Logo PTI Logo FedCSIS

Proceedings of the 17th Conference on Computer Science and Intelligence Systems

Annals of Computer Science and Information Systems, Volume 30

Rough Sets Turn 40: From Information Systems to Intelligent Systems

,

DOI: http://dx.doi.org/10.15439/2022F310

Citation: Proceedings of the 17th Conference on Computer Science and Intelligence Systems, M. Ganzha, L. Maciaszek, M. Paprzycki, D. Ślęzak (eds). ACSIS, Vol. 30, pages 2334 ()

Full text

Abstract. The theory of rough sets was founded by Zdzis\l{}aw Pawlak to serve as a framework for data and knowledge exploration. Following Professor Pawlak's seminal paper titled ``Rough Sets'' published in 1982 in International Journal of Computer and Information Sciences, it is important to discuss the history, the presence and possible future developments of this theory, as well as its applications. One of the key aspects that lets us use rough sets in practical scenarios is the notion of information system, which in fact comes from even earlier Professor Pawlak's works. Information systems are the means for data and knowledge representation. They constitute the input to rough set mechanisms aimed at computing concept approximations and deriving compacted and interpretable decision models. Accordingly, in this paper we discuss where information systems come from. We claim that in many applications it is not enough to treat a data set -- represented as an information system---as a purely mathematical object with no linkage to the data origins. Quite oppositely, in practice we may need to work with information systems more actively, giving ourselves a technical possibility to construct them dynamically, taking into account interaction with physical environments where the data is created.

References

  1. Z. Pawlak, “Rough Sets,” International Journal of Computer and Information Sciences, vol. 11, no. 5, pp. 341–356, 1982. [Online]. Available: https://doi.org/10.1007/BF01001956
  2. Z. Pawlak, Rough Sets – Theoretical Aspects of Reasoning about Data, ser. Theory and Decision Library D. Springer, 1991. [Online]. Available: https://doi.org/10.1007/978-94-011-3534-4
  3. Z. Pawlak, “Information Systems – Theoretical Foundations,” Information Systems, vol. 6, no. 3, pp. 205–218, 1981. [Online]. Available: https://doi.org/10.1016/0306-4379(81)90023-5
  4. V. W. Marek, “Working with Zdzisław Pawlak – Personal Reminiscences,” in Proceedings of the 2016 Federated Conference on Computer Science and Information Systems, FedCSIS 2016, Gdańsk, Poland, September 11-14, 2016, ser. Annals of Computer Science and Information Systems, M. Ganzha, L. A. Maciaszek, and M. Paprzycki, Eds., vol. 8. IEEE, 2016, pp. 189–190. [Online]. Available: https://doi.org/10.15439/2016F002
  5. A. Skowron, M. K. Chakraborty, J. W. Grzymała-Busse, V. W. Marek, S. K. Pal, J. F. Peters, G. Rozenberg, D. Ślęzak, R. Słowiński, S. Tsumoto, A. Wakulicz-Deja, G. Wang, and W. Ziarko, “Professor Zdzisław Pawlak (1926-2006): Founder of the Polish School of Artificial Intelligence,” in Rough Sets and Intelligent Systems – Professor Zdzisław Pawlak in Memoriam – Volume 1, ser. Intelligent Systems Reference Library, A. Skowron and Z. Suraj, Eds. Springer, 2013, vol. 42, pp. 1–56. [Online]. Available: https://doi.org/10.1007/978-3-642-30344-9_1
  6. Z. Pawlak, “An Inquiry into Anatomy of Conflicts,” Journal of Information Sciences, vol. 109, pp. 65–78, 1998. [Online]. Available: https://doi.org/10.1016/S0020-0255(97)10072-X
  7. Z. Pawlak, “Concurrent versus Sequential – the Rough Sets Perspective,” Bulletin of the EATCS, vol. 48, pp. 178–190, 1992.
  8. J. F. Peters and S. Ramanna, “Maximal Nucleus Clusters in Pawlak Paintings. Nerves as Approximating Tools in Visual Arts,” in Proceedings of the 2016 Federated Conference on Computer Science and Information Systems, FedCSIS 2016, Gdańsk, Poland, September 11-14, 2016, ser. Annals of Computer Science and Information Systems, M. Ganzha, L. A. Maciaszek, and M. Paprzycki, Eds., vol. 8. IEEE, 2016, pp. 199–202. [Online]. Available: https://doi.org/10.15439/2016F004
  9. Z. Pawlak and A. Skowron, “Rudiments of Rough Sets,” Information Sciences, vol. 177, no. 1, pp. 3–27, 2007. [Online]. Available: https://doi.org/10.1016/j.ins.2006.06.003
  10. Z. Pawlak and A. Skowron, “Rough Sets and Boolean Reasoning,” Information Sciences, vol. 177, no. 1, pp. 41–73, 2007. [Online]. Available: https: //doi.org/10.1016/j.ins.2006.06.007
  11. Z. Pawlak and A. Skowron, “Rough Sets: Some Extensions,” Information Sciences, vol. 177, no. 1, pp. 28–40, 2007. [Online]. Available: https: //doi.org/10.1016/j.ins.2006.06.006
  12. L. A. Zadeh, “Fuzzy Sets,” Information and Control, vol. 8, no. 3, pp. 338–353, 1965. [Online]. Available: https://doi.org/10.1016/S0019-9958(65)90241-X
  13. D. Dubois and H. Prade, “Putting Rough Sets and Fuzzy Sets Together,” in Intelligent Decision Support – Handbook of Applications and Advances of the Rough Sets Theory, ser. Theory and Decision Library, R. Słowiński, Ed. Springer, 1992, vol. 11, pp. 203–232. [Online]. Available: https://doi.org/10.1007/978-94-015-7975-9_14
  14. S. K. Pal, “Soft Data Mining, Computational Theory of Perceptions, and Rough-Fuzzy Approach,” Information Sciences, vol. 163, no. 1-3, pp. 5–12, 2004. [Online]. Available: https://doi.org/10.1016/j.ins.2003.03.014
  15. L. Polkowski and P. Artiemjew, Granular Computing in Decision Approximation – An Application of Rough Mereology, ser. Intelligent Systems Reference Library. Springer, 2015, vol. 77. [Online]. Available: https://doi.org/10.1007/978-3-319-12880-1
  16. A. Skowron and J. Stepaniuk, “Information Granules: Towards Foundations of Granular Computing,” International Journal of Intelligent Systems, vol. 16, no. 1, pp. 57–85, 2001.
