
Subcaterpillar Isomorphism: Subtree Isomorphism

Restricted Pattern Trees To Caterpillars

Tomoya Miyazaki

Graduate School of Computer Science and Systems Engineering

Kyushu Institute of Technology

Kawazu 680-4, Iizuka 820-8502, Japan

Email: miyazaki.tomoya481@mail.kyutech.jp

Kouichi Hirata

Department of Artificial Intelligence

Kyushu Institute of Technology

Kawazu 680-4, Iizuka 820-8502, Japan

Email: hirata@ai.kyutech.ac.jp

Abstract—In this paper, we investigate a subcaterpillar isomor-
phism that is a problem, for a rooted labeled caterpillar P and
a rooted labeled tree T , of determining whether or not there
exists a subtree in T which is isomorphic to P . Then, we design
two algorithms to solve the subcaterpillar isomorphism for a
caterpillar P and a tree T in (i) O(p+ tDhσ) time and O(Dh)
space and in (ii) O(p + tDσ) time and O(D(h + H)) space,
respectively. Here, p is the number of vertices in P , t is the
number of vertices in T , h is the height of P , H is the height
of T , σ is the number of alphabets for labels and D is the
degree of T . Furthermore, we give experimental results of the
two algorithms for artificial data and real data.

I. INTRODUCTION

THE PATTERN matching for tree-structured data such as

HTML and XML documents for web mining or DNA

and glycan data for bioinformatics is one of the fundamental

tasks for information retrieval or query processing. As such

pattern matching for rooted labeled unordered trees (a tree, for

short), a subtree isomorphism is the problem of determining,

for a pattern tree P and a text tree T , whether or not there

exists a subtree of T which is isomorphic to P . It is known

that the subtree isomorphism can be solved in O(p1.5t/ log p)
time [10], where p is the number of vertices in P and t is the

number of vertices in T . On the other hand, it cannot be solved

in O(t22ε) time for every ε (0 < ε < 1) under SETH [1].

In this paper, we focus on subcaterpillar isomorphism

that is a subtree isomorphism when P is a rooted labeled

caterpillar (a caterpillar, for short) (cf., [3]). The caterpillar is

an unordered tree transformed to a rooted path after removing

all the leaves in it. The caterpillar provides the structural

restriction of the tractability of computing the edit distance [8]

and inclusion problem [7] for unordered trees.

It is known that the problem of computing the edit distance

between unordered trees is MAX SNP-hard [11]. This state-

ment also holds even if two trees are binary, the maximum

height is at most 3 or the cost function is the unit cost func-

tion [2], [4]. On the other hand, we can compute the edit dis-

tance between caterpillars in O(n+H2σ3) time in the general

cost function and O(n+H2σ) time under the unit cost func-

tion, where n is the total number of vertices of the two caterpil-

lars, H is the maximum height of the two caterpillars and σ is

the number of alphabets for labels in the two caterpillars [8]1.

It is known that the inclusion problem of determining

whether or not a text tree T achieves to a pattern tree P by

deleting vertices in T is NP-complete [6]. This statement also

holds even if P is a caterpillar [6]. On the other hand, if

both P and T are caterpillars, then we can solve the inclusion

problem in O(p+ t+ (h+H)σ) time, where h is the height

of P and H is the height of T [7]2.

In this paper, we design two algorithms to solve the sub-

caterpillar isomorphism in (i) O(p+ tDhσ) time and O(Dh)
space and (ii) O(p + tDσ) time and O(D(h + H)) space,

respectively. Here, D is the degree of T . Since there may

exist many matching positions that match P in T when P
is much smaller than T , the above algorithms also output all

of such positions. Hence, under the assumption that p < t,
h j t and h < H , the algorithm (i) runs in O(tDσ) time and

O(Dh) space and the algorithm (ii) runs in O(tDσ) time and

O(DH) space.

Note that both algorithms do not use the maximum cardi-

nality matching algorithm for bipartite graphs [5], which is

essential for the subtree isomorphism algorithm [10]. Also we

cannot apply the proof of the SETH-hardness in [1] when a

pattern tree P is a caterpillar.

Furthermore, by implementing the algorithms (i) and (ii),

we give experimental results of the two algorithms for ar-

tificial data and real data. Then, we confirm that, whereas

the algorithm (ii) is faster than the algorithm (i) as same as

the theoretical results for artificial data of which number of

matching positions is large, the algorithm (i) is faster than the

algorithm (ii) for real data.

