

 Abstract—The Software Defined Networking (SDN)

paradigm introduces separation of data and control planes for

flow-switched networks and enables different approaches to

network security than those existing in present IP networks.

The centralized control plane, i.e. the SDN controller, can host

new security services that profit from the global view of the

network and from direct control of switches. Some security

services can be deployed as external applications that

communicate with the controller. Due to the fact that all

unknown traffic must be transmitted for investigation to the

controller, maliciously crafted traffic can lead to Denial Of

Service (DoS) attack on it. In this paper we analyse features of

SDN in the context of security application. Additionally we

point out some aspects of SDN networks that, if changed, could

improve SDN network security capabilities. Moreover, the last

section of the paper presents a detailed description of security

application that detects a broad kind of malicious activity using

key features of SDN architecture.

I. INTRODUCTION

N this paper we analyse the features of SDN that can be

used for improving network security. We do not analyse

security of SDN per se, however some mechanisms, that

directly protect users, improve the security of the SDN

network too. Additional information concerning threats, and

ideas how SDN network should be secured, can be found in

the Kreutz et al paper [1]. Even though the SDN concept is

novel, some articles concerning detection of various kinds of

known attacks are already published. Data from an SDN

controller allow detection of network scans [2], [3], DoS and

DDoS attacks [2], [4], and detection of infected Zombie

machines that are part of a botnet [3]. Additionally, SDN

networks can be easily reconfigured to pass traffic for

inspection by various legacy (not SDN capable) security

devices, and next automatically react on an attack detected

by one of those devices. An SDN network has the ability to

easily add new network functionalities. The functionalities

added as specialized applications (atop or inside the SDN

controller) have access to each flow forwarded by the

 II. This work has been partially conducted as part of the CoSDN

(Cognitive Software Defined Networks) project, which is funded by FNR

Luxembourg and NCBiR Poland.

network. Moreover, an application co-working with the SDN

controller can easily add rules to SDN switches, completely

changing flow switching or even changing the content of

forwarded packets. The security functions are not packet-

based but flow-based, what makes protection more efficient.

The centralization of control plane operations gives the

ability to correlate events from different network nodes, what

enables a new approach to network security. In more detail

we will discuss all these issues in the third chapter.

The paper is organized as follows. In the next section key

features of SDN networks are presented. The third section

presents the impacts of the SDN paradigm on security

mechanisms implementation. Section IV describes the

concept of an application that utilizes evolved SDN networks

in order to achieve more efficient attack detection.

II. KEY FEATURES OF SDN

The most expected and promising aspects of SDN

networks are associated with:

 centralization of some network operations that enables to

base control mechanisms on global network view e.g.

traffic engineering,

 easy and standard way in which applications may interact

with the network via so called “North-Bound API”,
 easy customization of networks.

Open Networking Foundation (ONF) and International

Telecommunication Union (ITU) have been recently

working on the standardisation of SDN networks. A high

level view of the SDN architecture together with the key

principles of SDN networks have been presented by ONF

[5]. The SDN controller acts as a network “brain” (see Fig.
1), directly communicates with network applications via

North-Bound Interface (Control – Application Plane

Interface) to provide network state information from data

plane, and to translate requirements and high-level policies

from applications to low-level commands via South-Bound

Interface (Control-Data Plane Interface). The most popular

protocol used today for communication between the SDN

controller and network data plane is OpenFlow [6].

I

SDN Architecture Impact on Network Security

K. Cabaj
Warsaw University

of Technology

Nowowiejska 15/19

00-665 Warsaw,

Poland, Email:

kcabaj@ii.pw.edu.pl

J. Wytrębowicz
Warsaw University of

Technology

Nowowiejska 15/19

00-665 Warsaw,

Poland, Email:

j.wytrebowicz@ii.pw.

edu.pl

S. Kukliński
Warsaw University of

Technology

Nowowiejska 15/19 00-

665 Warsaw, Poland,

Email:

kuklinski@tele.pw.

