreement such as, for ex-

ample, a message exchange. Service contract can be also

applied as a reusable specification element, which can be

re-used during the design time for connecting different

stakeholders. In addition, this approach supports model-

ing of multiparty service contracts including three or

more participants, as well as modeling of compound ser-

vice contracts where the existing service contract can be

used for defining several granular service contracts [1].

Figure 5 can be used to elaborate multiparty service

contract. In our service model, we use Intelligence service

contract where the interaction between the requester and

Fig 6. The graph of the Intelligence Information System - based on SOA

Fig 5. The dataflow in the Intelligence Information System - based on SOA

214 POSITION PAPERS OF THE FEDCSIS. WARSAW, 2014

the provider of information is mediated by Intelligence

broker.

Figure 3 shows the specification of Intelligence service

contract with three roles: information requester, informa-

tion provider and intelligence information broker. These

three roles have independent types of consumer and

provider interfaces called Requester, Provider and Intelli-

gence. The dependencies between the interfaces are ex-

plicitly modeled using UML dependencies. Stakeholders

also have ports whose function is to connect services in

service-oriented architecture.

Figure 4 shows the specification of the service chore-

ography using UML interaction. Here we should notice

that this is multiparty service contract, since the requester

interacts directly with the information provider through

delivering of messages. Except for the direct message de-

livering interaction, all other interactions pass through In-

telligence broker. Service interaction starts with require-

ments for intelligence information toward the intelligence

broker. At a later time a delivery is made which is either

accepted or a grievance is sent to the broker and for-

warded to the provider, who may file a justification in or-

der to clarify whether to accept or ignore the require-

ments.

V.THE DISTRIBUTED SYSTEM RELIABILITY OF THE

INTELLIGENCE INFORMATION SYSTEM

The purpose of the GEAR algorithm is to compute ac-

curacy of distributed computer system, which actually is

composed of memory units, processing elements, and

other hardware and software. Probability of application or

service to be accurately executed in a distributed system

is called availability of the distributed system.

In one distributed system, the nodes can present mem-

ory units, processing elements and programs (see Figure

5). The nodes can exchange data through a communica-

tion network in order to execute a program from separate

nodes. Failures of the communication links or failures of

the services in the distributed computer system, decrease

the level of system performance and availability of the

system. The level of success of one program in one node

in distributed computer system depends on availability

(successful program execution) of all other nodes, which

indicates that the node have to be accessible from all

other programs required for the appropriate program exe-

cution and also, communication links should be available

without failures.

To compute DSR for IIS, we select GEAR, which is

dedicated for computing reliability of links in computer

networks. We introduce following assumptions:

• The RV maintains the information about links in the

computer network [6];

• If link is operational, it has value 1 and if not, it has

value 0 (faulty) in reliability expression;

• The “d” represents the link when we do not know

whether link is operational or faulty and it is not com-

puted in reliability expression;

• The LV has information about the edges that are tra-

versed in the subnetwork [6];

• Each service presents self-contained processing ele-

ment, and we can assume that they are self-contained

node;

• The structure of the IIS is modeled as a graph and

the graph does not have any loops [6], [9];

On Figure 6 is presented graph topology of distributed

system, which is based on schema of Figure 5.

According to above mentioned assumptions, the

dataflow in Figure 5 and the graph in Figure 6, in order to

compute DSR of Intelligence Information System, we

have to combine these pieces as in Table I. To be more

precise, we can use the table to update RV and LV, be-

cause it gives a clear explanation how services, links and

nodes are connected b/w each other.

In order to be computed reliability of computer distrib-

uted system, the GEAR algorithm requires both vectors

RV and LV to be updated in the every iteration at each

node. In order to be computed these two vectors in the

GEAR algorithm are implemented simple rules without

complexity.

To be updated Reliability Vector, we have to follow

next two rules [5], [6]:

1. The updated RV value about new edge is obtained

from the value of parent node and the value of vertices

where the link is traversed from its parent edge.

 Table I.

Relations b/w an edge, a service name and vertices

A Node A service name A link node vectors

1 end - user x1 1-2

2 Direction x2 2-3

3 Collection x3 3-4

4 Analyzing x4 4-5

5 Dissemination x5 5-2

6 HUMINT x6 3-6

7 OSINT x7 3-7

8 ELINT x8 3-8

9 SIGINT x9 3-9

10 MASINT x10 3-10

11 External System x11 3-11

12 External System x12 3-12

13 External System x13 3-13

14 Dissemination x14 5-1

JUGOSLAV ACHKOSKI, VLADIMIR TRAJKOVIK: SERVICE DESIGN AND DISTRIBUTED SYSTEM RELIABILITY 215

2. The edges, which are on the left side of the first up-

dated edge (previous statement), are updated with the

value of the edge, which is on their left side, and it is

value 0 about the vertices and value 1 about vertices,

which is traversed from its parent edge.

The intention of the LV is to avoid loops in the algo-

rithm, which implies that one node is not traversed more

than once [5], [6]. The updating of this vector is simple,

which means that every node has value from the parent

node in the tree and its value is represented with 1. Other

nodes have value 0 and these nodes are not connected to

the parent nodes and the vertices of the updated node.

Fig 7. A complete tree for evaluating DSR in IIS

216 POSITION PAPERS OF THE FEDCSIS. WARSAW, 2014

In order to show, where in the tree the GEAR algorithm

stop, we set up bold rectangles (Figure 7). The tree shows

that the vertices in the graph from the Figure 5 have end-

ing edges with the following numbers: 4, 6, 7, 8, 9, 10,

11, 12, 13. The starting edge is number 1.