II. PRELIMINARIES

A tree is a connected graph without cycles. For a tree T =
(V,E), we denote V and E by V (T) and E(T). We sometimes

1The time complexity represented in [8] is O(H2λ3) time and O(H2λ)
time, where λ is the maximum number of leaves in the two caterpillars.
Since O(λ3) and O(λ) in them are corresponding to the time complexity
of computing the multiset edit distances under the general and the unit cost
functions (cf. [9]), we can replace λ with σ, by storing the labels occurring
in the leaves. Also, in order to compare the time complexity of this paper, we
add O(n) as the initialization of the algorithm, containing the above storing.

2The time complexity represented in [7] is O((h + H)σ) time. In order
to compare the time complexity of this paper, we add O(p + t) as the
initialization of the algorithm.

Proceedings of the of the 17th Conference on Computer

Science and Intelligence Systems pp. 351–356

DOI: 10.15439/2022F113

ISSN 2300-5963 ACSIS, Vol. 30

IEEE Catalog Number: CFP2285N-ART ©2022, PTI 351

denote v * V (T) by v * T . A rooted tree is a tree with one

vertex r chosen as its root, which we denote by r(T).
For each vertex v in a rooted tree with the root r, let UPr(v)

be the unique path from v to r. The parent of v(;= r), which

we denote by par(v), is its adjacent vertex on UPr(v) and

the ancestors of v(;= r) are the vertices on UPr(v) \ {v}. We

denote u < v if v is an ancestor of u, and we denote u f v
if either u < v or u = v. The parent and the ancestors of the

root r are undefined. We say that u is a child of v if v is the

parent of u, and u is a descendant of v if v is an ancestor

of u. We denote the set of all children of v by ch(v). Two

vertices with the same parent are called siblings. A leaf is

a vertex having no children and we denote the set of all the

leaves in T by lv(T). We call a vertex that is not a leaf an

internal vertex.

For a rooted tree T = (V,E) and a vertex v * T , the

complete subtree of T at v, denoted by T (v), is a rooted tree

S = (V 2, E2) such that r(S) = v, V 2 = {w * V | w f v}
and E2 = {(u,w) * E | u,w * V 2}.

The height h(v) of a vertex v is defined as |UPr(v)| 2 1
and the height h(T) of T is the maximum height for every

vertex v * T . The degree d(v) of a vertex v is the number of

the children of v, and the degree d(T) of T is the maximum

degree for every vertex in T .

We say that a rooted tree is ordered if a left-to-right order

among siblings is given; Unordered otherwise. For a fixed

finite alphabet Σ, we say that a tree is labeled over Σ if each

vertex is assigned a symbol from Σ. We denote the label of a

vertex v by l(v), and sometimes identify v with l(v). In this

paper, we call a rooted labeled unordered tree over Σ a tree,

simply.

In this paper, we often represent a rooted labeled unordered

tree as a rooted labeled ordered tree under a fixed order of

siblings. Then, for a rooted labeled ordered tree T , a vertex

v in T and its children v1, . . . , vi, the postorder traversal of

T (v) is obtained by first visiting T (vk) (1 f k f i) and then

visiting v. The postorder number of v * T is the number of

vertices preceding v in the postorder traversal of T .

Definition 1: Let T and S be trees.

1) We say that T is a subtree of S, denoted by T ¯ S, if T
is a tree such that V (T) ¦ V (S) and E(T) = {(v, w) *
E(S) | v, w * V (T)}.

2) We say that T and S are isomorphic, denoted by T c S,

if T ¯ S and S ¯ T .

3) We say that T is a subtree isomorphism of S, denoted by

T ¶ S, if there exists a tree S2 ¯ S such that T c S2.

In this paper, we deal with a subtree isomorphism problem

of P for T whether or not P ¶ T for trees P and T . We

call P a pattern tree and T a text tree. Then, the following

theorem holds.

Theorem 1 (Shamir & Tsur [10]): Let P and T be trees

where p = |P | and t = |T |. Then, the problem of determining

whether or not P ¶ T is solvable in O(p1.5t/ log p) time.

As the restricted form of trees, we introduce a rooted labeled

caterpillar (a caterpillar, for short) as follows.

Definition 2: We say that a tree is a caterpillar (cf. [3]) if

it is transformed to a rooted path after removing all the leaves

in it. For a caterpillar C, we call the remained rooted path a

backbone of C and denote it by bb(C).