edu.pl

P. Radziszewski
Warsaw University of

Technology

Nowowiejska 15/19

00-665 Warsaw,

Poland, Email:

pmr@ii.pw.edu.pl

K. Truong Dinh
Warsaw University of

Technology

Nowowiejska 15/19 00-

665 Warsaw, Poland,

Email:

k.truongdinh@stud.elka

.pw.edu.pl

Position papers of the 2014 Federated Conference on

Computer Science and Information Systems pp. 143–148

DOI: 10.15439/2014F473

ACSIS, Vol. 3

c© 2014, PTI 143

Fig. 1 SDN architecture overview

Fig. 1 describes the general SDN architecture according to

network planes and interactions between them. The SDN

networks are divided into Data, Control, Application and

Management planes.

 Data plane consists of network forwarding elements i.e.

switches, which main task is to forward incoming flows

to their destinations, making use of routes defined in flow

tables.

 Application plane is composed of network service

applications, business services, security services, and

others, which communicate with the network

infrastructure through the SDN controller. They can

benefit from abstracted global view of the network

according to their own purposes.

 SDN controller is the central point of the network; it

gives decisions to the data plane how to forward or

modify flows. The controller is also responsible for the

transformation of applications’ commands to the lower-
level communication protocol used by the data plane

devices.

 Management plane (according to ONF) is responsible for

tasks that are better handled outside the control,

application and data planes. It should be isolated and

hidden from users. Management entity handles tasks such

as setting up the network or configuration of network

parameters. It should not be programmable from outside,

in order to prevent any kinds of network attacks and to

protect the entire network.

North-Bound Interface (NBI) is the interface between

applications and the controller. It provides access to network

resources from the application level. Although NBI is still

not defined, it may provide authorisation and authentication

for applications. A role-based authorisation approach has

been proposed by Porras et al. [7].

Conflicting rules from applications appear in the

controller when some applications require different network

behaviour. The conflicts are hard to handle due to the

complexity of network control tasks, and an orchestrator is

needed. The management in SDN can be implemented in the

controller, in the management plane or as a separate

application.

The controller is directly connected to network forwarding

elements via South-Bound Interface (SBI). OF technology

seems to be dominant today, it has been already deployed in

many SDN networks [8].

III. IMPACT OF SDN ON NETWORK SECURITY

The SDN concept moves traditional networking from

hardware to software with the benefit of automating and

simplifying network operations and administration and

improving the network performance. As a new technology,

SDN is subject to vulnerabilities. In-line with powerful

capabilities, which are introduced by SDN networks, various

drawbacks of the approach also exist.

Taking into account implementation of security in SDN

networks, the following things have to be considered:

 Interactions with network nodes (switches) are performed

via the OpenFlow protocol, which has some limitations.

 Global network view: monitoring information is available

at the controller; it has the ability to directly manipulate

each flow, including possibility to kill it at the source.

 No middleboxes, including NAT (Network Address

Translation) or firewalls, are defined in the architecture.

A. OpenFlow limitations in the context of security

Currently, OpenFlow is the most popular protocol used

between the SDN controller and network forwarding

elements. Although other SDN control interfaces protocol

and languages (like FML, Procera, Frenetic [11]) had been

designed, the OpenFlow protocol gained the dominant

position, and it evolves enabling processing of more and

more protocol headers. Despite its popularity, the protocol

has some drawbacks. The first big limitation is associated

with strict definition of fields that are used by forwarding

rules and can be altered by the rules. For example, fields

used by IPv6 protocol were not introduced until OpenFlow

version 1.3. If hardware or software use older OpenFlow

version, the IPv6 traffic cannot be forwarded. The possibility

of altering different protocol fields, in an OpenFlow capable

switch, enables more complicated functions than forwarding,

e.g. NAT or firewall.

It is impossible to implement actions that use other than

defined by OpenFlow packet’s fields. A solution that
resolves this OpenFlow limitation has been recently

proposed, it is Protocol Oblivious Forwarding (POF) [12]. A

field in POF is defined as sequence of bits starting from a

Control plane

Application plane

Cloud

Network

Traffic

Engineering

Load

Balancing

Security

Services

SDN Controller

Data plane

 Controller – Application

interface

Controller – data interface

M
a

n
a

g
e

m
e

n
t

p
la

n
e

Contract SLAs

Configure policy

Monitor

performance

Element setup

144 POSITION PAPERS OF THE FEDCSIS. WARSAW, 2014

given offset and having a certain length. This provides a

flexibility that is the main advantage of the POF paradigm.

