
 

 

 

 

 

 Abstract—The Software Defined Networking (SDN) 

paradigm introduces separation of data and control planes for 

flow-switched networks and enables different approaches to 

network security than those existing in present IP networks. 

The centralized control plane, i.e. the SDN controller, can host 

new security services that profit from the global view of the 

network and from direct control of switches. Some security 

services can be deployed as external applications that 

communicate with the controller. Due to the fact that all 

unknown traffic must be transmitted for investigation to the 

controller, maliciously crafted traffic can lead to Denial Of 

Service (DoS) attack on it. In this paper we analyse features of 

SDN in the context of security application. Additionally we 

point out some aspects of SDN networks that, if changed, could 

improve SDN network security capabilities. Moreover, the last 

section of the paper presents a detailed description of security 

application that detects a broad kind of malicious activity using 

key features of SDN architecture. 

I. INTRODUCTION 

N this paper we analyse the features of SDN that can be 

used for improving network security. We do not analyse 

security of SDN per se, however some mechanisms, that 

directly protect users, improve the security of the SDN 

network too. Additional information concerning threats, and 

ideas how SDN network should be secured, can be found in 

the Kreutz et al paper [1]. Even though the SDN concept is 

novel, some articles concerning detection of various kinds of 

known attacks are already published. Data from an SDN 

controller allow detection of network scans [2], [3], DoS and 

DDoS attacks [2], [4], and detection of infected Zombie 

machines that are part of a botnet [3]. Additionally, SDN 

networks can be easily reconfigured to pass traffic for 

inspection by various legacy (not SDN capable) security 

devices, and next automatically react on an attack detected 

by one of those devices. An SDN network has the ability to 

easily add new network functionalities. The functionalities 

added as specialized applications (atop or inside the SDN 

controller) have access to each flow forwarded by the 
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network. Moreover, an application co-working with the SDN 

controller can easily add rules to SDN switches, completely 

changing flow switching or even changing the content of 

forwarded packets. The security functions are not packet-

based but flow-based, what makes protection more efficient. 

The centralization of control plane operations gives the 

ability to correlate events from different network nodes, what 

enables a new approach to network security. In more detail 

we will discuss all these issues in the third chapter. 

The paper is organized as follows. In the next section key 

features of SDN networks are presented. The third section 

presents the impacts of the SDN paradigm on security 

mechanisms implementation. Section IV describes the 

concept of an application that utilizes evolved SDN networks 

in order to achieve more efficient attack detection. 

II.  KEY FEATURES OF SDN 

The most expected and promising aspects of SDN 

networks are associated with:  

 centralization of some network operations that enables to 

base control mechanisms on global network view e.g. 

traffic engineering, 

 easy and standard way in which applications may interact 

with the network via so called “North-Bound API”,  
 easy customization of networks.  

Open Networking Foundation (ONF) and International 

Telecommunication Union (ITU) have been recently 

working on the standardisation of SDN networks. A high 

level view of the SDN architecture together with the key 

principles of SDN networks have been presented by ONF 

[5]. The SDN controller acts as a network “brain” (see Fig. 
1), directly communicates with network applications via 

North-Bound Interface (Control – Application Plane 

Interface) to provide network state information from data 

plane, and to translate requirements and high-level policies 

from applications to low-level commands via South-Bound 

Interface (Control-Data Plane Interface). The most popular 

protocol used today for communication between the SDN 

controller and network data plane is OpenFlow [6]. 
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Fig.  1 SDN architecture overview 

 

 

Fig. 1 describes the general SDN architecture according to 

network planes and interactions between them. The SDN 

networks are divided into Data, Control, Application and 

Management planes.  

 Data plane consists of network forwarding elements i.e. 

switches, which main task is to forward incoming flows 

to their destinations, making use of routes defined in flow 

tables.  

