Logo PTI Logo FedCSIS

Proceedings of the 17th Conference on Computer Science and Intelligence Systems

Annals of Computer Science and Information Systems, Volume 30

NiaNet: A framework for constructing Autoencoder architectures using nature-inspired algorithms

, ,

DOI: http://dx.doi.org/10.15439/2022F192

Citation: Proceedings of the 17th Conference on Computer Science and Intelligence Systems, M. Ganzha, L. Maciaszek, M. Paprzycki, D. Ślęzak (eds). ACSIS, Vol. 30, pages 109116 ()

Full text

Abstract. Autoencoder, an hourly glass-shaped deep neuralnetwork capable of learning data representation in a lower dimension, has performed well in various applications. However, developing a high-quality AE system for a specific task heavily relies on human expertise, limiting its widespread application. On the other hand, there has been a gradual increase in automated machine learning for developing deep learning systems without human intervention. However, there is a shortage of automatically designing particular deep neural networks such as AE. This study presents the NiaNet method and corresponding software framework for designing AE topology and hyper-parameter settings. Our findings show that it is possible to discover the optimal AE architecture for a specific dataset without the requirement for human expert assistance. The future potential of the proposed method is also discussed in this paper.

References

  1. F. Yu, Z. Qin, C. Liu, D. Wang, and X. Chen, “REIN the RobuTS: Robust DNN-Based Image Recognition in Autonomous Driving Systems,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 40, no. 6, pp. 1258–1271, Jun. 2021, conference Name: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.
  2. Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao, Q. Gao, K. Macherey, J. Klingner, A. Shah, M. Johnson, X. Liu, Kaiser, S. Gouws, Y. Kato, T. Kudo, H. Kazawa, K. Stevens, G. Kurian, N. Patil, W. Wang, C. Young, J. Smith, J. Riesa, A. Rudnick, O. Vinyals, G. Corrado, M. Hughes, and J. Dean, “Google’s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation,” https://arxiv.org/abs/1609.08144 [cs], Oct. 2016, arXiv:1609.08144. [Online]. Available: http://arxiv.org/abs/1609.08144
  3. S. Shekhar, A. Singh, and A. K. Gupta, “A Deep Neural Network (DNN) Approach for Recommendation Systems,” in Advances in Computational Intelligence and Communication Technology, ser. Lecture Notes in Networks and Systems, X.-Z. Gao, S. Tiwari, M. C. Trivedi, P. K. Singh, and K. K. Mishra, Eds. Singapore: Springer, 2022, pp. 385–396.
  4. J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunyasuvunakool, R. Bates, A. Žı́dek, A. Potapenko, A. Bridgland, C. Meyer, S. A. A. Kohl, A. J. Ballard, A. Cowie, B. Romera-Paredes, S. Nikolov, R. Jain, J. Adler, T. Back, S. Petersen, D. Reiman, E. Clancy, M. Zielinski, M. Steinegger, M. Pacholska, T. Berghammer, S. Bodenstein, D. Silver, O. Vinyals, A. W. Senior, K. Kavukcuoglu, P. Kohli, and D. Hassabis, “Highly accurate protein structure prediction with AlphaFold,” Nature, vol. 596, no. 7873, pp. 583–589, Aug. 2021, number: 7873 Publisher: Nature Publishing Group. [Online]. Available: https://www.nature.com/articles/s41586-021-03819-2
  5. Z. Li, M. Pan, T. Zhang, and X. Li, “Testing DNN-based Autonomous Driving Systems under Critical Environmental Conditions,” in Proceedings of the 38th International Conference on Machine Learning. PMLR, Jul. 2021, pp. 6471–6482, iSSN: 2640-3498. [Online]. Available: https://proceedings.mlr.press/v139/li21r.html
  6. J. N. K. Liu, Y. Hu, Y. He, P. W. Chan, and L. Lai, “Deep Neural Network Modeling for Big Data Weather Forecasting,” in Information Granularity, Big Data, and Computational Intelligence, ser. Studies in Big Data, W. Pedrycz and S.-M. Chen, Eds. Cham: Springer International Publishing, 2015, pp. 389–408. [Online]. Available: https://doi.org/10.1007/978-3-319-08254-7 19
  7. P. Dhar, “The carbon impact of artificial intelligence,” Nature Machine Intelligence, vol. 2, no. 8, pp. 423–425, 2020.
  8. E.-G. Talbi, “Automated Design of Deep Neural Networks: A Survey and Unified Taxonomy,” ACM Computing Surveys, vol. 54, no. 2, pp. 34:1–34:37, Mar. 2021. [Online]. Available: https://doi.org/10.1145/3439730
  9. G. Vrbančič, I. Fister jr, and V. Podgorelec, Designing Deep Neural Network Topologies with Population-Based Metaheuristics, Sep. 2018.
  10. L. Pečnik and I. Fister, “NiaAML: AutoML framework based on stochastic population-based nature-inspired algorithms,” Journal of Open Source Software, vol. 6, no. 61, p. 2949, May 2021. [Online]. Available: https://joss.theoj.org/papers/10.21105/joss.02949
