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Abstract—Cereals contribute significantly to humanity’s liveli-
hood. They are a source of more food energy worldwide than any
other group of crops. Their production contributes considerably
to the total global anthropogenic greenhouse gas (GHGs) emis-
sions. In this study we propose a basic bio-economic farm model
(BEFM) solved with the help of Ant Colony Optimization (ACO)
methodology. We aim to assess farm profits and risks considering
various types of policy incentives and adverse weather events. The
proposed model can be applied to any annual crop.

Index Terms—Agricultural System Modeling, Bio-economic
farm model, Ant Colony Optimization, Metaheuristics

I. INTRODUCTION

C
EREALS are essential for human nutrition and health.

Their production accounts for a substantial amount of

the greenhouse gas emission of the agricultural sector, which

is in many cases directly affected by a changing climate.

The policies of the European Union (EU) recognize these

facts. The Farm to Fork Strategy is central to the efforts to

decarbonize the economy outlined in the European Green Deal

[14]. EU policy encourages agricultural producers to reconcile

economic with environmental objectives. Apart from main-

taining economic growth, competitiveness, and employment

recent policies seek to optimize the use of scarce natural

resources such as land and water, to reduce the use of chemical

inputs and fertilizers, to promote integrated nutrient manage-

ment and on- and off-farm biodiversity through sustainable

intensification of agricultural systems. The Sixth Report (AR6)

of the International Panel for Climate Changes (IPCC) [13],

published in August 2021, states that “Each of the last four

decades has been successively warmer than any decade that

preceded it” (Paragraph A.1.2., page 6 in [13]).

An overview by Reidsma et al. (2018) identifies 202 studies

conducted between 2007 and 2015 using bio-economic farm

models (BEFMs) [1]. Recent prominent applications include

the analysis of cotton production in Uzbekistan [2]. A stochas-

tic dynamic optimization model by Spiegel et al. allows for the

representation of managerial flexibility by adopting real op-

tions modeling techniques [3]. Another study by Spiegel et al.

contributes towards the simultaneous appraisal of investment

and managerial behavior and its environmental impacts. The

usefulness of the method is demonstrated by an application to

a perennial biomass energy production system [4]. A second

application to short rotation coppices can be found in the

multi-objective optimization model of Rössert et al. [5]. An

overview by Britz et al. determines the desirable features of

a BEFM by comparing four generic template-based models

selected based on preset criteria [6].

This paper proposes a decision-making system based on a

BEFM that has the potential to exhibit many desirable features

identified by literature. Cropland allocation is framed as a con-

strained profit maximization problem from the point of view

of the farmer. Apart from the resource constraints the farmer

is subjected to various policies and environmental influences.

The optimization problem thus includes a lot of constraints

and some uncertainties. We apply ACO methodology [7] to

solve it. The model is calibrated for Bulgarian crop farms.

II. PROBLEM FORMULATION

The problem is framed as a microeconomics profit maxi-

mization problem. Farmers presumably maximize their profit

every year to by allocating cropland to a specific annual

crop and deciding how intensely to cultivate it. They consider

various preconditions, such as various prices, price expecta-

tions, expenses, costs, taxes, fees, subsidies and, finally, the

probability of an adverse events.

The system relying on profit maximization can be applied

in the presence of one or more plots and several suitable for

sowing crops. The system considers the expected price for

each crop, the average yield for each crop for each of the

plots. Included are the subsidies for the individual crops that

the farmer can receive, as well as the costs for each of the

crops related to tillage, planting, fertilization, crop cultivation,

harvesting, etc., as well as the costs for each of the plots

posed by rent, taxes and fees. Included is the probability of

an adverse event reducing yields such as ozone pollution, cold

winter, drought, etc. and a coefficient showing the reduction

in yield if the event occurs.

The result of the optimization is a recommendation to

the farmer with respect to the cropland allocation and the

cultivation intensity so that the profit is maximized.

Proceedings of the of the 17th Conference on Computer

Science and Intelligence Systems pp. 329–332

DOI: 10.15439/2022F10

ISSN 2300-5963 ACSIS, Vol. 30

IEEE Catalog Number: CFP2285N-ART ©2022, PTI 329



III. SOFTWARE AND DATA

Software implementing the decision-making system has

been developed. The input parameters are: plots of land; crops

for planting; minimum area for sowing crops, on each of the

plots; expected price of every crop; subsidy per unit area for

every crop; yield per unit area for every crop from every

plot; estimated cost per unit area for crop (amount of tillage

costs, seeds, fertilizers, chemicals, labor, overheads); costs per

plot, independent of the crop sown (land lease, taxes, etc.);

likelihood of an adverse event reducing the harvest (ozone

pollution, drought, hail, pests, etc.); a coefficient showing the

reduction in yield as an adverse event appears.

The decision-making system is calibrated using price and

yield data provided by the Bulgarian Chamber of Agriculture.

The used crops are the cereals most planted in Bulgaria (corn,

sunflower, wheat, barley). The yield data refer to North-East

Region in Bulgaria for the year 2018. The prices for crops,

subsidies and costs are measured in Euro, while the land is

measured in decares.