 Application plane is composed of network service 

applications, business services, security services, and 

others, which communicate with the network 

infrastructure through the SDN controller. They can 

benefit from abstracted global view of the network 

according to their own purposes.  

 SDN controller is the central point of the network; it 

gives decisions to the data plane how to forward or 

modify flows. The controller is also responsible for the 

transformation of applications’ commands to the lower-
level communication protocol used by the data plane 

devices. 

 Management plane (according to ONF) is responsible for 

tasks that are better handled outside the control, 

application and data planes. It should be isolated and 

hidden from users. Management entity handles tasks such 

as setting up the network or configuration of network 

parameters. It should not be programmable from outside, 

in order to prevent any kinds of network attacks and to 

protect the entire network.  

North-Bound Interface (NBI) is the interface between 

applications and the controller. It provides access to network 

resources from the application level. Although NBI is still 

not defined, it may provide authorisation and authentication 

for applications. A role-based authorisation approach has 

been proposed by Porras et al. [7].  

Conflicting rules from applications appear in the 

controller when some applications require different network 

behaviour. The conflicts are hard to handle due to the 

complexity of network control tasks, and an orchestrator is 

needed. The management in SDN can be implemented in the 

controller, in the management plane or as a separate 

application.  

The controller is directly connected to network forwarding 

elements via South-Bound Interface (SBI). OF technology 

seems to be dominant today, it has been already deployed in 

many SDN networks [8].  

III. IMPACT OF SDN ON NETWORK SECURITY 

 

The SDN concept moves traditional networking from 

hardware to software with the benefit of automating and 

simplifying network operations and administration and 

improving the network performance. As a new technology, 

SDN is subject to vulnerabilities. In-line with powerful 

capabilities, which are introduced by SDN networks, various 

drawbacks of the approach also exist.  

Taking into account implementation of security in SDN 

networks, the following things have to be considered: 

 Interactions with network nodes (switches) are performed 

via the OpenFlow protocol, which has some limitations. 

 Global network view: monitoring information is available 

at the controller; it has the ability to directly manipulate 

each flow, including possibility to kill it at the source. 

 No middleboxes, including NAT (Network Address 

Translation) or firewalls, are defined in the architecture. 

A. OpenFlow limitations in the context of security 

Currently, OpenFlow is the most popular protocol used 

between the SDN controller and network forwarding 

elements. Although other SDN control interfaces protocol 

and languages (like FML, Procera, Frenetic [11]) had been 

designed, the OpenFlow protocol gained the dominant 

position, and it evolves enabling processing of more and 

more protocol headers. Despite its popularity, the protocol 

has some drawbacks. The first big limitation is associated 

with strict definition of fields that are used by forwarding 

rules and can be altered by the rules. For example, fields 

used by IPv6 protocol were not introduced until OpenFlow 

version 1.3. If hardware or software use older OpenFlow 

version, the IPv6 traffic cannot be forwarded. The possibility 

of altering different protocol fields, in an OpenFlow capable 

switch, enables more complicated functions than forwarding, 

e.g. NAT or firewall. 

It is impossible to implement actions that use other than 

defined by OpenFlow packet’s fields. A solution that 
resolves this OpenFlow limitation has been recently 

proposed, it is Protocol Oblivious Forwarding (POF) [12]. A 

field in POF is defined as sequence of bits starting from a 
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given offset and having a certain length. This provides a 

flexibility that is the main advantage of the POF paradigm. 

In contrast, the OpenFlow approach defines a limited number 

of fields that can be used during matching and altering phase. 

The POF flexibility allows for rapid development and 

implementation of new, specialized network protocols, 

without changes in the switch hardware and without changes 

in communication with the controller. Moreover, 

applications that implement new SDN services using POF 

can make decisions using any part of the ingress packet. This 

gives a huge flexibility and unimaginable nowadays 

functionality of future SDN enabled networks. Especially for 

security related applications, this flexibility can be 

beneficial, allowing implementation of a “Deep packet 
inspection” [12], for example finding of known exploits in 
analysed traffic. Further adoption of POF in network devices 

hardware structures can lead to performance boost, not 

achieved in software solutions. 