In contrast, the OpenFlow approach defines a limited number

of fields that can be used during matching and altering phase.

The POF flexibility allows for rapid development and

implementation of new, specialized network protocols,

without changes in the switch hardware and without changes

in communication with the controller. Moreover,

applications that implement new SDN services using POF

can make decisions using any part of the ingress packet. This

gives a huge flexibility and unimaginable nowadays

functionality of future SDN enabled networks. Especially for

security related applications, this flexibility can be

beneficial, allowing implementation of a “Deep packet
inspection” [12], for example finding of known exploits in
analysed traffic. Further adoption of POF in network devices

hardware structures can lead to performance boost, not

achieved in software solutions.

B. Centralized network operations and security

From many years IP network monitoring systems were

developed to gather and aggregate data from all network

nodes by the use of various protocols, e.g. SNMP [9] or

NetFlow [6]. However, access to data related to flow traffic,

forwarded in the network, is not easy and not efficient. For

example, multiple queries have to be used to gather current

state of the network, which could utilize large percentage of

management bandwidth and monitored device CPU. In SDN

such information is easily accessible at the SDN controller,

while in traditional IP networks it has to be sampled on

packet basis. From the security point of view, the global

awareness concerning all devices in the network is

beneficial. An analysis, concerning the whole traffic

observed in the network, could lead to detection of

distributed attacks, what is impossible on a single network

device. Examples of such threats are: a stealth scanning

concerning whole network, a set of infected machines, and

the advanced persistent threats (APT) [10]. The second big

advantage of the global view is associated with the SDN

controller's ability to manipulate each flow forwarded

through the network. Any reaction to a detected threat can be

immediate. From years such reactions were implemented by

sending specially crafted reset packets, real-time firewall

rules, or by placing security devices in the inline mode,

where whole traffic is passed through it. All of those

solutions are inefficient and even could lead to degradation

of network performance.

The centralized architecture has also some drawbacks.

The most evident is associated with performance, when vast

amounts of network flows must be analysed in one place.

Additionally such architecture introduces a single point of

failure. This can lead to congestion of the SDN controller,

when many flows are generated in short time, for example as

an effect of infection or aggressive scanning attempt.

Additionally, as it was described in [1], malicious users can

deliberately generate fake traffic to disturb an SDN network.

These observations reveal question if all security decisions

should be performed directly on the SDN controller. In fact,

any successful attack on a centralized controller (may it be a

DoS or it's compromise) can result in severe network

degradation. Logical distribution of physical controllers

might alleviate this danger to some extent, but a meticulous

protection of control resources is critical. The protection

should cover all aspects – not only technical, but also

“social”. In legacy networks this kind of danger is not always
critical, and impact of a single security breach can be

contained. A carefully thought out network design (e.g.

routing policies, OSPF areas, individual link protection) is

the solution for security enforcement of today IP networks.

C. Lack of middleboxes in SDN

In currently operating networks many functionalities are

implemented in the form of additional devices, so called

middle boxes, e.g. NAT devices or firewalls. As was

presented in the previous section, OpenFlow limitations

prevent implementation of some functions, for example deep

packet inspection. Moreover, it is not optimal, from

performance point of view, to process all decisions

concerning every flow by the SDN controller. A

decentralization of some SDN functions, even though it

breaks the SDN paradigm, can lead to more efficient and

scalable networks. The decentralized functions can be

performed locally on SDN switches. This solution demands

supplying the SDN switch with an execution environment on

which local applications can run. Implementation of security

functions in this place has many advantages. As was proven

in [14], this can improve detection rate in comparison to

traffic observed in aggregated links owned by ISP. Sample

description of such solution (PDEE – Programmable

Distributed Execution Environment) can be found at [15].