  17. S. Stawicki, D. Ślęzak, A. Janusz, and S. Widz, “Decision Bireducts and Decision Reducts – A Comparison,” International Journal of Approximate Reasoning, vol. 84, pp. 75–109, 2017. [Online]. Available: https://doi.org/10.1016/j.ijar.2017.02.007
  18. J. W. Grzymała-Busse, “Rule Induction,” in Data Mining and Knowledge Discovery Handbook, 2nd ed, O. Maimon and L. Rokach, Eds. Springer, 2010, pp. 249–265. [Online]. Available: https://doi.org/10.1007/978-0-387-09823-4_13
  19. H. S. Nguyen, “Approximate Boolean Reasoning: Foundations and Applications in Data Mining,” Transactions on Rough Sets, vol. 5, pp. 334–506, 2006. [Online]. Available: https://doi.org/10.1007/11847465_16
  20. S. Greco, B. Matarazzo, and R. Słowiński, “Rough Sets Theory for Multicriteria Decision Analysis,” European Journal of Operational Research, vol. 129, no. 1, pp. 1–47, 2001. [Online]. Available: https://doi.org/10.1016/S0377-2217(00)00167-3
  21. Y. Yao, “Three-Way Decisions and Cognitive Computing,” Cognitive Computation, vol. 8, no. 4, pp. 543–554, 2016. [Online]. Available: https://doi.org/10.1007/s12559-016-9397-5
  22. P. Maji and S. K. Pal, “Maximum Class Separability for Rough-Fuzzy C-Means Based Brain MR Image Segmentation,” Transactions on Rough Sets, vol. 9, pp. 114–134, 2008. [Online]. Available: https://doi.org/10.1007/978-3-540-89876-4_7
  23. G. Peters, F. A. Crespo, P. Lingras, and R. Weber, “Soft Clustering – Fuzzy and Rough Approaches and Their Extensions and Derivatives,” International Journal of Approximate Reasoning, vol. 54, no. 2, pp. 307–322, 2013. [Online]. Available: https://doi.org/10.1016/j.ijar.2012.10.003
  24. L. S. Riza, A. Janusz, C. Bergmeir, C. Cornelis, F. Herrera, D. Ślęzak, and J. M. Benítez, “Implementing Algorithms of Rough Set Theory and Fuzzy Rough Set Theory in the R Package “RoughSets”,” Information Sciences, vol. 287, pp. 68–89, 2014. [Online]. Available: https://doi.org/10.1016/j.ins.2014.07.029
  25. R. Wille, “Restructuring Lattice Theory: An Approach Based on Hierarchies of Concepts,” in Ordered Sets, Proceedings, ser. NATO Advanced Studies Institute, I. Rival, Ed., vol. 83. Dordrecht: Springer, 1982, pp. 445–470.
  26. R. E. Kent, “Rough Concept Analysis: A Synthesis of Rough Sets and Formal Concept Analysis,” Fundam. Informaticae, vol. 27, no. 2/3, pp. 169–181, 1996. [Online]. Available: https://doi.org/10.3233/FI-1996-272305
  27. S. Naouali and R. Missaoui, “Flexible Query Answering in Data Cubes,” in Data Warehousing and Knowledge Discovery, 7th International Conference, DaWaK 2005, Copenhagen, Denmark, August 22-26, 2005, Proceedings, ser. Lecture Notes in Computer Science, A. M. Tjoa and J. Trujillo, Eds., vol. 3589. Springer, 2005, pp. 221–232. [Online]. Available: https://doi.org/10.1007/11546849_22
  28. D. Ślęzak and V. Eastwood, “Data Warehouse Technology by Infobright,” in Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2009, Providence, Rhode Island, USA, June 29 – July 2, 2009, U. Çetintemel, S. B. Zdonik, D. Kossmann, and N. Tatbul, Eds. ACM, 2009, pp. 841–846. [Online]. Available: https://doi.org/10.1145/1559845.1559933