B. Centralized network operations and security 

From many years IP network monitoring systems were 

developed to gather and aggregate data from all network 

nodes by the use of various protocols, e.g. SNMP [9] or 

NetFlow [6]. However, access to data related to flow traffic, 

forwarded in the network, is not easy and not efficient. For 

example, multiple queries have to be used to gather current 

state of the network, which could utilize large percentage of 

management bandwidth and monitored device CPU. In SDN 

such information is easily accessible at the SDN controller, 

while in traditional IP networks it has to be sampled on 

packet basis. From the security point of view, the global 

awareness concerning all devices in the network is 

beneficial. An analysis, concerning the whole traffic 

observed in the network, could lead to detection of 

distributed attacks, what is impossible on a single network 

device. Examples of such threats are: a stealth scanning 

concerning whole network, a set of infected machines, and 

the advanced persistent threats (APT) [10]. The second big 

advantage of the global view is associated with the SDN 

controller's ability to manipulate each flow forwarded 

through the network. Any reaction to a detected threat can be 

immediate. From years such reactions were implemented by 

sending specially crafted reset packets, real-time firewall 

rules, or by placing security devices in the inline mode, 

where whole traffic is passed through it. All of those 

solutions are inefficient and even could lead to degradation 

of network performance.  

The centralized architecture has also some drawbacks. 

The most evident is associated with performance, when vast 

amounts of network flows must be analysed in one place. 

Additionally such architecture introduces a single point of 

failure. This can lead to congestion of the SDN controller, 

when many flows are generated in short time, for example as 

an effect of infection or aggressive scanning attempt. 

Additionally, as it was described in [1], malicious users can 

deliberately generate fake traffic to disturb an SDN network. 

These observations reveal question if all security decisions 

should be performed directly on the SDN controller. In fact, 

any successful attack on a centralized controller (may it be a 

DoS or it's compromise) can result in severe network 

degradation. Logical distribution of physical controllers 

might alleviate this danger to some extent, but a meticulous 

protection of control resources is critical. The protection 

should cover all aspects – not only technical, but also 

“social”. In legacy networks this kind of danger is not always 
critical, and impact of a single security breach can be 

contained. A carefully thought out network design (e.g. 

routing policies, OSPF areas, individual link protection) is 

the solution for security enforcement of today IP networks.  

C. Lack of middleboxes in SDN 

In currently operating networks many functionalities are 

implemented in the form of additional devices, so called 

middle boxes, e.g. NAT devices or firewalls. As was 

presented in the previous section, OpenFlow limitations 

prevent implementation of some functions, for example deep 

packet inspection. Moreover, it is not optimal, from 

performance point of view, to process all decisions 

concerning every flow by the SDN controller. A 

decentralization of some SDN functions, even though it 

breaks the SDN paradigm, can lead to more efficient and 

scalable networks. The decentralized functions can be 

performed locally on SDN switches. This solution demands 

supplying the SDN switch with an execution environment on 

which local applications can run. Implementation of security 

functions in this place has many advantages. As was proven 

in [14], this can improve detection rate in comparison to 

traffic observed in aggregated links owned by ISP. Sample 

description of such solution (PDEE – Programmable 

Distributed Execution Environment) can be found at [15]. 

On the other hand, lack of middleboxes in the architecture 

definition can imply deficiencies in security, however it 

facilitates end-to-end connectivity, which is needed for some 

network applications. 

A big problem in legacy networks is how to apply and 

tune traffic engineering rules for tunnelled or encrypted data 

streams. Without auxiliary mechanisms different tunnelled 

flows are processed in a unified manner. Of course end 

devices can alter traffic policies or divide data stream into 

multiple tunnels in spite of changes in the network core, but 

only if they are aware of that fact. The SDN approach makes 

such operations more natural. 