On the other hand, lack of middleboxes in the architecture

definition can imply deficiencies in security, however it

facilitates end-to-end connectivity, which is needed for some

network applications.

A big problem in legacy networks is how to apply and

tune traffic engineering rules for tunnelled or encrypted data

streams. Without auxiliary mechanisms different tunnelled

flows are processed in a unified manner. Of course end

devices can alter traffic policies or divide data stream into

multiple tunnels in spite of changes in the network core, but

only if they are aware of that fact. The SDN approach makes

such operations more natural.

A specific kind of middlebox is Intrusion Detection

Systems (IDS). Simple IDSs analyze signatures or

anomalies, more advanced ones utilize data exploration

algorithms. In the next chapter we describe an example of

the IDS application, which is suitable for the specifics of

SDNs.

KRZYSZTOF CABAJ ET AL.: SDN ARCHITECTURE IMPACT ON NETWORK SECURITY 145

IV. SDN SECURITY APPLICATION EXAMPLE:

DISTRIBUTED FREQUENT SETS ANALYSER

As was presented in the previous sections, SDN networks

enable execution of specialized software that could add new

services to the existing networks. Such software could alter

simple switches into powerful middle boxes or specialized

security devices. What should be emphasized, such change

does not need any exchange of deployed hardware and is

associated only with addition of new software components.

Moreover, the whole network view possessed by the

controller allows implementation of advanced methods that

could utilize such knowledge. In this section an idea of

Distributed Frequent Sets Analyzer (DFSA) systems is

presented. The DFSA system takes advantage from

experiments with anomaly detection using data mining, and

from the features of SDN network. In effect DFSA system

could effectively detect broad range of modern network

threats.

The idea of data mining algorithms usage for security is

based on works [16] [17]. Unfortunately, the integration of

three most important elements of such system, i.e. data

gathering, data analysis and implementation of actions, is not

a seamless process in existing IP networks. For this purpose

various mechanisms, techniques and software modules have

to be used. Transfers of information between the mentioned

elements have impact on the overall security system

performance. In contrast, the implementation of such

functionality as a security application for SDN network

should seamlessly integrate all processes needed for data

acquisition, data analysis and reaction to a detected threat.

This section describes a sample security application,

which utilizes the well-known features of SDN network and

some emerging enhancements that in our opinion can

improve the overall network security. Presented concept can

be used for detection of various evil or at least anomalous

activities performed by network terminals

A. The concept of frequent set analysis

It has been proven that many modern threats, when

activated, produce similar patterns in observed traffic. For

example network scanning, denial of service attacks (both

using one machine or distributed system), botnet activity,

sending spam and many more [16]. Discovery of such

repeated activity can be a sign of an attack. The data mining

techniques could be successfully applied to discover such

patterns. Their most important advantage is associated with

fact that discovered results are understandable by humans,

and can be easily and automatically converted into a

response to the detected threat. One of such methods that can

detect so called frequent sets is described in [18]. In this

method the analysed data is treated as a collection of sets,

where each set represents one flow. Each set consists of

individual items, which are associated with used protocol,

addresses, ports, number of transmitted packets, and overall

data size. The number of all sets in the analysed collection

that contains this given subset is called support. A frequent

set is a subset, whose support is equal or greater than

minimalSupport – a parameter defined by the user. Table 1

presents a sample data set with the flows observed by an

SDN controller.

TABLE I.

SAMPLE DATA SET USED IN THE EXAMPLE

 Prot. Src IP Src

Port

Dst IP Dst

Port

1 TCP 10.1.X.X 54333 192.168.Y.Y 80

2 TCP 10.1.X.X 54333 192.168.Y.Y 80

3 TCP 10.1.X.X 54333 192.168.Y.Y 80

4 TCP 172.16.Z.Z 42356 192.168.Y.Y 80

5 TCP 172.16.Z.Z 42456 192.168.Y.Y 8080

6 TCP 172.16.Z.Z 44895 192.168.Y.Y 1080

 An operator, who observes the traffic in the network,

using his knowledge and experience, sets the

minimalSupport parameter. Assumed that in this example we

set minimalSuport to 3, various frequent sets can be

detected, for example <tcp, *, *, *, * >, <tcp, *, *, *, 80>,

<tcp, *, *, 192.168.Y.Y, 80>, <tcp, 10.1.X.X, 54333,

192.168.Y.Y, 80> or <tcp, 172.16.Z.Z, *, 192.168.Y.Y, *>.