  29. M. L. Hughes, R. M. Shank, and E. S. Stein, Decision Tables. MDI Publications, 1968.
  30. A. M. Moreno Garcia, M. Verhelle, and J. Vanthienen, “An Overview of Decision Table Literature 1982-2000,” in The Fifth International Conference on Artificial Intelligence and Emerging Technologies in Accounting, Finance and Tax, Huelva, Spain, November 2-3, 2000. [Online]. Available: https://feb.kuleuven.be/prologa/download/overview82-2000.pdf
  31. I. Chikalov, V. V. Lozin, I. Lozina, M. Moshkov, H. S. Nguyen, A. Skowron, and B. Zielosko, Three Approaches to Data Analysis – Test Theory, Rough Sets and Logical Analysis of Data, ser. Intelligent Systems Reference Library. Springer, 2013, vol. 41. [Online]. Available: https://doi.org/10.1007/978-3-642-28667-4
  32. A. Skowron, J. Stepaniuk, and J. F. Peters, “Rough Sets and Infomorphisms: Towards Approximation of Relations in Distributed Environments,” Fundamenta Informaticae, vol. 54, no. 2-3, pp. 263–277, 2003. [Online]. Available: http://content.iospress.com/articles/fundamenta-informaticae/fi54-2-3-12
  33. E. Orłowska and Z. Pawlak, “Representation of Nondeterministic Information,” Theoretical Computer Science, vol. 29, pp. 27–39, 1984. [Online]. Available: https://doi.org/10.1016/0304-3975(84)90010-0
  34. W. Lipski Jr., “On Databases with Incomplete Information,” Journal of the ACM, vol. 28, no. 1, pp. 41–70, 1981. [Online]. Available: https://doi.org/10.1145/322234.322239
  35. H. Sakai and M. Nakata, “Rough Set-based Rule Generation and Apriori-based Rule Generation from Table Data Sets: A Survey and a Combination,” CAAI Transactions on Intelligence Technology, vol. 4, no. 4, pp. 203–213, 2019. [Online]. Available: https://doi.org/10.1049/trit.2019.0001
  36. M. Wolski and A. Gomolińska, “Semantic Rendering of Data Tables – Multivalued Information Systems Revisited,” in Proceedings of the 25th International Workshop on Concurrency, Specification and Programming, Rostock, Germany, September 28-30, 2016, ser. CEUR Workshop Proceedings, B. Schlingloff, Ed., vol. 1698. CEUR-WS.org, 2016, pp. 113–124. [Online]. Available: http://ceur-ws.org/Vol-1698/CS&P2016_11_Wolski&Gomolinska_Semantic-Rendering-of-Data-Tables-Multivalued-Information-Systems-Revisited.pdf
  37. D. Ślęzak, M. Grzegorowski, A. Janusz, M. Kozielski, S. H. Nguyen, M. Sikora, S. Stawicki, and Ł. Wróbel, “A Framework for Learning and Embedding Multi-Sensor Forecasting Models into a Decision Support System: A Case Study of Methane Concentration in Coal Mines,” Information Sciences, vol. 451-452, pp. 112–133, 2018. [Online]. Available: https://doi.org/10.1016/j.ins.2018.04.026
  38. A. Skowron and A. Jankowski, “Rough Sets and Interactive Granular Computing,” Fundamenta Informaticae, vol. 147, no. 2-3, pp. 371–385, 2016. [Online]. Available: https://doi.org/10.3233/FI-2016-1413
  39. A. Skowron and P. Wasilewski, “Interactive Information Systems: Toward Perception Based Computing,” Theoretical Computer Science, vol. 454, pp. 240–260, 2012. [Online]. Available: https://doi.org/10.1016/j.tcs.2012.04.019
  40. A. Jankowski, A. Skowron, and R. W. Świniarski, “Interactive Complex Granules,” in Proceedings of the 22nd International Workshop on Concurrency, Specification and Programming, Warsaw, Poland, ser. CEUR Workshop Proceedings, M. S. Szczuka, L. Czaja, and M. Kacprzak, Eds., vol. 1032. CEUR-WS.org, 2013, pp. 206–218. [Online]. Available: http://ceur-ws.org/Vol-1032/paper-18.pdf
  41. T. A. Poggio and S. Smale, “The Mathematics of Learning: Dealing with Data,” Notices of the American Mathematical Society, vol. 50, no. 5, pp. 537–544, 2003.
  42. P. Stone, Layered Learning in Multi-Agent Systems: A Winning Approach to Robotic Soccer. MIT Press, 2000.
  43. P. Doherty, W. Łukaszewicz, A. Skowron, and A. Szałas, Knowledge Representation Techniques – A Rough Set Approach, ser. Studies in Fuzziness and Soft Computing. Springer, 2006, vol. 202. [Online]. Available: https://doi.org/10.1007/3-540-33519-6
  44. S. Dutta and P. Wasilewski, “Dialogue in Hierarchical Learning of a Concept Using Prototypes and Counterexamples,” in Proceedings of the 24th International Workshop on Concurrency, Specification and Programming, Rzeszów, Poland, September 28-30, 2015, ser. CEUR Workshop Proceedings, Z. Suraj and L. Czaja, Eds., vol. 1492. CEUR-WS.org, 2015, pp. 126–133. [Online]. Available: http://ceur-ws.org/Vol-1492/Paper_12.pdf
  45. J. G. Bazan, “Hierarchical Classifiers for Complex Spatio-Temporal Concepts,” Transactions on Rough Sets, vol. 9, pp. 474–750, 2008. [Online]. Available: https://doi.org/10.1007/978-3-540-89876-4_26
  46. S. H. Nguyen, T. T. Nguyen, M. S. Szczuka, and H. S. Nguyen, “An Approach to Pattern Recognition Based on Hierarchical Granular Computing,” Fundamenta Informaticae, vol. 127, no. 1-4, pp. 369–384, 2013. [Online]. Available: https://doi.org/10.3233/FI-2013-915