A specific kind of middlebox is Intrusion Detection 

Systems (IDS). Simple IDSs analyze signatures or 

anomalies, more advanced ones utilize data exploration 

algorithms. In the next chapter we describe an example of 

the IDS application, which is suitable for the specifics of 

SDNs.  
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IV. SDN SECURITY APPLICATION EXAMPLE: 

DISTRIBUTED FREQUENT SETS ANALYSER 

As was presented in the previous sections, SDN networks 

enable execution of specialized software that could add new 

services to the existing networks. Such software could alter 

simple switches into powerful middle boxes or specialized 

security devices. What should be emphasized, such change 

does not need any exchange of deployed hardware and is 

associated only with addition of new software components. 

Moreover, the whole network view possessed by the 

controller allows implementation of advanced methods that 

could utilize such knowledge. In this section an idea of 

Distributed Frequent Sets Analyzer (DFSA) systems is 

presented. The DFSA system takes advantage from 

experiments with anomaly detection using data mining, and 

from the features of SDN network. In effect DFSA system 

could effectively detect broad range of modern network 

threats. 

The idea of data mining algorithms usage for security is 

based on works [16] [17]. Unfortunately, the integration of 

three most important elements of such system, i.e. data 

gathering, data analysis and implementation of actions, is not 

a seamless process in existing IP networks. For this purpose 

various mechanisms, techniques and software modules have 

to be used. Transfers of information between the mentioned 

elements have impact on the overall security system 

performance. In contrast, the implementation of such 

functionality as a security application for SDN network 

should seamlessly integrate all processes needed for data 

acquisition, data analysis and reaction to a detected threat. 

This section describes a sample security application, 

which utilizes the well-known features of SDN network and 

some emerging enhancements that in our opinion can 

improve the overall network security. Presented concept can 

be used for detection of various evil or at least anomalous 

activities performed by network terminals  

A. The concept of frequent set analysis 

It has been proven that many modern threats, when 

activated, produce similar patterns in observed traffic. For 

example network scanning, denial of service attacks (both 

using one machine or distributed system), botnet activity, 

sending spam and many more [16]. Discovery of such 

repeated activity can be a sign of an attack. The data mining 

techniques could be successfully applied to discover such 

patterns. Their most important advantage is associated with 

fact that discovered results are understandable by humans, 

and can be easily and automatically converted into a 

response to the detected threat. One of such methods that can 

detect so called frequent sets is described in [18]. In this 

method the analysed data is treated as a collection of sets, 

where each set represents one flow. Each set consists of 

individual items, which are associated with used protocol, 

addresses, ports, number of transmitted packets, and overall 

data size. The number of all sets in the analysed collection 

that contains this given subset is called support. A frequent 

set is a subset, whose support is equal or greater than 

minimalSupport – a parameter defined by the user. Table 1 

presents a sample data set with the flows observed by an 

SDN controller. 

TABLE I. 

SAMPLE DATA SET USED IN THE EXAMPLE 

 Prot. Src IP Src 

Port 

Dst IP Dst 

Port 

1 TCP 10.1.X.X 54333 192.168.Y.Y 80 

2 TCP 10.1.X.X 54333 192.168.Y.Y 80 

3 TCP 10.1.X.X 54333 192.168.Y.Y 80 

4 TCP 172.16.Z.Z 42356 192.168.Y.Y 80 

5 TCP 172.16.Z.Z 42456 192.168.Y.Y 8080 

6 TCP 172.16.Z.Z 44895 192.168.Y.Y 1080 

 

 An operator, who observes the traffic in the network, 

using his knowledge and experience, sets the 

minimalSupport parameter. Assumed that in this example we 

set minimalSuport to 3, various frequent sets can be 

detected, for example <tcp, *, *, *, * >, <tcp, *, *, *, 80>, 

<tcp, *, *, 192.168.Y.Y, 80>, <tcp, 10.1.X.X, 54333, 

192.168.Y.Y, 80> or <tcp, 172.16.Z.Z, *, 192.168.Y.Y, *>. 

