Logo PTI Logo FedCSIS

Proceedings of the 17th Conference on Computer Science and Intelligence Systems

Annals of Computer Science and Information Systems, Volume 30

Process-oriented documentation of user requirements for analytical applications - challenges, state of the art and evaluation of a service-based configuration approach

, ,

DOI: http://dx.doi.org/10.15439/2022F181

Citation: Proceedings of the 17th Conference on Computer Science and Intelligence Systems, M. Ganzha, L. Maciaszek, M. Paprzycki, D. Ślęzak (eds). ACSIS, Vol. 30, pages 773782 ()

Full text

Abstract. In recent years, the integration of process design in conjunction with the use of analytical applications to provide information tailored to user requirements to support operational process activities (e.g., Operational BI) has become increasingly widespread. In analytical software development/implementation projects, the insufficient involvement of analytical end users with their process context and the resulting unclear requirements/expected analytical software functions are still one of the main reasons for analytical project failure. Embedded in a Design Science Research Process, this paper shows the shortcomings of existing approaches, tools and models (1. BPMN process model extensions, 2. configurators in analytical applications, 3. models used in analytical implementation projects) for the documentation/conceptual configuration of analytical requirements. As a second part, this paper presents the evaluation results of a new process-oriented and service-based configuration approach for analytical applications, whose practicability, usefulness and acceptance were evaluated in expert reviews and in analytical development projects.