  47. I. Düntsch and G. Gediga, “Weighted Lambda Precision Models in Rough Set Data Analysis,” in Federated Conference on Computer Science and Information Systems – FedCSIS 2012, Wrocław, Poland, 9-12 September 2012, Proceedings, M. Ganzha, L. A. Maciaszek, and M. Paprzycki, Eds., 2012, pp. 287–294. [Online]. Available: https://fedcsis.org/proceedings/2012/pliks/89.pdf
  48. T. Fan, C. Liau, and D. Liu, “Variable Precision Fuzzy Rough Set Based on Relative Cardinality,” in Federated Conference on Computer Science and Information Systems – FedCSIS 2012, Wrocław, Poland, 9-12 September 2012, Proceedings, M. Ganzha, L. A. Maciaszek, and M. Paprzycki, Eds., 2012, pp. 43–47. [Online]. Available: https://fedcsis.org/proceedings/2012/pliks/398.pdf
  49. W. Ziarko, “Variable Precision Rough Set Model,” Journal of Computer and System Sciences, vol. 46, no. 1, pp. 39–59, 1993. [Online]. Available: https://doi.org/10.1016/0022-0000(93)90048-2
  50. Z. Pawlak, “Rough Sets, Decision Algorithms and Bayes’ Theorem,” European Journal of Operational Research, vol. 136, no. 1, pp. 181–189, 2002. [Online]. Available: https://doi.org/10.1016/S0377-2217(01) 00029-7
  51. B. Zielosko, “Sequential Optimization of γ-Decision Rules,” in Federated Conference on Computer Science and Information Systems – FedCSIS 2012, Wrocław, Poland, 9-12 September 2012, Proceedings, M. Ganzha, L. A. Maciaszek, and M. Paprzycki, Eds., 2012, pp. 339– 346. [Online]. Available: https://fedcsis.org/proceedings/2012/pliks/87.pdf
  52. M. Kryszkiewicz, “ACBC-Adequate Association and Decision Rules Versus Key Generators and Rough Sets Approximations,” Fundamenta Informaticae, vol. 148, no. 1-2, pp. 65–85, 2016. [Online]. Available: https://doi.org/10.3233/FI-2016-1423
  53. L. G. Nguyen, “Metric Based Attribute Reduction in Decision Tables,” in Federated Conference on Computer Science and Information Systems – FedCSIS 2012, Wrocław, Poland, 9-12 September 2012, Proceedings, M. Ganzha, L. A. Maciaszek, and M. Paprzycki, Eds., 2012, pp. 311–316. [Online]. Available: https://fedcsis.org/proceedings/2012/pliks/311.pdf
  54. L. G. Nguyen and H. S. Nguyen, “On Elimination of Redundant Attributes from Decision Table,” in Federated Conference on Computer Science and Information Systems – FedCSIS 2012, Wrocław, Poland, 9-12 September 2012, Proceedings, M. Ganzha, L. A. Maciaszek, and M. Paprzycki, Eds., 2012, pp. 317–322. [Online]. Available: https://fedcsis.org/proceedings/2012/pliks/324.pdf
  55. R. Polikar, J. DePasquale, H. S. Mohammed, G. Brown, and L. I. Kuncheva, “Learn++ .MF: A Random Subspace Approach for the Missing Feature Problem,” Pattern Recognition, vol. 43, no. 11, pp. 3817–3832, 2010. [Online]. Available: https://doi.org/10.1016/j.patcog.2010.05.028
  56. M. Dash and H. Liu, “Consistency-based Search in Feature Selection,” Artificial Intelligence, vol. 151, no. 1-2, pp. 155–176, 2003. [Online]. Available: https://doi.org/10.1016/S0004-3702(03)00079-1
  57. M. Azad, I. Chikalov, M. Moshkov, and B. Zielosko, “Tests for Decision Tables with Many-Valued Decisions – Comparative Study,” in Federated Conference on Computer Science and Information Systems – FedCSIS 2012, Wrocław, Poland, 9-12 September 2012, Proceedings, M. Ganzha, L. A. Maciaszek, and M. Paprzycki, Eds., 2012, pp. 271–277. [Online]. Available: https://fedcsis.org/proceedings/2012/pliks/140.pdf
  58. S. Stawicki and S. Widz, “Decision Bireducts and Approximate Decision Reducts: Comparison of Two Approaches to Attribute Subset Ensemble Construction,” in Federated Conference on Computer Science and Information Systems – FedCSIS 2012, Wrocław, Poland, 9-12 September 2012, Proceedings, M. Ganzha, L. A. Maciaszek, and M. Paprzycki, Eds., 2012, pp. 331–338. [Online]. Available: https://fedcsis.org/proceedings/2012/pliks/348.pdf
  59. A. Janusz and D. Ślęzak, “Utilization of Attribute Clustering Methods for Scalable Computation of Reducts from High-Dimensional Data,” in Federated Conference on Computer Science and Information Systems – FedCSIS 2012, Wrocław, Poland, 9-12 September 2012, Proceedings, M. Ganzha, L. A. Maciaszek, and M. Paprzycki, Eds., 2012, pp. 295–302. [Online]. Available: https://fedcsis.org/proceedings/2012/pliks/330.pdf
  60. M. Grzegorowski, A. Janusz, D. Ślęzak, and M. S. Szczuka, “On the Role of Feature Space Granulation in Feature Selection Processes,” in 2017 IEEE International Conference on Big Data (IEEE BigData 2017), Boston, MA, USA, December 11-14, 2017, J. Nie, Z. Obradovic, T. Suzumura, R. Ghosh, R. Nambiar, C. Wang, H. Zang, R. Baeza-Yates, X. Hu, J. Kepner, A. Cuzzocrea, J. Tang, and M. Toyoda, Eds. IEEE Computer Society, 2017, pp. 1806–1815. [Online]. Available: https://doi.org/10.1109/BigData.2017.8258124
  61. M. Kowalski and S. Stawicki, “SQL-based Heuristics for Selected KDD Tasks over Large Data Sets,” in Federated Conference on Computer Science and Information Systems – FedCSIS 2012, Wrocław, Poland, 9-12 September 2012, Proceedings, M. Ganzha, L. A. Maciaszek, and M. Paprzycki, Eds., 2012, pp. 303–310. [Online]. Available: https://fedcsis.org/proceedings/2012/pliks/395.pdf
