Logo PTI Logo FedCSIS

Proceedings of the 17th Conference on Computer Science and Intelligence Systems

Annals of Computer Science and Information Systems, Volume 30

Data Exchange Protocol for Cryptographic Key Distribution System Using MQTT Service

DOI: http://dx.doi.org/10.15439/2022F260

Citation: Proceedings of the 17th Conference on Computer Science and Intelligence Systems, M. Ganzha, L. Maciaszek, M. Paprzycki, D. Ślęzak (eds). ACSIS, Vol. 30, pages 611615 ()

Full text

Abstract. There is an increasing demand for capturing reliable data from IoT network devices. Due to the limited capabilities of such devices to process and store sensitive data and the range and performance of the communication link used, it is a major challenge to develop a secure solution for symmetric key distribution. This paper presents a secure data exchange protocol essential for a cryptographic key generation, renewal, and distribution (KGR) system. The Trusted Platform Module (TPM) supports the trust establishment, key generation, all cryptographic procedures of the KGR system and secure data exchange in the described protocol. The protocol uses the MQTT service, which is widely used by IoT devices.

References

  1. Dammak, M.; Senouci, S.M.; Messous, M.A.; Elhdhili, M.H.; Gransart, C. Decentralized Lightweight Group Key Management for Dynamic Access Control in IoT Environments. IEEE Trans. Netw. Serv. Manag. 2020, 1–15, http://dx.doi.org/10.1109/TNSM.2020.3002957.
  2. Tan, H.; Chung, I. A Secure and Efficient Group Key Management Protocol with Cooperative Sensor Association in WBANs. Sensors 2018, 18, 3930, http://dx.doi.org/10.3390/s18113930.
  3. Zhong, H.; Luo,W.; Cui, J. Multiple multicast group key management for the Internet of People. Concurr. Comput. Pract. Exp. 2016, 29, e3817, http://dx.doi.org/10.1002/cpe.3817.
  4. Ding, W.; Hu, R.; Yan, Z.; Qian, X.; Deng, R.H.; Yang, L.T.; Dong, M. An Extended Framework of Privacy-Preserving Computation with Flexible Access Control. IEEE Trans. Netw. Serv. Manag. 2020, 17, 918–930, http://dx.doi.org/10.1109/TNSM.2019.2952462.
  5. Mehdizadeh, A.; Hashim, F.; Othman, M. Lightweight decentralized multicast–unicast key management method in wireless IPv6 networks. J. Netw. Comput. Appl. 2014, 42, http://dx.doi.org/10.1016/j.jnca.2014.03.013.
  6. Kung, Y.; Hsiao, H. GroupIt: Lightweight Group Key Management for Dynamic IoT Environments. IEEE Internet Things J. 2018, 5, 5155–5165, http://dx.doi.org/10.1109/JIOT.2018.2840321.
  7. Abdmeziem, M.R.; Tandjaoui, D.; Romdhani, I. A Decentralized Batch-Based Group Key Management Protocol for Mobile Internet of Things (DBGK). In Proceedings of the IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing, Liverpool, UK, 2015; 1109–1117, http://dx.doi.org/10.1109/CIT/IUCC/DASC/PICOM.2015. 166
  8. Yao, W.; Han, S.; Li, X. LKH++ Based Group Key Management Scheme for Wireless Sensor Network. Wirel. Pers. Commun. 2015, 83, 3057–3073.
  9. J. Furtak, Z. Zieliński and J. Chudzikiewicz, Procedures for sensor nodes operation in the secured domain, Concurr. Comput. Pract. Exp. 2019, 32, e5183, http://dx.doi.org/10.1002/cpe.5183.
  10. J. Furtak, Z. Zieliński and J. Chudzikiewicz, A Framework for Constructing a Secure Domain of Sensor Nodes, Sensors 2019, 19, 2797, http://dx.doi.org/10.3390/s19122797.
  11. Borman C., Ersue M., Keranen A., Terminology for Constrained-Node Networks, RFC 7228, Internet Engineering Task Force (IETF), May 2014.
  12. Trusted Computing Group. TPM Main Part 1 Design Principles. Specification Version 1.2, Revision 116; Trusted Computing Group: Beaverton, OR, USA, 2011.
  13. Information technology - Authenticated encryption. 19772:2020. ISO/IEC. Retrieved November 2020.