In the each ending edge (bold rectangle), we can note

the symbols as 1, 0 or d. In the ending edge where the

value is 1, we replaced p and everywhere in the edge

where the value is 0, we replaced q. The symbol d is not

concerned with the computation expression because it is

not involved in the reliability expression. It allows the ex-

pression (1) to be created for DSR.

In Figure 7, DSR is calculated with the computation of

p, and q. These two coefficients formulate the probability

of every computer network link to be available for trans-

ferring data between services with probability p=0.9

(q=0.1) [6]. According to the expression (1) and replace-

ment of the values p and q, we can obtain the result for

DSR of Intelligence Information System.

DS R=0.8898

In conclusion of this section, we have to stress that ob-

tained result about DSR is not on an appropriate level for

the above mentioned system. Our intention is to create the

system based on Service Oriented Architecture where we

can obtain results of 0.977 out of 100% [10].

Furthermore, it is possible to increase the level of dis-

tributed system reliability, but we have to pre-plan the

graph of computer network infrastructure with different

ways of connections between edges and vertices. In addi-

tion, we have to pre-plan the ending edges where algo-

rithm stops.

VI.CONCLUSION

The implementation of service-oriented architecture in

Intelligence Information System increases the intelligence

efficiency. Establishing a developmental methodology

and designing the model can serve as a basis for building

efficient information system.

The System architecture is explained in order to show

the general concept of the system in terms of connectivity

between system components, and relationship between

layers. About the system architecture, we can firmly con-

clude that level of integration logic is a basis of the Intel-

ligence Information System. Although, in the system ar-

chitecture is diverse levels, only the level of integration

logic is most significant for Service-Oriented Architec-

ture. At the level of integration logic are set up most im-

portant services for appropriate system functioning.

The service design will contribute to the building Intel-

ligence Information System based on an SOA platform

because software artifacts can achieve a certain level of

interoperability. Therefore, diverse hardware and software

can exchange their data types in order to satisfy Intelli-

gence functions. As a conclusion about service design, we

can stress that core of interoperability relies on XML be-

cause WSDL and SOAP are based on XML.

The DSR provides the system’s metric for reliability

where many information systems rely on this metric. This

metric provides reliable values for connecting nodes (pro-

cessing elements, applications, I/O devices etc.) in dis-

tributed systems and it can be exploited in the early stage

of information system development. Furthermore, DSR

could be used for gathering testing data on further stage

of system development. The obtained results from the

tests will be taken from the equations for general metric

about quality of service (QoS).

REFERENCES

[1] B. Elvesæter, A.-J. Berre, A. Sadovykh, “Specifying Services using

the Service oriented architecture Modeling Language (SoaML): A

baseline for Specification of Cloud-based Services,” in Proc. 1st

International Conference on Cloud Computing and Service Science

(CLOSER 2011), 7-9 May 2011. http://closer.scitevents.org/

[2] M. Gebhart, M. Baumgartner, S. Oehlert, M. Blersch, and S. Abeck,

“Evaluation of Service Designs based on SoaML,” in Proc. 5th

International Conference on Software Engineering Advances (ICSEA)

pp. 7-13, 2010, doi: 10.1109/ICSEA.2010.8

[3] M. Gebhart, S. Abeck, “Metrics for Evaluating Service Designs based

on SoaML,” International Journal on Advances in Software, vol.

4(1&2), 2011, pp. 61-75. http://iariajournals.org/software/

[4] OMG, “Service oriented architecture modeling language (SoaML) –

specification for the UML profile and metamodel for services

(UPMS),” Version 1.0 Beta 1, 2009

http://www.uio.no/studier/emner/matnat/ifi/INF5120/v10/undervisnin

gsmateriale/09-12-09-SoaML.pdf

[5] A. Kumar, D.P. Agrawal, “A generalized algorithm for evaluating

distributed-program reliability,” IEEE Trans. Reliability, vol.42, Issue

3, pp. 416 – 426, Sep. 1993. doi: 10.1109/24.257825.

[6] Y.S Dai, M. Xie, K.L. Poh, G.Q. Liu “A study of service reliability

and availability for distributed systems,” Elsevier, Reliability

Engineering & System Safety, vol. 79, Issue 1, 1 January 2003, pp.

103–112, http://dx.doi.org/10.1016/S0951-8320(02)00200-4

[7] M. P. Papazoglou, W.-J. van den Heuvel “Service-Oriented Design

and Development Methodology,” International Journal of Web

Engineering and Technology (IJWET), vol. 2 Issue 4, July 2006,

pp.412-442.

[8] J. Achkoski, V. Trajkovik, and D. Davcev, “Service-Oriented

Architecture Concept for Intelligence Information System

Development,” in Proc. 3rd international conferences on advanced

service computing service computation 2011 (IARIA), Rome, Italy,

September 25 - 30, 2011.

[9] J. Achkoski, V. Trajkovik,”Intelligence Information System (IIS) with

SOA-based Information Systems,” in Proc. 33rd International

Conference on INFORMATION TECHNOLOGY INTERFACES, IEEE,

Cavtat/Dubrovnik, Croatia, June 27 - 30, 2011.

[10] J. Hurwitz, R. Bloor, C. Baroudi, and M. Kaufman, “Service Oriented

Architecture (SOA) For Dummies,” Hoboken, NJ 07030-5774: John

Wiley & Sons. 2007.

[11] Priyantha, Nissanka B., et al. "Tiny web services: design and

implementation of interoperable and evolvable sensor networks."

Proceedings of the 6th ACM conference on Embedded network sensor

systems. ACM, 2008.

JUGOSLAV ACHKOSKI, VLADIMIR TRAJKOVIK: SERVICE DESIGN AND DISTRIBUTED SYSTEM RELIABILITY 217