  62. M. Wnuk, S. Stawicki, and D. Ślęzak, “Reinventing Infobright’s Concept of Rough Calculations on Granulated Tables for the Purpose of Accelerating Modern Data Processing Frameworks,” in 2020 IEEE International Conference on Big Data (IEEE BigData 2020), Atlanta, GA, USA, December 10-13, 2020, X. Wu, C. Jermaine, L. Xiong, X. Hu, O. Kotevska, S. Lu, W. Xu, S. Aluru, C. Zhai, E. Al-Masri, Z. Chen, and J. Saltz, Eds. IEEE, 2020, pp. 5405–5412. [Online]. Available: https://doi.org/10.1109/BigData50022.2020.9378233
  63. D. Ślęzak, P. Synak, A. Wojna, and J. Wróblewski, “Two Database Related Interpretations of Rough Approximations: Data Organization and Query Execution,” Fundam. Informaticae, vol. 127, no. 1-4, pp. 445–459, 2013. [Online]. Available: https://doi.org/10.3233/FI-2013-920
  64. K. Pancerz, “Dominance-based rough set approach for decision systems over ontological graphs,” in Federated Conference on Computer Science and Information Systems – FedCSIS 2012, Wrocław, Poland, 9-12 September 2012, Proceedings, M. Ganzha, L. A. Maciaszek, and M. Paprzycki, Eds., 2012, pp. 323–330. [Online]. Available: https://fedcsis.org/proceedings/2012/pliks/366.pdf
  65. M. Ganzha, M. Paprzycki, W. Pawłowski, P. Szmeja, K. Wasielewska, and C. E. Palau, “From Implicit Semantics towards Ontologies – Practical Considerations from the INTER-IoT Perspective,” in 14th IEEE Annual Consumer Communications & Networking Conference, CCNC 2017, Las Vegas, NV, USA, January 8-11, 2017. IEEE, 2017, pp. 59–64. [Online]. Available: https://doi.org/10.1109/CCNC.2017.7983082
  66. J. G. Bazan, S. Bazan-Socha, S. Buregwa-Czuma, P. W. Pardel, and B. Sokołowska, “Predicting the Presence of Serious Coronary Artery Disease Based on 24 hour Holter ECG Monitoring,” in Federated Conference on Computer Science and Information Systems – FedCSIS 2012, Wrocław, Poland, 9-12 September 2012, Proceedings, M. Ganzha, L. A. Maciaszek, and M. Paprzycki, Eds., 2012, pp. 279–286. [Online]. Available: https://fedcsis.org/proceedings/2012/pliks/227.pdf
  67. Ł. Sosnowski and J. Wróblewski, “Toward Automatic Assessment of a Risk of Women’s Health Disorders Based on Ontology Decision Models and Menstrual Cycle Analysis,” in 2021 IEEE International Conference on Big Data (Big Data), Orlando, FL, USA, December 15-18, 2021, Y. Chen, H. Ludwig, Y. Tu, U. M. Fayyad, X. Zhu, X. Hu, S. Byna, X. Liu, J. Zhang, S. Pan, V. Papalexakis, J. Wang, A. Cuzzocrea, and C. Ordonez, Eds. IEEE, 2021, pp. 5544–5552. [Online]. Available: https: //doi.org/10.1109/BigData52589.2021.9671481
  68. A. Wojna and R. Latkowski, “Rseslib 3: Library of Rough Set and Machine Learning Methods with Extensible Architecture,” Transactions on Rough Sets, vol. 21, pp. 301–323, 2019. [Online]. Available: https://doi.org/10.1007/978-3-662-58768-3_7
  69. M. J. Benítez-Caballero, J. Medina, E. Ramírez-Poussa, and D. Ślęzak, “Rough-set-driven Approach for Attribute Reduction in Fuzzy Formal Concept Analysis,” Fuzzy Sets and Systems, vol. 391, pp. 117–138, 2020. [Online]. Available: https://doi.org/10.1016/j.fss.2019.11.009
  70. M. Wolski and A. Gomolińska, “Data Meaning and Knowledge Discovery: Semantical Aspects of Information Systems,” International Journal of Approximate Reasoning, vol. 119, pp. 40–57, 2020. [Online]. Available: https://doi.org/10.1016/j.ijar.2020.01.002
  71. R. Belohlávek and V. Vychodil, “What is a Fuzzy Concept Lattice?” in Proceedings of the CLA 2005 International Workshop on Concept Lattices and their Applications Olomouc, Czech Republic, September 7-9, 2005, ser. CEUR Workshop Proceedings, R. Belohlávek and V. Snásel, Eds., vol. 162. CEUR-WS.org, 2005. [Online]. Available: http://ceur-ws.org/Vol-162/paper4.pdf
  72. P. Doherty and A. Szałas, “A Landscape and Implementation Framework for Probabilistic Rough Sets Using ProbLog,” Information Sciences, vol. 593, pp. 546–576, 2022. [Online]. Available: https://doi.org/10.1016/j.ins.2021.12.062
  73. A. Grabowski, “Automated Comparative Study of Some Generalized Rough Approximations,” Fundamenta Informaticae, vol. 179, no. 2, pp. 165–182, 2021. [Online]. Available: https://doi.org/10.3233/FI-2021-2019
  74. L. De Raedt, A. Kimmig, and H. Toivonen, “ProbLog: A Probabilistic Prolog and Its Application in Link Discovery,” in IJCAI 2007, Proceedings of the 20th International Joint Conference on Artificial Intelligence, Hyderabad, India, January 6-12, 2007, M. M. Veloso, Ed., 2007, pp. 2462–2467. [Online]. Available: http://ijcai.org/Proceedings/07/Papers/396.pdf
  75. A. Grabowski, A. Korniłowicz, and A. Naumowicz, “Four Decades of Mizar – Foreword,” Journal of Automated Reasoning, vol. 55, no. 3, pp. 191–198, 2015. [Online]. Available: https://doi.org/10.1007/s10817-015-9345-1
  76. P. Pagliani and M. K. Chakraborty, A Geometry of Approximation – Rough Set Theory: Logic, Algebra and Topology of Conceptual Patterns, ser. Trends in Logic. Springer, 2008. [Online]. Available: https://doi.org/10.1007/978-1-4020-8622-9
  77. Y. Kusunoki, J. Błaszczyński, M. Inuiguchi, and R. Słowiński, “Empirical Risk Minimization for Dominance-based Rough Set Approaches,” Information Sciences, vol. 567, pp. 395–417, 2021. [Online]. Available: https://doi.org/10.1016/j.ins.2021.02.043
