Logo PTI Logo FedCSIS

Proceedings of the 17th Conference on Computer Science and Intelligence Systems

Annals of Computer Science and Information Systems, Volume 30

GaMeDE2 — improved Gap–based Memetic Differential Evolution applied to multi–modal optimisation

, ,

DOI: http://dx.doi.org/10.15439/2022F153

Citation: Proceedings of the 17th Conference on Computer Science and Intelligence Systems, M. Ganzha, L. Maciaszek, M. Paprzycki, D. Ślęzak (eds). ACSIS, Vol. 30, pages 291300 ()

Full text

Abstract. This paper presents an improved Gap--based Memetic Differential Evolution (GaMeDE2), the modification of the GaMeDE method, which took second place in the GECCO 2020 Competition on Niching Methods for Multi-modal Optimization. GaMeDE2 has reduced complexity, fewer parameters, redefined initialisation, selection operator, and removed processing phases. The method is verified using standard benchmark function sets (classic ones and CEC2013) and a newly proposed benchmark set comprised of deceptive functions. A detailed comparison to state-of-the-art methods (like HVCMO and SDLCSDE) is presented, where the proposed GaMeDE2 outperforms or gives similar results to other methods. The document is concluded by discussing various insights on the problem instances and the methods created as a part of the research.

References

  1. S. Das, S. Maity, B.-Y. Qu, P. N. Suganthan, Real-parameter evolutionary multimodal optimization—a survey of the state-of-the-art, Swarm and Evolutionary Computation 1 (2) (2011) 71–88.
  2. X. Li, A. Engelbrecht, M. G. Epitropakis, Benchmark functions for cec’2013 special session and competition on niching methods for multimodal function optimization, RMIT University, Evolutionary Computation and Machine Learning Group, Australia, Tech. Rep.
  3. M. Laszczyk, P. B. Myszkowski, A gap–based memetic differential evolution (gamede) applied to multi–modal optimisation–using multiobjective optimization concepts, in: Intelligent Information and Database Systems: 13th Asian Conference, ACIIDS 2021, Phuket, Thailand, April 7–10, 2021, Proceedings 13, Springer International Publishing, 2021, pp. 211–223.
  4. Q. Liu, S. Du, B. J. van Wyk, Y. Sun, Double-layer-clustering differential evolution multimodal optimization by speciation and self-adaptive strategies, Information Sciences 545 (2021) 465–486.
  5. X. Li, Niching without niching parameters: particle swarm optimization using a ring topology, IEEE Transactions on Evolutionary Computation 14 (1) (2009) 150–169.
  6. R. Navarro, C. H. Kim, Niching multimodal landscapes faster yet effectively: Vmo and hillvallea benefit together, Mathematics 8 (5) (2020) 665.
  7. S. Maree, T. Alderliesten, D. Thierens, P. A. Bosman, Real-valued evolutionary multi-modal optimization driven by hill-valley clustering, in: Proceedings of the genetic and evolutionary computation conference, 2018, pp. 857–864.
  8. S. W. Mahfoud, Niching methods for genetic algorithms, Ph.D. thesis, University of Illinois at Urbana-Champaign (1995).
  9. J. Barrera, C. A. C. Coello, A Review of Particle Swarm Optimization Methods Used for Multimodal Optimization, Springer Berlin Heidelberg, Berlin, Heidelberg, 2009, pp. 9–37.
  10. B.-Y. Qu, P. N. Suganthan, Novel multimodal problems and differential evolution with ensemble of restricted tournament selection, in: IEEE Congress on Evolutionary Computation, IEEE, 2010, pp. 1–7.
  11. D. E. Goldberg, K. Deb, J. Horn, Massive multimodality, deception, and genetic algorithms., in: PPSN, Vol. 2, 1992.
  12. B.-Y. Qu, J. J. Liang, Z. Wang, Q. Chen, P. N. Suganthan, Novel benchmark functions for continuous multimodal optimization with comparative results, Swarm and Evolutionary Computation 26 (2016) 23–34.
  13. B.-Y. Qu, J. J. Liang, P. N. Suganthan, Niching particle swarm optimization with local search for multi-modal optimization, Information Sciences 197 (2012) 131–143.
  14. S. Yazdani, H. Nezamabadi-pour, S. Kamyab, A gravitational search algorithm for multimodal optimization, Swarm and Evolutionary Com putation 14 (2014) 1–14.
  15. K. Price, R. M. Storn, J. A. Lampinen, Differential evolution: a practical approach to global optimization, Springer Science & Business Media, 2006.
  16. Z.-J. Wang, Z.-H. Zhan, Y. Lin, W.-J. Yu, H.-Q. Yuan, T.-L. Gu, S. Kwong, J. Zhang, Dual-strategy differential evolution with affinity propagation clustering for multimodal optimization problems, IEEE Transactions on Evolutionary Computation 22 (6) (2017) 894–908.
  17. H. Zhao, Z.-H. Zhan, Y. Lin, X. Chen, X.-N. Luo, J. Zhang, S. Kwong, J. Zhang, Local binary pattern-based adaptive differential evolution for multimodal optimization problems, IEEE transactions on cybernetics 50 (7) (2019) 3343–3357.
  18. Z.-G. Chen, Z.-H. Zhan, H. Wang, J. Zhang, Distributed individuals for multiple peaks: A novel differential evolution for multimodal optimization problems, IEEE Transactions on Evolutionary Computation 24 (4) (2019) 708–719.
  19. P. Haghbayan, H. Nezamabadi-Pour, S. Kamyab, A niche gsa method with nearest neighbor scheme for multimodal optimization, Swarm and evolutionary computation 35 (2017) 78–92.
  20. Y. Li, Y. Chen, J. Zhong, Z. Huang, Niching particle swarm optimization with equilibrium factor for multi-modal optimization, Information Sciences 494 (2019) 233–246.
  21. Z.-J. Wang, Z.-H. Zhan, Y. Lin, W.-J. Yu, H. Wang, S. Kwong, J. Zhang, Automatic niching differential evolution with contour prediction approach for multimodal optimization problems, IEEE Transactions on Evolutionary Computation 24 (1) (2019) 114–128.
  22. S. Maree, T. Alderliesten, P. A. Bosman, Benchmarking hillvallea for the gecco 2019 competition on multimodal optimization, arXiv preprint https://arxiv.org/abs/1907.10988.
  23. R. K. Ursem, Multinational evolutionary algorithms, in: Proceedings of the 1999 congress on evolutionary computation-CEC99 (Cat. No. 99TH8406), Vol. 3, IEEE, 1999, pp. 1633–1640.
  24. A. Puris, R. Bello, D. Molina, F. Herrera, Variable mesh optimization for continuous optimization problems, Soft Computing 16 (3) (2012) 511–525.
  25. P. A. Bosman, J. Grahl, D. Thierens, Benchmarking parameter-free amalgam on functions with and without noise, Evolutionary computation 21 (3) (2013) 445–469.
  26. V. N. Nair, B. Abraham, J. MacKay, G. Box, R. N. Kacker, T. J. Lorenzen, J. M. Lucas, R. H. Myers, G. G. Vining, J. A. Nelder, et al., Taguchi’s parameter design: a panel discussion, Technometrics 34 (2) (1992) 127–161.