  1. A.D.N. Sarma, “A Generic Functional Architecture for Operational BI System,” International Journal of Business Intelligence Research, vol. 9, no. 1, pp. 64–77, 2018, http://dx.doi.org/10.4018/IJBIR.2018010105.
  2. T. Hänel and C. Felden, “Operational Business Intelligence im Zukunftsszenario der Industrie 4.0,” in Analytische Informationssysteme: Business Intelligence-Technologien und -Anwendungen, P. Gluchowski and P. Chamoni, Eds., 5th ed.: Springer Verlag, 2016, pp. 259–282.
  3. P. Alpar, R. Alt, F. Bensberg, and P. Weimann, Anwendungsorientierte Wirtschaftsinformatik: Strategische Planung, Entwicklung und Nutzung von Informationssystemen, 9th ed. Wiesbaden: Springer Vieweg, 2019.
  4. Z. Panian, “How to Make Business Intelligence Actionable through Service-oriented Architectures,” in 2nd WSEAS International Conference on Computer Engineering and Applications, 2008, pp. 210–221.
  5. K. D. Schulze and C. Dittmar, “Business Intelligence Reifegradmodelle,” in Analytische Informationssysteme: Business Intelligence-Technologien und -Anwendungen, P. Chamoni and P. Gluchowski, Eds., 3rd ed., Berlin: Springer Verlag, 2006, pp. 72–87.
  6. E. Colangelo and T. Bauernhansl, “Usage of Analytical Services in Industry Today and Tomorrow,” Procedia CIRP, vol. 57, pp. 276–280, 2016, http://dx.doi.org/10.1016/j.procir.2016.11.048.
  7. A. Hoffjan and M. Rohe, “5. Konzeptionelle Analyse von Self-Service Business Intelligence und deren Gestaltungsmöglichkeiten,” in Erfolgreiches Controlling, M. Kißler and A. Wiesehahn, Eds.: Nomos Verlagsgesellschaft mbH & Co. KG, 2018, pp. 99–112.
  8. A. Vera-Baquero, R. Colomo-Palacios, and O. Molloy, “Real-time business activity monitoring and analysis of process performance on big-data domains,” Telematics and Informatics, vol. 33, no. 3, pp. 793–807, 2016, http://dx.doi.org/10.1016/j.tele.2015.12.005.
  9. M. Begerow, Ziele von Business Intelligence. [Online]. Available: https://datenbanken-verstehen.de/business-intelligence/business-intelligence-grundlagen/business-intelligence-ziele/ (accessed: Nov. 9 2020).
  10. Warum scheitern viele BI-Projekte? [Online]. Available: https://www.aep-ag.com/2-uncategorised/211-warum-scheitern-viele-bi-projekte (accessed: Nov. 9 2020).
  11. Die sechs häufigsten Fehler in Business Intelligence Projekten. [Online]. Available: https://www.prisma-informatik.de/erp-blog/2016/06/die-sechs-haeufigsten-fehler-in-business-intelligence-projekten/ (accessed: gelesen am Nov. 9 2020).
  12. D. Meister, “Woran scheitern Data Science Projekte?,” Datahouse AG, 2019.
  13. O. Fleming, T. Fountaine, N. Henke, and T. Saleh, Ten red flags signaling your analytics program will fail. [Online]. Available: https://www.mckinsey.com/business-functions/mckinsey-analytics/our-insights/ten-red-flags-signaling-your-analytics-program-will-fail (accessed: Nov. 23 2020).
  14. P. Uria-Recio, Top 25 Mistakes Corporates Make in their Advanced Analytics Programs. [Online]. Available: https://towardsdatascience.com/top-25-mistakes-corporates-make-in-their-advanced-analytics-programs-c51e76218e20 (accessed: Jun. 15 2021).
  15. C. Hrach and R. Alt, “Configuration Approach for Analytical Service Models – Development and Evaluation,” in 2020 IEEE 22nd Conference on Business Informatics (CBI), Antwerp, Belgium, 2020, pp. 260–269.
  16. K. Peffers, T. Tuunanen, M. A. Rothenberger, and S. Chatterjee, “A Design Science Research Methodology for Information Systems Research,” Journal of Management Information Systems, vol. 24, no. 3, pp. 45–77, 2007, http://dx.doi.org/10.2753/MIS0742-1222240302.
  17. Business Process Model and Notation: An introductory guide. [Online]. Available: https://www.signavio.com/bpmn-introductory-guide/ (accessed: Dec. 30 2020).
  18. T. Allweyer, BPMN setzt sich durch in der Praxis. [Online]. Available: https://www.computerwoche.de/a/bpmn-setzt-sich-durch-in-der-praxis,1886445 (accessed: Dec. 30 2020).
  19. K. Zarour, D. Benmerzoug, N. Guermouche, and K. Drira, “A systematic literature review on BPMN extensions,” BPMJ, vol. 26, no. 6, pp. 1473–1503, 2019, http://dx.doi.org/10.1108/BPMJ-01-2019-0040.