  78. M. Palangetić, C. Cornelis, S. Greco, and R. Słowiński, “Granular Representation of OWA-based Fuzzy Rough Sets,” Fuzzy Sets and Systems, vol. 440, pp. 112–130, 2022. [Online]. Available: https://doi.org/10.1016/j.fss.2021.04.018
  79. V. Vapnik, “Principles of Risk Minimization for Learning Theory,” in Advances in Neural Information Processing Systems 4, [NIPS Conference, Denver, Colorado, USA, December 2-5, 1991], J. E. Moody, S. J. Hanson, and R. Lippmann, Eds. Morgan Kaufmann, 1991, pp. 831–838. [Online]. Available: http://papers.nips.cc/paper/506-principles-of-risk-minimization-for-learning-theory
  80. L. A. Zadeh, “Toward a Theory of Fuzzy Information Granulation and its Centrality in Human Reasoning and Fuzzy Logic,” Fuzzy Sets and Systems, vol. 90, no. 2, pp. 111–127, 1997. [Online]. Available: https://doi.org/10.1016/S0165-0114(97)00077-8
  81. U. Stańczyk and B. Zielosko, “Heuristic-based Feature Selection for Rough Set Approach,” International Journal of Approximate Reasoning, vol. 125, pp. 187–202, 2020. [Online]. Available: https://doi.org/10.1016/j.ijar.2020.07.005
  82. M. Kopczyński and T. Grześ, “Hardware Rough Set Processor Parallel Architecture in FPGA for Finding Core in Big Datasets,” Journal of Artificial Intelligence and Soft Computing Research, vol. 11, no. 2, pp. 99–110, 2021. [Online]. Available: https://doi.org/10.2478/jaiscr-2021-0007
  83. M. Garbulowski, K. Diamanti, K. Smolińska, N. Baltzer, P. Stoll, S. Bornelöv, A. Øhrn, L. Feuk, and J. Komorowski, “R.ROSETTA: An Interpretable Machine Learning Framework,” BMC Bioinformatics, vol. 22, no. 1, p. 110, 2021. [Online]. Available: https://doi.org/10.1186/s12859-021-04049-z
  84. S. Stratmann, S. A. Yones, M. Garbulowski, J. Sun, A. Skaftason, M. Mayrhofer, N. Norgren, M. K. Herlin, C. Sundström, A. Eriksson, M. Höglund, J. Palle, J. Abrahamsson, K. Jahnukainen, M. C. Munthe-Kaas, B. Zeller, K. Pokrovskaja Tamm, L. Cavelier, J. Komorowski, and L. Holmfeldt, “Transcriptomic Analysis Reveals Proinflammatory Signatures Associated with Acute Myeloid Leukemia Progression,” Blood Advances, vol. 6, no. 1, pp. 152–164, 2022. [Online]. Available: https://doi.org/10.1182/bloodadvances.2021004962
  85. D. Ślęzak, M. Grzegorowski, A. Janusz, and S. Stawicki, “Toward Interactive Attribute Selection with Infolattices,” in Rough Sets – International Joint Conference, IJCRS 2017, Olsztyn, Poland, July 3-7, 2017, Proceedings, Part II, ser. Lecture Notes in Computer Science, L. Polkowski, Y. Yao, P. Artiemjew, D. Ciucci, D. Liu, D. Ślęzak, and B. Zielosko, Eds., vol. 10314. Springer, 2017, pp. 526–539. [Online]. Available: https://doi.org/10.1007/978-3-319-60840-2_38
  86. F. Sperrle, M. El-Assady, G. Guo, R. Borgo, D. H. Chau, A. Endert, and D. A. Keim, “A Survey of Human-centered Evaluations in Human-centered Machine Learning,” Computer Graphics Forum, vol. 40, no. 3, pp. 543–567, 2021. [Online]. Available: https://doi.org/10.1111/cgf.14329
  87. P. P. Angelov and X. Gu, “Toward Anthropomorphic Machine Learning,” Computer, vol. 51, no. 9, pp. 18–27, 2018. [Online]. Available: https://doi.org/10.1109/MC.2018.3620973
  88. S. M. Lundberg and S. Lee, “A Unified Approach to Interpreting Model Predictions,” in Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, I. Guyon, U. von Luxburg, S. Bengio, H. M. Wallach, R. Fergus, S. V. N. Vishwanathan, and R. Garnett, Eds., 2017, pp. 4765–4774. [Online]. Available: https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
  89. K. Pancerz, “Rough Set Based Description of Plasmodium Propagation,” International Journal of Unconventional Computing, vol. 15, no. 4, pp. 287–299, 2020. [Online]. Available: https://www.oldcitypublishing.com/journals/ijuc-home/ijuc-issue-contents/ijuc-volume-15-number-4-2020/ijuc-15-4-p-287-299/
  90. Ł. Pałkowski, M. Karolak, J. Błaszczyński, J. Krysiński, and R. Słowiński, “Structure-Activity Relationships of the Imidazolium Compounds as Antibacterials of Staphylococcus aureus and Pseudomonas Aeruginosa,” International Journal of Molecular Sciences, vol. 22, no. 15, 2021. [Online]. Available: https://www.mdpi.com/1422-0067/22/15/7997
  91. M. Karolak, Ł. Pałkowski, B. Kubiak, J. Błaszczyński, R. Łunio, W. Sawicki, R. Słowiński, and J. Krysiński, “Application of Dominance-based Rough Set Approach for Optimization of Pellets Tableting Process,” Pharmaceutics, vol. 12, no. 11, p. 1024, 2020. [Online]. Available: https://doi.org/10.3390/pharmaceutics12111024
  92. T. Y. Lin, “Neighborhood Systems: Mathematical Models of Information Granulations,” in Proceedings of the IEEE International Conference on Systems, Man & Cybernetics: Washington, D.C., USA, 5-8 October 2003. IEEE, 2003, pp. 3188–3193. [Online]. Available: https://doi.org/10.1109/ICSMC.2003.1244381
  93. E. Frank, M. A. Hall, and I. H. Witten, “The WEKA Workbench,” Online Appendix for “Data Mining: Practical Machine Learning Tools and Techniques”, Morgan Kaufmann, Fourth Edition, 2016.