Asterisks represent items that do not appear in the detected

frequent sets. Above frequent sets support initial item sets

from table 1 in ranges 1-6, 1-4, 1-4, 1-3 and 4-6 respectively.

The most comprehensible patterns are the last two, which are

called maximal, due to the fact, that there are no other

detected frequent sets in this data set that are supersets of

them. Both of these two maximal frequent sets have the

support value equal to 3. For further analysis only maximal

frequent sets are considered.

Depending on items contained in a frequent set and its

support a decision about corresponding flows character can

be taken. For example, when detected frequent set has very

high support, items are: TCP protocol, TCP port number 25

and only single source address of a desktop machine, it can

be assumed with high probability that this machine is

infected and actively sends spam. In the other case, when in

a long period of observation, frequent set with moderate

support value and items associated with TCP protocol,

source port and source IP address are detected, presumption

that someone used nmap, one of the most known network

scanners, can be taken. Detection of such frequent set is

caused by this particular scanner implementation, which

during scanning uses only one source port. Such analysis can

be performed on each network access node and can detect

attacker or victim machine directly connected to this

particular node. Moreover, the traffic patterns can be

observed by a special node that has global view of the

network (NetFlow collector, etc.). Such analysis can be

performed in a network, which does not support any local

detection (the case of existing IP routers). This approach

detects scanning activity or other activities that do not appear

146 POSITION PAPERS OF THE FEDCSIS. WARSAW, 2014

frequently at a single device, but appear in the whole

network.

B. Implementation of DFSA in SDN

The above described method can be efficiently and easily

implemented in SDN. Additionally, the ability to reconfigure

flow tables in SDN switches can be used for implementation

of automatic reaction to detected threats, for example

dropping of offending traffic or its degradation. We

proposed a hybrid approach, which is based on both local

and global analysis of traffic patterns. The Local Frequent

Sets Analyser (LFSA) is placed in each SDN switch, and it

detects threats that generate vast amounts of traffic; for

example infected machines, which send spam or perform

DoS attacks. These malicious activities can be efficiently,

easily, and without delay detected locally. In effect, the time

from detection of an attack to the reaction to it is as short as

possible. Moreover, as described in [14], the detection

performed at the access node has better accuracy than this

performed at aggregation links, for example at ISP

management data centre. Additionally, performing all actions

locally on one switch reduces the traffic, which is exchanged

with the centralized traffic collector and analyser and scales

better. However, not all types of attacks can be detected

locally. For example stealth scanning of the whole network

can be undetected on a single switch, but it can be observed

having the global network view. Due to this fact the Global

Frequent Sets Analyser (GFSA) is used in our approach.

GFSA is a single module that is placed in the SDN

controller or in an SDN application connected to the

controller via the NBI interface. LFSA should be

implemented at every SDN switch. According to the SDN

architecture it is now impossible. However, there exist some

enhancements to the concept of SDN, which allow hybrid

implementations, for example PDEE [15]. In Fig. 2 the

architecture of proposed Distributed Frequent Set Analyser

(DFSA) system is presented.

According to the PDEE concept the modules of the DFSA

system can be implemented together with the Management

applications (M), running at the PDEE execution

environments. The LFSA module is placed on each SDN

switch and GFSA on the SDN controller. Additionally,

DFSA adds to the SDN manager a specialized console

module that can be used for the modules configuration (e.g.

setting of minimalSupport value used by data mining

algorithms). Moreover, the console can be used for

reviewing the DFSA logs, which contain information

concerning all detected anomalies and performed actions.