IV. ANT COLONY OPTIMIZATION ALGORITHM

Nature does not tolerate extravagance. It has millions of

years of experience. It can teach us how to achieve maximum

results with minimal effort. That is why methods with ideas

from nature are so successful.

The ACO is a methodology, which is nature-inspired. It

belongs to the group of metaheuristics. The method follows

the real ants behavior when looking for food. Real ants

use pheromone substance, to mark their path and to return

back. Normally an ant moves in random fashion and when it

comes across a previously laid pheromone it decides whether

to follow it and reinforce it with an additional pheromone.

So the more ants follow a given trail, the more attractive

that trail becomes. Pheromone evaporates over time. Thus

the pheromone level of less/not used paths decreases and

they become less desirable later. It prevents the ants from

following wrong and useless paths. Observations show that

ants manage to find the shortest path between the nest and the

food source using only the concentration of the pheromone,

i.e. their collective intelligence.

A. Main ACO Algorithm

Problems with strict restrictions and a large number of

parameters usually require a lot of computing resources. An

option is to be applied some metaheuristics. They are more

flexible and fast at the expense of accuracy [7].

For a first time, ant behavior is used for solving optimization

problems by Marco Dorigo [8]. Later some modifications

are proposed, mainly in pheromone updating rules [7]. The

basic in ACO methodology is graph representation of the

problem and simulation of ants behavior. The solutions are

represented by paths in a graph and the aim is to find shorter

path corresponding to given constraints. The requirements of

ACO algorithm are as follows: Appropriate representation

of the problem by a graph; Appropriate pheromone place-

ment on the nodes or on the arcs of the graph; Suitable

problem-dependent heuristic function, which manage the ants

to improve solutions; Pheromone updating rules; Transition

probability rule, which specifies how to include new nodes in

the partial solution; Appropriate algorithm parameters.

The transition probability Pi,j , is a product of the heuristic

information ηi,j and the pheromone trail level τi,j related to

the move from node i to the node j, where i, j = 1, . . . . , n.

Pi,j =
τai,jη

b
i,j

�

k∈Unused

τai,kη
b
i,k

, (1)

where Unused is the set of unused nodes of the graph.

The initial pheromone level is the same for all elements of

the graph and is set to a positive constant value τ0, 0 < τ0 < 1.

After that at the end of the current iteration the ants update

the pheromone level [7]. A node become more desirable if it

accumulates more pheromone.

The main update rule for the pheromone is:

τi,j ← ρτi,j +∆τi,j , (2)

where ρ decreases the value of the pheromone, which mimics

evaporation in a nature. ∆τi,j is a new added pheromone,

which is proportional to the quality of the solution. For

measurement of the quality of the solution is used the value

of the objective function of the ants solution.

The first node of the solution is randomly chosen. With

the random start the search process is diversifying and the

number of ants may be small according the number of the

nodes of the graph and according other population based

metaheuristic methods.The heuristic information represents the

prior knowledge of the problem, which is used to better

manage the algorithm performance. The pheromone is a global

history of the ants to find optimal solution. It is a tool for

concentration of the search around best so far solutions.

B. ACO for Agricultural Modeling

ACO algorithm is a constructive method. Every ant con-

structs its solution, taking in to account the constraints. In our

application an ant chooses first crop randomly between the

crops for sowing and assign it to the randomly chosen possible

plot. The assigned land is equal to the minimal lend for this

crop. The next crop and plot is chosen applying probabilistic

rule called transition probability. If on the chosen land this

crop is assigned yet we increase the land with 1. If the number

of assigned crops for all lends is less then the minimal number,

than unassigned crops have two times higher probability to be

assigned, or:

Pi,j =

ù

ü

ü

ü

ü

ü

ú

ü

ü

ü

ü

ü

û

τai,jη
b
i,j

�

k∈Unused

τai,kη
b
i,k

more crops or crop i is assigned

2
τai,jη

b
i,j

�

k∈Unused

τai,kη
b
i,k

less crops, crop i is’nt assigned

(3)

We construct the following heuristic information:
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ηi,j = PO×Decri,j × di,j ×Pi + (1−P0)× di,j ×Pi +
(Si − r1i,j)×Nij

where P0 is a probability for adverse event, Decri,j is

decrease of yield if adverse event appear, di,j is output for

crop i from land j, Pi is expected price of crop i, Si is subsidy

for crop i, r1i,j is expenses for crop i from land j, Nij is the

sown area of crop i on land j. Thus the adverse event and

its influence is taken in to account. When the probability the

adverse event to appear is more than 0, then the output of

crop i decrease with coefficient Decr. For different crops this

coefficient is different, because the adverse event influences

different crops in different way. For example the corn and

sunflower are more influenced by drought, than wheat and

barley.

The used objective function is as follows:

F =
�n

i=1

�M

j=1
PO ×Decri,j × di,j × Pi ×Nij +

(1− P0)× di,j × Pi ×Nij + (Si − r1i,j)×Nij

Thus the objective function takes in to account probability

of adverse event, different expenses, prices of the crops and

sown.