Asterisks represent items that do not appear in the detected 

frequent sets. Above frequent sets support initial item sets 

from table 1 in ranges 1-6, 1-4, 1-4, 1-3 and 4-6 respectively. 

The most comprehensible patterns are the last two, which are 

called maximal, due to the fact, that there are no other 

detected frequent sets in this data set that are supersets of 

them. Both of these two maximal frequent sets have the 

support value equal to 3. For further analysis only maximal 

frequent sets are considered.  

Depending on items contained in a frequent set and its 

support a decision about corresponding flows character can 

be taken. For example, when detected frequent set has very 

high support, items are: TCP protocol, TCP port number 25 

and only single source address of a desktop machine, it can 

be assumed with high probability that this machine is 

infected and actively sends spam. In the other case, when in 

a long period of observation, frequent set with moderate 

support value and items associated with TCP protocol,   

source port and source IP address are detected, presumption 

that someone used nmap, one of the most known network 

scanners, can be taken. Detection of such frequent set is 

caused by this particular scanner implementation, which 

during scanning uses only one source port. Such analysis can 

be performed on each network access node and can detect 

attacker or victim machine directly connected to this 

particular node. Moreover, the traffic patterns can be 

observed by a special node that has global view of the 

network (NetFlow collector, etc.). Such analysis can be 

performed in a network, which does not support any local 

detection (the case of existing IP routers). This approach 

detects scanning activity or other activities that do not appear 
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frequently at a single device, but appear in the whole 

network.  

B. Implementation of DFSA in SDN 

The above described method can be efficiently and easily 

implemented in SDN. Additionally, the ability to reconfigure 

flow tables in SDN switches can be used for implementation 

of automatic reaction to detected threats, for example 

dropping of offending traffic or its degradation. We 

proposed a hybrid approach, which is based on both local 

and global analysis of traffic patterns. The Local Frequent 

Sets Analyser (LFSA) is placed in each SDN switch, and it 

detects threats that generate vast amounts of traffic; for 

example infected machines, which send spam or perform 

DoS attacks. These malicious activities can be efficiently, 

easily, and without delay detected locally. In effect, the time 

from detection of an attack to the reaction to it is as short as 

possible. Moreover, as described in [14], the detection 

performed at the access node has better accuracy than this 

performed at aggregation links, for example at ISP 

management data centre. Additionally, performing all actions 

locally on one switch reduces the traffic, which is exchanged 

with the centralized traffic collector and analyser and scales 

better. However, not all types of attacks can be detected 

locally. For example stealth scanning of the whole network 

can be undetected on a single switch, but it can be observed 

having the global network view. Due to this fact the Global 

Frequent Sets Analyser (GFSA) is used in our approach. 

GFSA is a single module that is placed in the SDN 

controller or in an SDN application connected to the 

controller via the NBI interface. LFSA should be 

implemented at every SDN switch. According to the SDN 

architecture it is now impossible. However, there exist some 

enhancements to the concept of SDN, which allow hybrid 

implementations, for example PDEE [15]. In Fig. 2 the 

architecture of proposed Distributed Frequent Set Analyser 

(DFSA) system is presented.  

According to the PDEE concept the modules of the DFSA 

system can be implemented together with the Management 

applications (M), running at the PDEE execution 

environments. The LFSA module is placed on each SDN 

switch and GFSA on the SDN controller. Additionally, 

DFSA adds to the SDN manager a specialized console 

module that can be used for the modules configuration (e.g. 

setting of minimalSupport value used by data mining 

algorithms). Moreover, the console can be used for 

reviewing the DFSA logs, which contain information 

concerning all detected anomalies and performed actions. 