For each flow forwarded by the SDN switch, the related

set is created and passed to the LFSA. What should be

emphasized, cost of data pre-processing is negligible, due to

the fact that all needed information is prior collected by the

SDN switch. In contrast to mentioned earlier solutions, this

computation part is very CPU intensive, as all packets must

be directly examined using promiscuous mode or be

examined in system firewall and later the firewall processing

results are logged and parsed. The process of frequent set

discovery is executed at preprogrammed intervals.

Fig. 2 Architecture of the DFSA system, using the PDEE environment.

Discovered patterns are analysed for symptoms of

probable anomalous activity. As it was described in the

previous paragraph, the support value of a discovered

frequent set and items that the set contains can be used for

this purpose. When probability of the malicious activity is

very high, the corresponding flows can be stopped by using

elements of the discovered frequent set (protocol, source IP,

destination port, etc.). For this purpose LFSA inserts

additional rules into flow tables of the SDN switch, to drop

packets related to malicious flows. In case when malicious

activity is not evident, the flow can be degraded and thus

slow down attack, but not completely remove it – to preserve

the communication under the question. This kind of

functionality is nowadays used for flow control (e.g. Random

Early Detection), but can be used as a security function as

well. When the malicious activity is detected locally, an

appropriate action is locally executed. This action not only

stops the attack but also protects the SDN controller from

DoS attacks directed to it. Additionally, as it has been

proven in [13], these attacks can be more accurately detected

in the access switch, where the offending machine is

connected, rather than in aggregation switch.

 At the global level (i.e. at the SDN controller) only the

analysis of the aggregated data is performed. The LFSA

module, executed in the SDN switch, sends to GFSA

implemented in the SDN controller each set that does not

appear in discovered frequent sets. This kind of filtering is

based on the assumption, that all the activities that generate

high volume data traffic are detected at the switch level.

There is no need to detect them once again at the central

level in the GFSA module. In effect, the GFSA module

performs frequent set discovery using aggregated data from

all switches. Moreover, data associated with high volume

KRZYSZTOF CABAJ ET AL.: SDN ARCHITECTURE IMPACT ON NETWORK SECURITY 147

attacks are filtered, and even there is no need to transmit it

to the SDN controller. This approach can minimize traffic

overhead and CPU cycles at the SDN controller.

Global analysis performed in the GFSA module can be

beneficial for detecting massive scanning activity and some

stealth scanning techniques. Due to low volume of data

associated with those kinds of attacks, observed in a single

switch, they cannot be locally detected. However, when data

sent from all LFSA modules are received by GFSA and

aggregated, detected frequent sets lead to discovery of these

threats. Additionally, due to initial filtering that leads to

smaller volume of data, aggregation of sets before detection

of frequent sets can be performed over a longer time range.

After aggregation of frequent sets a discovery is performed.

Analysis of discovered patterns is similar to that at the local

level. The only change is associated with the manner in

which reaction is performed. In this case the SDN controller

contacts with all involved SDN switches and installs

appropriate rules in their forwarding tables.

V. CONCLUSION

The SDN paradigm on one hand simplifies the

implementation of some security mechanisms, mostly due to

centralization of control operations, on the other hand limits

distributed approaches. The proposed DFSA system, which

uses features of SDN network, can be used for efficient and

reliable detection of various network attacks that are

observed nowadays in IP networks. The hybrid architecture,

which extends the SDN paradigm, allows fast detection of

attacks that generate huge amount of traffic, directly at the

SDN switch using LFSA modules. Moreover, the GFSA

module executed at the SDN controller can be used for

detection of attacks that concerns the whole network.

Additionally, using SDN network ability to change flow

tables, automatic reaction can be implemented as soon as a

threat is detected. Implementation of the concept requires a

modified SDN, as defined in [15].

ACKNOWLEDGMENT

REFERENCES

[1] D. Kreutz, F. Ramos, and P. Verissimo, “Towards secure and
dependable software-defined networks,” Proceedings of the second
ACM SIGCOMM workshop on “Hot topics in software defined
networking,” pp. 55-60, 2013, http://dx.doi.org/10.1145/
2491185.2491199.