It is obvious that r(C) = r(bb(C)) and V (C) =
V (bb(C)) * lv(C) for a caterpillar C, that is, every vertex

in a caterpillar is either a leaf or an element of the backbone.

III. ALGORITHMS FOR SUBCATERPILLAR ISOMORPHISM

In this section, we focus on a subcaterpillar isomorphism

that is a subtree isomorphism when P is a caterpillar. In other

words, we focus on the problem of whether or not P ¶ T for

a caterpillar P and a tree T . Throughout of this section, we

refer p = |P |, t = |T |, h = h(P), H = h(T), D = d(T) and

σ = |Σ|.
For a pattern caterpillar P , we refer the backbone of P

to a sequence ïv1, . . . , vnð such that (vi, vi+1) * E(P) and

vn = r(P). We denote the children of vi by ch(vi).

On the other hand, for a text tree T , we refer the vertices in

T to w1, . . . , wm in postorder traversal. We denote the height

of wj by h(wj) and the set of children of wj by ch(wj).

Let P be a pattern caterpillar and T a text tree such that

P ¶ T . Also let P 2 ¯ T be a subcaterpillar in T such that

P c P 2 and bb(P 2) = ïv21, . . . , v
2

nð, where v2n = r(P 2). Then,

we call the postorder number j such that v21 = wj in T a

matching position of P in T .

Example 1: Consider a pattern caterpillar P and a text tree

T in Figure 1. Here, the number assigned to every vertex in T
denotes the postorder number. Also vi denotes the backbone.

Then, {6, 8, 16} is the set of all the matching positions of P
in T . The corresponding backbones to P in T are ï6, 8, 9ð,
ï8, 9, 18ð and ï16, 17, 18ð.

a v3

b a v2

b a v1

a c b

a 18

a 9

b 1 a 8

b 2 a 6

a 3 b 4 c 5

c 7

b 10 a 17

b 11 c 12 a 16

a 13 b 14 c 15

P T

Fig. 1. A pattern caterpillar P and a text tree T in Example 1.

To design the algorithm to determine subcaterpillar isomor-

phism, we use a multiset of labels in order to compare two sets

of vertices. A multiset on Σ is a mapping S : Σ ³ N. For a set

V of vertices, we denote the multiset of labels occurring in V
by �V . Then, it is necessary for the subcaterpillar isomorphism

to check whether or not �ch(vi) ¦ �ch(wj) for vi * bb(P) and

wj * T . It is realized to check
�
�ch(vi)

�
(a) f

�
�ch(wj)

�
(a)

for every a * Σ in O(σ) time (cf. [9]).

Then, we design the algorithm SUBCATISO in Algorithm 1

to determine whether or not P ¶ T . Here, the algorithm

SUBCATISO output all of the matching positions if P ¶ T .

Then, it holds that no matching point is output if P ;¶ T .

352 PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022

procedure SUBCATISO(P, T)
/* P : caterpillar such that bb(P) = ïv1, . . . , vnð */
/* T : tree consisting of vertices w1, . . . , wm in postorder
traversal */
for i = 1 to n2 1 do match[i]± ';1

for j = 2 to m do2

if h(wj−1) = h(wj) + 1 then3

/* wj = par(wj−1) */
for i = n2 1 downto 1 do4

if match[i] ;= ' then5

foreach k * match[i] do6

if h(wk) = h(wj) + i then7

/* wj = par(wk) */
match[i]± match[i] \ {k};8

if l(vi+1) = l(wj) and9

�ch(vi+1) ¦ �ch(wj) then
if i+ 1 = n then output k;10

else11

match[i+ 1]±12

match[i+ 1] * {k};

if l(v1) = l(wj) and �ch(v1) ¦ �ch(wj) then13

if n = 1 then output j;14

else match[1]± match[1] * {j};15

Algorithm 1: SUBCATISO.

Example 2: We apply the algorithm SUBCATISO to the

pattern caterpillar P and the text tree T in Example 1 in

Figure 1. The if-sentence in line 3 works just internal vertices.

1) For j = 6, since l(v1) = a = l(w6) and �ch(v1) =

{a, b, c} = �ch(w6), 6 is stored to match[1] and then

match[1] = {6}.