V. COMPUTATIONAL RESULTS AND DISCUSSION

Preparing test cases is a complex task. They need be as

realistic as possible in order to draw the right conclusions,

but also be able to show the qualities and capabilities of the

proposed algorithm.

The proposed bio-economic farm model is tested on a test

problems with following common parameters:

TABLE I: Test instances characteristics

Parameters Value

plots of land {100, 200}

crops 4

minimal area 10

minimal number of crops 4

The parameter settings of our ACO algorithm is shown in

Table II and are fixed experimentally after several runs.

TABLE II: ACO parameter settings

Parameters Value

Number of iterations 100

ρ 0.5

τ0 0.5

Number of ants 20

a 1

b 1

Several test instances are prepared. The baseline of the bio-

economic model refers to the situation without any subsidy or

adverse event. Four scenarios are constructed to showcase the

capabilities of the bio-economic model: a subsidy for barley

amounting to 11 Euro per decare; with subsidy for both barley

11 Euro per decare and wheat 10 Euro per decare; an 80%

probability of drought that decreases corn and sunflower yields

with a coefficient of 0.5 for corn and 0.7 for sunflower; a

subsidy for barley 30 Euro per decare.

TABLE III: Baseline without any subsidy or adverse events

land wheat corn sunflower barley

Land1 0 10 90 0

Land2 10 140 40 10

When there is no adverse event and subsidy the corn and

sunflowers are preferable because they are more profitable than

the two other crops, Table III.

TABLE IV: Subsidy for barley 11 Euro per decare

land wheat corn sunflower barley

Land1 0 10 90 0

Land2 10 140 40 10

The situation is not changed when the subsidy of the barley

is 11 Euro per decare, Table IV. It means that this subsidy is

not effective as an incentive to make the barley attractive to

the farmer.

TABLE V: Subsidy for barley 11 Euro per decare, for wheat

10 Euro per decare

land wheat corn sunflower barley

Land1 0 10 90 0

Land2 50 140 0 10

We observe that when the barley and wheat are subsided

the wheat becomes more attractive than the sunflower for the

Land2, Table V. It means that a subsidy of 10 Euro per decare

is sufficient to make the wheat more attractive.

TABLE VI: 80% probability for drought

land wheat corn sunflower barley

Land1 10 0 10 80

Land2 140 10 0 50

The drought influences only corn and sunflower yields, thus

with a non-zero probability of drought the two other crops

become more attractive while the income of the farmer is

preserved, Table VI.

The last scenario envisions a larger subsidy for barley. We

observe that the subsidy is effective as an incentive to make

the barley attractive to the farmer, Table VII.

With these five examples we showcase the capabilities of

the basic bio-economic farm model. In the baseline scenario,

without any subsidy, the crops with the higher profit are more

attractive to farmers. We show that subsidies can incentivize

the farmers to alter behavior and stimulate the cultivation of

crops that are not profitable in the market sense. We show how

the potential for adverse weather events such as droughts can
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TABLE VII: Subsidy for barley 30 Euro per decare

land wheat corn sunflower barley

Land1 0 10 90 0

Land2 10 140 0 50

influence profits by affecting yields and that the anticipating

farmers adapt to it by changing the crops they sow as to

maintain their profit level.

The proposed model showcases the influence of selected

polices and adverse weather events on cropland allocation

and can be adapted for any annual crop. The model can be

extended to cover diverse other instruments such as subsidies,

taxes, production quotas, guaranteed prices as well as regula-

tions regarding the land management. It can also be extended

to describe the production technology of the farmer in detail

in particular with respect to the input and output requirements

so that it is possible to include environmental considerations

in the optimization problem, either as constraints or as de-

sirable outcome of the optimization, e.g. achieving a specific

soil carbon balance while maintaining agricultural profits or

reducing the use of chemical inputs while maintaining a certain

production quota.

This technological detail would also allow us to incorporate

emission accounting in the model. This would give us the

opportunity to quantify the amount of greenhouse gas (GHG)

emissions that are consistent with the production level and

the maximum profit. The model we propose can also be

coupled to a crop growth simulation model for a more detailed

representation of the nutrient balance in the soil or to a

hydrological model to model the effects of an adoption of

irrigation technology. Extensions are possible with respect to

the time horizon of optimization even for annual crops to

account for situations such as long-term contracts of the farmer

with guaranteed prices. The risk-preferences of the farmer

could be considered similar to different management options

such as crop rotation. Management flexibility and long-term

investment decisions could be incorporated.

VI. CONCLUSION

In this paper we propose a decision-making system based

on a generic BEFM for annual crops, which has the potential

to exhibit many desirable features of a BEFM identified by

literature. The model is solved via Ant Colony Optimization

methodology. We showcase the possibilities offered by our

system by preparing various scenarios. The system can be used

to assist farmers with cropland allocation, but also by the state

and by the European administration to simulate the effects of

technology adoption and for impact evaluation of policies. It

will be further developed, thoroughly tested, and compared

to existing BEFM to validate the model results, but also to

promote the development of an ecosystem of BEFM modelers.
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