  94. W. R. Rudnicki, M. Kierczak, J. Koronacki, and H. J. Komorowski, “A Statistical Method for Determining Importance of Variables in an Information System,” in Rough Sets and Current Trends in Computing, 5th International Conference, RSCTC 2006, Kobe, Japan, November 6-8, 2006, Proceedings, ser. Lecture Notes in Computer Science, S. Greco, Y. Hata, S. Hirano, M. Inuiguchi, S. Miyamoto, H. S. Nguyen, and R. Slowinski, Eds., vol. 4259. Springer, 2006, pp. 557–566. [Online]. Available: https://doi.org/10.1007/11908029_58
  95. P. G. Clark, C. Gao, J. W. Grzymała-Busse, T. Mroczek, and R. Niemiec, “Complexity of Rule Sets in Mining Incomplete Data Using Characteristic Sets and Generalized Maximal Consistent Blocks,” Logic Journal of the IGPL, vol. 29, no. 2, pp. 124–137, 2021. [Online]. Available: https://doi.org/10.1093/jigpal/jzaa041
  96. B. Pękała, T. Mroczek, D. Gil, and M. Kępski, “Application of Fuzzy and Rough Logic to Posture Recognition in Fall Detection System,” Sensors, vol. 22, no. 4, p. 1602, 2022. [Online]. Available: https://doi.org/10.3390/s22041602
  97. J. Błaszczyński, A. T. de Almeida Filho, A. Matuszyk, M. Szelag, ̨ and R. Słowiński, “Auto Loan Fraud Detection Using Dominance-based Rough Set Approach versus Machine Learning Methods,” Expert Systems with Applications, vol. 163, p. 113740, 2021. [Online]. Available: https://doi.org/10.1016/j.eswa.2020.113740
  98. M. Przybyła-Kasperek, “Coalitions’ Weights in a Dispersed System with Pawlak Conflict Model,” Group Decision and Negotiation, vol. 3, pp. 549–591, 2020. [Online]. Available: http://hdl.handle.net/20.500.12128/13891
  99. A. Wakulicz-Deja and M. Przybyła-Kasperek, “Pawlak’s Conflict Model: Directions of Development,” in Proceedings of the 2016 Federated Conference on Computer Science and Information Systems, FedCSIS 2016, Gdańsk, Poland, September 11-14, 2016, ser. Annals of Computer Science and Information Systems, M. Ganzha, L. A. Maciaszek, and M. Paprzycki, Eds., vol. 8. IEEE, 2016, pp. 191–197. [Online]. Available: https://doi.org/10.15439/2016F003
  100. B. Quost, M. Masson, and T. Denoeux, “Classifier Fusion in the Dempster-Shafer Framework Using Optimized t-Norm based Combination Rules,” International Journal of Approximate Reasoning, vol. 52, no. 3, pp. 353–374, 2011. [Online]. Available: https://doi.org/10.1016/j.ijar.2010.11.008
  101. Y. Zhang, D. Miao, W. Pedrycz, T. Zhao, J. Xu, and Y. Yu, “Granular Structure-based Incremental Updating for Multi-Label Classification,” Knowledge Based Systems, vol. 189, 2020. [Online]. Available: https://doi.org/10.1016/j.knosys.2019.105066
  102. D. Brzeziński, J. Stefanowski, R. Susmaga, and I. Szczęch, “On the Dynamics of Classification Measures for Imbalanced and Streaming Data,” IEEE Transactions on Neural Networks and Learning Systems, vol. 31, no. 8, pp. 2868–2878, 2020. [Online]. Available: https://doi.org/10.1109/TNNLS.2019.2899061
  103. K. Pancerz, W. Paja, M. Wrzesień, and J. Warchoł, “Classification of Voice Signals through Mining Unique Episodes in Temporal Information Systems: A Rough Set Approach,” in Proceedings of the 21th International Workshop on Concurrency, Specification and Programming, Berlin, Germany, September 26-28, 2012, ser. CEUR Workshop Proceedings, L. Popova-Zeugmann, Ed., vol. 928. CEUR-WS.org, 2012, pp. 280–291. [Online]. Available: http://ceur-ws.org/Vol-928/0280.pdf
  104. A. Skowron and P. Synak, “Reasoning in Information Maps,” Fundamenta Informaticae, vol. 59, no. 2-3, pp. 241–259, 2004. [Online]. Available: http://content.iospress.com/articles/fundamenta-informaticae/fi59-2-3-10
  105. K. Ropiak and P. Artiemjew, “On a Hybridization of Deep Learning and Rough Set Based Granular Computing,” Algorithms, vol. 13, no. 3, p. 63, 2020. [Online]. Available: https://doi.org/10.3390/a13030063
  106. P. Artiemjew and K. Ropiak, “A Novel Ensemble Model – The Random Granular Reflections,” Fundamenta Informaticae, vol. 179, no. 2, pp. 183–203, 2021. [Online]. Available: https://doi.org/10.3233/FI-2021-2020
  107. G. Toppin, J. Borkowski, D. Ślęzak, S. Shi, P. Synak, J. Wróblewski, T. J. Wongkee, and G. Charalabopoulos, “System and Method for Granular Scalability in Analytical Data Processing,” US Patent Application 20150088807, 2014.