For each flow forwarded by the SDN switch, the related 

set is created and passed to the LFSA. What should be 

emphasized, cost of data pre-processing is negligible, due to 

the fact that all needed information is prior collected by the 

SDN switch. In contrast to mentioned earlier solutions, this 

computation part is very CPU intensive, as all packets must 

be directly examined using promiscuous mode or be 

examined in system firewall and later the firewall processing 

results are logged and parsed. The process of frequent set 

discovery is executed at preprogrammed intervals.  

 

Fig.  2 Architecture of the DFSA system, using the PDEE environment. 

 

Discovered patterns are analysed for symptoms of 

probable anomalous activity. As it was described in the 

previous paragraph, the support value of a discovered 

frequent set and items that the set contains can be used for 

this purpose. When probability of the malicious activity is 

very high, the corresponding flows can be stopped by using 

elements of the discovered frequent set (protocol, source IP, 

destination port, etc.). For this purpose LFSA inserts 

additional rules into flow tables of the SDN switch, to drop 

packets related to malicious flows. In case when malicious 

activity is not evident, the flow can be degraded and thus 

slow down attack, but not completely remove it – to preserve 

the communication under the question. This kind of 

functionality is nowadays used for flow control (e.g. Random 

Early Detection), but can be used as a security function as 

well. When the malicious activity is detected locally, an 

appropriate action is locally executed. This action not only 

stops the attack but also protects the SDN controller from 

DoS attacks directed to it. Additionally, as it has been 

proven in [13], these attacks can be more accurately detected 

in the access switch, where the offending machine is 

connected, rather than in aggregation switch. 

 At the global level (i.e. at the SDN controller) only the 

analysis of the aggregated data is performed. The LFSA 

module, executed in the SDN switch, sends to GFSA 

implemented in the SDN controller each set that does not 

appear in discovered frequent sets. This kind of filtering is 

based on the assumption, that all the activities that generate 

high volume data traffic are detected at the switch level. 

There is no need to detect them once again at the central 

level in the GFSA module. In effect, the GFSA module 

performs frequent set discovery using aggregated data from 

all switches. Moreover, data associated with high volume 
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attacks are filtered, and even there is no need to transmit it

to the SDN controller. This approach can minimize traffic

overhead and CPU cycles at the SDN controller.

Global  analysis  performed in the GFSA module can be

beneficial for detecting massive scanning activity and some

stealth  scanning  techniques.  Due  to  low  volume  of  data

associated with those kinds of attacks, observed in a single

switch, they cannot be locally detected. However, when data

sent  from  all  LFSA modules  are  received  by  GFSA and

aggregated, detected frequent sets lead to discovery of these

threats.  Additionally,  due  to  initial  filtering  that  leads  to

smaller volume of data, aggregation of sets before detection

of frequent sets can be performed over a longer time range.

After aggregation of frequent sets a discovery is performed.

Analysis of discovered patterns is similar to that at the local

level.  The  only  change  is  associated  with  the  manner  in

which reaction is performed. In this case the SDN controller

contacts  with  all  involved  SDN  switches  and  installs

appropriate rules in their forwarding tables.

V. CONCLUSION

The  SDN  paradigm  on  one  hand  simplifies  the

implementation of some security mechanisms, mostly due to

centralization of control operations, on the other hand limits

distributed approaches. The proposed DFSA system, which

uses features of SDN network, can be used for efficient and

reliable  detection  of  various  network  attacks  that  are

observed nowadays in IP networks. The hybrid architecture,

which extends the SDN paradigm, allows fast detection of

attacks that generate huge amount of traffic, directly at the

SDN  switch  using  LFSA modules.  Moreover,  the  GFSA

module  executed  at  the  SDN  controller  can  be  used  for

detection  of  attacks  that  concerns  the  whole  network.

Additionally,  using  SDN  network  ability  to  change  flow

tables, automatic reaction can be implemented as soon as a

threat is detected. Implementation of the concept requires a

modified SDN, as defined in [15]. 
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