  20. J. Richardson, K. Schlegel, R. Sallam, A. Kronz, and J. Sun, “Magic Quadrant for Analytics and Business Intelligence Platforms 2021,” 2021.
  21. S. Gregor and A. R. Hevner, “Positioning and Presenting Design Science Research for Maximum Impact,” MISQ, vol. 37, no. 2, pp. 337–355, 2013, http://dx.doi.org/10.25300/MISQ/2013/37.2.01.
  22. G. B. Davis, “Advising and Supervising,” in Butterworth-Heinemann information systems series, Research in information systems: A handbook for research supervisors and their students, D. E. Avison and J. Pries-Heje, Eds., Amsterdam: Elsevier Butterworth-Heinemann, 2005, pp. 1–33.
  23. O. Liskin, “How Artifacts Support and Impede Requirements Communication,” in Lecture notes in computer science, Requirements Engineering: Foundation for Software Quality, S. A. Fricker and K. Schneider, Eds., Cham: Springer International Publishing, 2015, pp. 132–147.
  24. J. Misra, S. Sengupta, and S. Podder, “Topic cohesion preserving requirements clustering,” in Proceedings of the 5th International Workshop on Realizing Artificial Intelligence Synergies in Software Engineering - RAISE '16, Austin, Texas, 2016, pp. 22–28.
  25. U. Frank, “Domain-Specific Modeling Languages: Requirements Analysis and Design Guidelines,” in Domain engineering: Product lines, languages, and conceptual models, I. Reinhartz-Berger, A. Sturm, T. Clark, S. Cohen, and J. Bettin, Eds., Heidelberg: Springer Verlag, 2013, pp. 133–157.
  26. J. H. Mayer, R. Winter, and T. Mohr, “Situational Management Support Systems,” Bus Inf Syst Eng, vol. 4, no. 6, pp. 331–345, 2012, http://dx.doi.org/10.1007/s12599-012-0233-5.
  27. S. Sharma, K. Chen, and A. Shet, “Towards Practical Privacy-Preserving Analytics for IoT and Cloud-Based Healthcare Systems,” IEEE Internet Computing, March-April, 2018, http://dx.doi.org/10.1109/MIC.2018.112102519.
  28. E. Graupner, M. Berner, A. Mädche, and H. Jegadeesan, “Business Intelligence & Analytics for Processes \textendash A Visibility Requirements Evaluation,” in Multikonferenz Wirtschaftsinformatik (MKWI), Paderborn, Germany, 26. - 28. Februar 2014. Ed.: D. Kundisch, 2014, pp. 154–166.
  29. H.-G. Kemper, H. Baars, and W. Mehanna, Business Intelligence – Grundlagen und praktische Anwendungen, 3rd ed. Wiesbaden: Vieweg+Teubner, 2010.
  30. J. Schiefer and A. Seufert, “Towards a Service-Oriented Architecture for Operational BI,” in Multikonferenz Wirtschaftsinformatik 2010, 2010, pp. 1137–1149.
  31. S. Sachse, “Customer-centric Service Management - Conceptualization and Evaluation of Consumer-induced Service Composition,” Dissertation, Institut für Wirtschaftsinformatik, Universität Leipzig, Leipzig, 2018.
  32. L. Wu, G. Barash, and C. Bartolini, “A Service-oriented Architecture for Business Intelligence,” in IEEE International Conference on Service-Oriented Computing and Applications (SOCA '07), 2007, pp. 279–285.
  33. P. Alpar and M. Schulz, “Self-Service Business Intelligence,” Bus Inf Syst Eng, vol. 58, no. 2, pp. 151–155, 2016, http://dx.doi.org/10.1007/s12599-016-0424-6.
  34. S. Schönig, S. Jablonski, and A. Ermer, “IoT-basiertes Prozessmanagement,” Informatik Spektrum, vol. 42, no. 2, pp. 130–137, 2019, http://dx.doi.org/10.1007/s00287-019-01140-x.
  35. D. Beverungen et al., “Seven Paradoxes of Business Process Management in a Hyper-Connected World,” Bus Inf Syst Eng, vol. 18, no. 2, p. 279, 2020, http://dx.doi.org/10.1007/s12599-020-00646-z.
  36. M. Goeken, “Anforderungsmanagement bei der Entwicklung von Data Warehouse-Systemen,” in Auf dem Weg zur Integration Factory: Proceedings der DW2004 - Data Warehousing und EAI, J. Schelp and R. Winter, Eds., Heidelberg: Physica Verlag, 2004, pp. 167–186.
  37. A. Bonifati, F. Cattaneo, S. Ceri, A. Fuggetta, S. Paraboschi, and P. Di Milano, “Designing Data Marts for Data Warehouses,” ACM Transactions on Software Engineering and Methodology, vol. 10, pp. 452–483, 2001, http://dx.doi.org/10.1145/384189.384190.