  108. M. Przyborowski, T. Tajmajer, Ł. Grad, A. Janusz, P. Biczyk, and D. Ślęzak, “Toward Machine Learning on Granulated Data – a Case of Compact Autoencoder-based Representations of Satellite Images,” in IEEE International Conference on Big Data (IEEE BigData 2018), Seattle, WA, USA, December 10-13, 2018, N. Abe, H. Liu, C. Pu, X. Hu, N. K. Ahmed, M. Qiao, Y. Song, D. Kossmann, B. Liu, K. Lee, J. Tang, J. He, and J. S. Saltz, Eds. IEEE, 2018, pp. 2657–2662. [Online]. Available: https://doi.org/10.1109/BigData.2018.8622562
  109. G. D. Tré, T. Boeckling, Y. Timmerman, and S. Zadrożny, “Handling Veracity of Nominal Data in Big Data: A Multipolar Approach,” in Flexible Query Answering Systems – 13th International Conference, FQAS 2019, Amantea, Italy, July 2-5, 2019, Proceedings, ser. Lecture Notes in Computer Science, A. Cuzzocrea, S. Greco, H. L. Larsen, D. Saccà, T. Andreasen, and H. Christiansen, Eds., vol. 11529. Springer, 2019, pp. 317–328. [Online]. Available: https://doi.org/10.1007/978-3-030-27629-4_29
  110. R. S. Geiger, D. Cope, J. Ip, M. Lotosh, A. Shah, J. Weng, and R. Tang, ““Garbage In, Garbage Out” Revisited: What Do Machine Learning Application Papers Report about Human-Labeled Training Data?” Quantitative Science Studies, vol. 2, no. 3, pp. 795–827, 2021. [Online]. Available: https://doi.org/10.1162/qss_a_00144
  111. M. Kassen, Open Data Governance and Its Actors – Theory and Practice, ser. Studies in National Governance and Emerging Technologies. Palgrave Macmillan, 2022. [Online]. Available: https://doi.org/10.1007/978-3-030-92065-4
  112. D. Plotkin, Data Stewardship: An Actionable Guide to Effective Data Management and Data Governance, 2nd Edition. Academic Press, 2020.
  113. A. Der Kiureghian and O. Ditlevsen, “Aleatory or Epistemic? Does It Matter?” Structural Safety, vol. 31, no. 2, pp. 105–112, 2009. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0167473008000556
  114. D. Ślęzak and A. Chądzyńska-Krasowska, “Approximate Decision Tree Induction over Approximately Engineered Data Features,” in Rough Sets – International Joint Conference, IJCRS 2020, Havana, Cuba, June 29 – July 3, 2020, Proceedings, ser. Lecture Notes in Computer Science, R. Bello, D. Miao, R. Falcon, M. Nakata, A. Rosete, and D. Ciucci, Eds., vol. 12179. Springer, 2020, pp. 376–384. [Online]. Available: https://doi.org/10.1007/978-3-030-52705-1_28
  115. B. Settles, “Active Learning Literature Survey,” University of Wisconsin–Madison, Computer Sciences Technical Report 1648, 2009.
  116. S. Dutta and A. Skowron, “Interactive Granular Computing Connecting Abstract and Physical Worlds: An Example,” in Proceedings of the 29th International Workshop on Concurrency, Specification and Programming (CS&P 2021), Berlin, Germany, September 27-28, 2021, ser. CEUR Workshop Proceedings, H. Schlingloff and T. Vogel, Eds., vol. 2951. CEUR-WS.org, 2021, pp. 46–59. [Online]. Available: http://ceur-ws.org/Vol-2951/paper18.pdf
  117. L. A. Zadeh, Ed., Computing with Words: Principal Concepts and Ideas, ser. Studies in Fuzziness and Soft Computing. Springer, 2012, vol. 277. [Online]. Available: https://doi.org/10.1007/978-3-642-27473-2
  118. J. Pearl, “Causal Inference in Statistics: An Overview,” Statistics Surveys, vol. 3, pp. 96–146, 2009. [Online]. Available: https: //doi.org/10.1214/09-SS057
  119. A. Janusz, D. Kałuża, A. Chądzyńska-Krasowska, B. Konarski, J. Holland, and D. Ślęzak, “IEEE BigData 2019 Cup: Suspicious Network Event Recognition,” in 2019 IEEE International Conference on Big Data (IEEE BigData), Los Angeles, CA, USA, December 9-12, 2019, C. K. Baru, J. Huan, L. Khan, X. Hu, R. Ak, Y. Tian, R. S. Barga, C. Zaniolo, K. Lee, and Y. F. Ye, Eds. IEEE, 2019, pp. 5881–5887. [Online]. Available: https://doi.org/10.1109/BigData47090.2019.9005668
  120. M. Matraszek, A. Janusz, M. Świechowski, and D. Ślęzak, “Predicting victories in video games – IEEE bigdata 2021 cup report,” in 2021 IEEE International Conference on Big Data (Big Data), Orlando, FL, USA, December 15-18, 2021, Y. Chen, H. Ludwig, Y. Tu, U. M. Fayyad, X. Zhu, X. Hu, S. Byna, X. Liu, J. Zhang, S. Pan, V. Papalexakis, J. Wang, A. Cuzzocrea, and C. Ordonez, Eds. IEEE, 2021, pp. 5664–5671. [Online]. Available: https://doi.org/10.1109/BigData52589.2021.9671650
  121. F. P. Brooks, Jr., The Mythical Man-Month: Essays on Software Engineering, Anniversary Edition. Addison-Wesley, 1995.
  122. S. Dutta, A. Skowron, and M. K. Chakraborty, “Information Flow in Logic for Distributed Systems: Extending Graded Consequence,” Information Sciences, vol. 491, pp. 232–250, 2019. [Online]. Available: https://doi.org/10.1016/j.ins.2019.03.057
  123. A. Skowron, A. Jankowski, and P. Wasilewski, “Interactive Computational Systems: Rough Granular Approach,” in Proceedings of the 21th International Workshop on Concurrency, Specification and Programming, Berlin, Germany, September 26-28, 2012, ser. CEUR Workshop Proceedings, L. Popova-Zeugmann, Ed., vol. 928. CEUR-WS.org, 2012, pp. 358–369. [Online]. Available: http://ceur-ws.org/Vol-928/0358.pdf
  124. C. Savaglio, M. Ganzha, M. Paprzycki, C. Badica, M. Ivanovic, and G. Fortino, “Agent-based Internet of Things: State-of-the-Art and Research Challenges,” Future Generation Computer Systems, vol. 102, pp. 1038–1053, 2020. [Online]. Available: https://doi.org/10.1016/j.future.2019.09.016