[2] S. A. Mehdi, J. Khalid, and S. A. Khayam, "Revisiting traffic anomaly
detection using software defined networking," Recent Advances in
Intrusion Detection. Springer Berlin Heidelberg, 2011,
http://dx.doi.org/10.1007/978-3-642-23644-0_9.

[3] S. Shin, et al. "Fresco: Modular composable security services for
software-defined networks," Internet Society NDSS, 2013.

[4] R. Braga, M. Edjard, and P. Alexandre, "Lightweight DDoS flooding
attack detection using NOX/OpenFlow," Local Computer Networks
(LCN), 2010 IEEE 35th Conference on. IEEE, 2010, http://dx.doi.org/
10.1109/LCN.2010.5735752.

[5] Open Netwok Foundation, “SDN Architecture Overview,” version 1.0,
2013.

[6] N. McKeown, T. Anderson, H. Balakrshman, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker and J. Tuner, “OpenFlow: enabling innovation
in campus networks,” Sigcomm Comput. Commun., vol. 38, no. 2,
pp. 69-74, 2008, http://dx.doi.org/10.1145/1355734.1355746.

[7] Porras, Philip, et al. "A security enforcement kernel for OpenFlow
networks," Proceedings of the first workshop on “Hot topics in
software defined networks,” ACM, 2012, http://dx.doi.org/
10.1145/2342441.2342466.

[8] S. Jain, et al. "B4: Experience with a globally-deployed software
defined WAN," Proceedings of the ACM SIGCOMM 2013
conference, http://dx.doi.org/10.1145/2486001.2486019.

[9] J. Case, "A Simple Network Management Protocol (SNMP)," IETF
RFC1157, 1990.

[10] C. Tankard, “Advanced Persistent Threats and how to monitor and
deter them,” Network security, 2011, http://dx.doi.org/10.1016/
s1353-4858(11)70086-1.

[11] A. Doria, J. Salim, R. Haas, H. Khosravi, W. Wang, L. Dong, R. Gopal
and J. Halpern, “Forwarding and Control Element Separation
(ForCES) Forwarding Element Model,” IETF, 2010.

[12] H. Song, “Protocol oblivious forwarding: Unleash the power of SDN
through a future proof forwarding plan,” Sigcomm HotSDN
workshop, 2013, http://dx.doi.org/10.1145/2491185.2491190.

[13] A. Nakao, “Deeply programmable network: Emerging technologies
for network virtualization and Software Defined Networks,” ITU-T
Kaleidoscope, Kyoto, 2013.

[14] S. A. Mehdi, J. Khalid, S. A. Khayam, “Revisiting Traffic Anomaly
Detection using Software Defined Networking,” Recent Advances in
Intrusion Detection Lecture Notes in Computer Science Volume 6961,
2011, pp. 161-180, http://dx.doi.org/10.1007/978-3-642-23644-0_9.

[15] S. Kukliński, “Programmable Management Framework for Evolved
SDN,” IEEE/IFIP Network Operations and Management Symposium,
Poland, 2014.

[16] K. Cabaj, K. Szczypiorski, S. Becker, “Towards Self-defending
Mechanisms Using Data Mining in the EFIPSANS Framework,”
Advances in Multimedia and Network Information System
Technologies, Advances in Intelligent and Soft Computing, nr 80,
2010, Springer, pp. 143-151, http://dx.doi.org/10.1007/978-3-642-
14989-4_14.

[17] K. Cabaj, Z. Kotulski, P. Szałachowski, et al., “Implementation and
testing of Level 2 security architecture for the IIP System,” Przegląd
Telekomunikacyjny - Wiadomości Telekomunikacyjne, SIGMA NOT,
vol. LXXXV, nr 8-9/2012, 2012, pp. 1426-1435.

[18] R. Agrawal, T. Imielinski, A Swami, “Mining Association Rules
Between Sets of Items in Large Databases,” Proceedings of ACM
SIGMOD Int. Conf. Management of Data, 1993,
http://dx.doi.org/10.1145/170036.170072.

148 POSITION PAPERS OF THE FEDCSIS. WARSAW, 2014