  38. D. Calvanese, L. Dragone, D. Nardi, R. Rosati, and S. M. Trisolini, “Enterprise modeling and Data Warehousing in Telecom Italia,” Information Systems, vol. 31, no. 1, pp. 1–32, 2006, http://dx.doi.org/10.1016/j.is.2004.07.002.
  39. P. Giorgini, S. Rizzi, and M. Garzetti, “GRAnD: A goal-oriented approach to requirement analysis in data warehouses,” Decision Support Systems, vol. 45, no. 1, pp. 4–21, 2008, http://dx.doi.org/10.1016/j.dss.2006.12.001.
  40. G. Shanks and P. Darke, “Understanding corporate data models,” Information & Management, vol. 35, no. 1, pp. 19–30, 1999, http://dx.doi.org/10.1016/S0378-7206(98)00078-0.
  41. B. Strauch, “Entwicklung einer Methode für die Informationsbedarfsanalyse im Data Warehousing,” Universität St. Gallen, St. Gallen, 2002.
  42. A. Maté and J. Trujillo, “A trace metamodel proposal based on the model driven architecture framework for the traceability of user requirements in data warehouses,” Information Systems, vol. 37, no. 8, pp. 753–766, 2012, http://dx.doi.org/10.1016/j.is.2012.05.003.
  43. J. Horkoff et al., “Strategic business modeling: representation and reasoning,” Softw Syst Model, vol. 13, no. 3, pp. 1015–1041, 2014, http://dx.doi.org/10.1007/s10270-012-0290-8.
  44. P. Jovanovic, O. Romero, A. Simitsis, A. Abelló, and D. Mayorova, “A requirement-driven approach to the design and evolution of data warehouses,” Information Systems, vol. 44, pp. 94–119, 2014, http://dx.doi.org/10.1016/j.is.2014.01.004.
  45. C. Rosenkranz, R. Holten, M. Räkers, and W. Behrmann, “Supporting the design of data integration requirements during the development of data warehouses: a communication theory-based approach,” European Journal of Information Systems, vol. 26, no. 1, pp. 84–115, 2017, http://dx.doi.org/10.1057/ejis.2015.22.
  46. A. Ferrández, A. Maté, J. Peral, J. Trujillo, E. de Gregorio, and M.-A. Aufaure, “A framework for enriching Data Warehouse analysis with Question Answering systems,” J Intell Inf Syst, vol. 46, no. 1, pp. 61–82, 2016, http://dx.doi.org/10.1007/s10844-014-0351-2.
  47. M. A. Teruel, A. Maté, E. Navarro, P. González, and J. C. Trujillo, “The New Era of Business Intelligence Applications: Building from a Collaborative Point of View,” Bus Inf Syst Eng, vol. 61, no. 5, pp. 615–634, 2019, http://dx.doi.org/10.1007/s12599-019-00578-3.
  48. M. O‘Shea, G. Pawellek, and A. Schramm, “Durch maßgeschneiderte Informationsversorgung zu mehr Usability,” Wirtschaftsinformatik & Management (WuM), vol. 5, no. 6, pp. 104–113, 2013, http://dx.doi.org/10.1365/s35764-013-0370-8.
  49. P. Bocciarelli, A. D'Ambrogio, E. Paglia, and A. Giglio, “An HLA-based BPMN extension for the specification of business process collaborations,” in 2017 IEEE/ACM 21st International Symposium on Distributed Simulation and Real Time Applications (DS-RT), Rome, 2017, pp. 1–8.
  50. M. Magnani and D. Montesi, “BPDMN: A Conservative Extension of BPMN with Enhanced Data Representation Capabilities,” 2009. [Online]. Available: http://arxiv.org/pdf/0907.1978v1
  51. H. Betke and M. Seifert, “BPMN for Disaster Response Processes,” in INFORMATIK 2017, Chemnitz, 2017, pp. 1311–1324.
  52. A. D'Ambrogio, E. Paglia, P. Bocciarelli, and A. Giglio, “Towards performance-oriented perfective evolution of BPMN models,” in 2016 Symposium on Theory of Modeling and Simulation (TMS-DEVS), 2016, pp. 1–8.
  53. T. Blecker, H. Dullnig, and F. Malle, “Kundenkohärente und kundeninhärente Produktkonfiguration in der Mass Customization,” Industrie Management, vol. 19, no. 1, pp. 21–24, 2003.
  54. F. T. Piller, Mass Customization: Ein wettbewerbsstrategisches Konzept im Informationszeitalter. Zugl.: Würzburg, Univ., Diss., 1999 u.d.T.: Kundenindividuelle Massenproduktion (mass customization) als wettbewerbsstrategisches Modell industrieller Wertschöpfung in der Informationsgesellschaft, 4th ed. Wiesbaden: Dt. Univ.-Verl., 2006.
  55. J. Ritter, “Prozessorientierte Konfiguration komponentenbasierter Anwendungssysteme,” Dissertation, Universität Oldenburg, Oldenburg, 2000.
  56. C. Rupp, Requirements-Engineering und -Management: Das Handbuch für Anforderungen in jeder Situation, 7th ed. München: Hanser, 2021.