  11. V. K. Ojha, A. Abraham, and V. Snášel, “Metaheuristic design of
  12. feedforward neural networks: A review of two decades of research,” Engineering Applications of Artificial Intelligence, vol. 60, pp. 97–116, Apr. 2017. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0952197617300234
  13. R. Miikkulainen, “Neuroevolution.”
  14. K. O. Stanley and R. Miikkulainen, “Evolving neural networks through augmenting topologies,” vol. 10, no. 2, pp. 99–127. [Online]. Available: https://direct.mit.edu/evco/article/10/2/99-127/1123
  15. A. Conradie, R. Miikkulainen, and C. Aldrich, “Intelligent process control utilising symbiotic memetic neuro-evolution,” in Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02 (Cat. No.02TH8600), vol. 1, pp. 623–628 vol.1.
  16. A. Hara, J.-i. Kushida, K. Kitao, and T. Takahama, “Neuroevolution by particle swarm optimization with adaptive input selection for controlling platform-game agent,” in 2013 IEEE International Conference on Systems, Man, and Cybernetics, pp. 2504–2509, ISSN: 1062-922X.
  17. E. Galván and P. Mooney, “Neuroevolution in Deep Neural Networks: Current Trends and Future Challenges,” IEEE Transactions on Artificial Intelligence, vol. 2, no. 6, pp. 476–493, Dec. 2021, conference Name: IEEE Transactions on Artificial Intelligence.
  18. C. Broni-Bediako, “Automated Deep Neural Networks with Gene Expression Programming of Cellular Encoding - Towards the Applications in Remote Sensing Image Understanding-,” Mar. 2022. [Online]. Available: https://soka.repo.nii.ac.jp/index.php?active_action=repository_view_main_item detail&page_id=13&block_id=68&item_id=40743&item_no=1
  19. T. Elsken, J. H. Metzen, and F. Hutter, “Neural Architecture Search: A Survey,” https://arxiv.org/abs/1808.05377 [cs, stat], Apr. 2019, arXiv: 1808.05377. [Online]. Available: http://arxiv.org/abs/1808.05377
  20. X. Yao, “Evolving artificial neural networks,” Proceedings of the IEEE, vol. 87, no. 9, pp. 1423–1447, Sep. 1999, conference Name: Proceedings of the IEEE.
  21. E. Thomas, M. Jan Hendrik, and H. Frank, “Neural Architecture Search: A Survey,” https://arxiv.org/abs/1808.05377 [cs, stat], Apr. 2019, arXiv: 1808.05377. [Online]. Available: http://arxiv.org/abs/1808.05377
  22. M. Scanagatta, A. Salmerón, and F. Stella, “A survey on Bayesian network structure learning from data,” Progress in Artificial Intelligence, vol. 8, no. 4, pp. 425–439, Dec. 2019. [Online]. Available: https://doi.org/10.1007/s13748-019-00194-y
  23. X. He, K. Zhao, and X. Chu, “AutoML: A survey of the state-of-the-art,” Knowledge-Based Systems, vol. 212, p. 106622, Jan. 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0950705120307516
  24. B. Evans, “Population-based Ensemble Learning with Tree Structures for Classification,” thesis, Open Access Te Herenga Waka-Victoria University of Wellington, Jan. 2019. [Online]. Available: https://openaccess.wgtn.ac.nz/articles/thesis/Population-based_Ensemble_Learning_with_Tree_Structures_for_Classification/17136296/1
  25. J. Meehan, N. Tatbul, C. Aslantas, and S. Zdonik, “Data ingestion for the connected world,” p. 11.
  26. G. Vrbančič, L. Brezočnik, U. Mlakar, D. Fister, and I. Fister, “NiaPy: Python microframework for building nature-inspired algorithms,” Journal of Open Source Software, vol. 3, no. 23, p. 613, Mar. 2018. [Online]. Available: https://joss.theoj.org/papers/10.21105/joss.00613
  27. C. M. Bishop, Neural Networks for Pattern Recognition. USA: Oxford University Press, Inc., 1995, p. 332.
  28. Diabetes data. [Online]. Available: https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html
  29. “NiaNet/autoencoder.py at 408b7fe0f4634439eb69e75f6b0c5afb18ce0702· SasoPavlic/NiaNet.” [Online]. Available: https://github.com/SasoPavlic/NiaNet
  30. “scikit-learn: machine learning in Python — scikit-learn 1.0.2 documentation.” [Online]. Available: https://scikit-learn.org/stable/
  31. “NumPy.” [Online]. Available: https://numpy.org/
  32. PyTorch. [Online]. Available: https://www.pytorch.org
  33. J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of ICNN’95-international conference on neural networks, vol. 4. IEEE, 1995, pp. 1942–1948.
  34. R. Storn and K. Price, “Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces,” Journal of global optimization, vol. 11, no. 4, pp. 341–359, 1997.
  35. X.-S. Yang, Nature-inspired metaheuristic algorithms. Luniver press, 2010.
  36. J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V. Zumer, “Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems,” IEEE transactions on evolutionary computation, vol. 10, no. 6, pp. 646–657, 2006.
  37. J. H. Holland, Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT press, 1992.