2) For j = 8, since match[1] ;= ', set k to 6 * match[1].
Since h(w6) = 3 = h(w8) + 1, match[1] is changed

to '. Since l(v2) = a = l(w8) and �ch(v2) = {a, b} ¦
�ch(w8), 6 is stored to match[2] and then match[2] =

{6}. Also since �ch(v1) = {a, b, c} = �ch(w8), 8 is stored

to match[1] and then match[1] = {8}.

3) For j = 9, since match[2] ;= ', set k to 6 * match[2].
Since h(w6) = 3 = h(w9) + 2, match[2] is changed

to '. Since l(v3) = a = l(w9) and �ch(v3) = {a, b} =
�ch(w9), 6 is output. Also since match[1] ;= ', set k

to 8 * match[1]. Since h(w8) = 2 = h(w9) + 1,

match[1] is changed to '. Since l(v2) = a = l(w9)

and �ch(v2) = {a, b} ¦ �ch(w8), 8 is stored to match[2]
and then match[2] = {8}.

4) For j = 16, since �ch(v1) = {a, b, c} = �ch(w16), 16 is

stored to match[1] and then match[1] = {16}.

5) For j = 17, since match[1] ;= ', set k to 16 * match[1].
match[1] is changed to '. Since l(v2) = a = l(w17) and

�ch(v2) = {a, b} ¦ �ch(w17), 16 is stored to match[2]
and then match[2] = {8, 16}.

6) For j = 18, since match[2] ;= ', set k to 8 and 16.

For k = 8, since h(w8) = 2 = h(w18) + 2, match[2]

is changed to {16}. Since l(v3) = a = l(w18) and

�ch(v3) = {a, b} ¦ �ch(w18), 8 is output. Also, for

k = 16, since h(w16) = 2 = h(w18) + 2, match[2]
is changed to '. As the same reason, 16 is output.

Hence, the set of all the matching positions of P in T is

{6, 8, 16}. As summarising, Table I illustrates the transition of

match[i] for the algorithm SUBCATISO.

TABLE I
THE TRANSITION OF match[i] FOR THE ALGORITHM SUBCATISO.

j = 6 j = 8 j = 9 j = 16 j = 17 j = 18

match[1] 6 8 ∅ 16 ∅ ∅
match[2] ∅ 6 8 8 8, 16 ∅

output 6 8, 16

Theorem 2: Let P be a caterpillar and T a tree. Then, the

algorithm SUBCATISO correctly outputs all of the matching

positions of P in T in O(p+ tDhσ) time and O(Dh) space.

Proof: First, we show the correctness of the algorithm

SUBCATISO. The matching point of P in T is the internal

vertices of T . Then, the algorithm SUBCATISO first stores

the candidate j of the matching point corresponding to v1

to match[1] if l(v1) = l(wj) and �ch(v1) ¦ �ch(wj) (line 14).

Then, for the current j, the algorithm SUBCATISO removes

the candidate k from match[i] if wj is an ancestor of wk

(line 8) and stores k to match[i + 1] if l(vi+1) = l(wj),
�ch(vi+1) ¦ �ch(wj) and i < n21 (line 12). If i = n21, then

the algorithm SUBCATISO outputs k (line 10).

Hence, every output k at line 10 satisfies that l(vi) =

l(par i21(wk)) and �ch(vi) = �ch(par i21(wk)) for every i (1 f
i f n), where par0(v) = v and par i+1(v) = par(par i(v)).
As a result, the algorithm SUBCATISO outputs all of the

matching points of P in T .

Next, consider the complexity of the algorithm SUBCATISO.

As prepossessing, it is necessary to store ch(vi) for vi in P and

ch(wj) for internal vertex wj in T in O(p) time and O(t) time,

respectively. Also it is necessary to initialize match in O(h)
time. For the for-loop between lines 2 and 12 in the algorithm

SUBCATISO, the line 3 works at just internal vertices in T .

Since n = h and |match[i]| f D (1 f i f n21), the foreach-

loop between lines 6 and 12 is iterated at most O(hD) times.

Since we can check �ch(vi+1) ¦ �ch(wj) in O(σ) time, the

algorithm SUBCATISO executes the foreach-loop is O(hDσ)
time. Then, the for-loop is executed in O(tDhσ) time. Hence,

the total running time of the algorithm SUBCATISO is O(p+
t + h + tDhσ) = O(p + tDhσ) time. The total space is the

space spent by the array match[i] for every i (1 f i f n21),

which is bounded by O(Dh).
In order to reduce the searching time in match[i] for every

i (1 f i f n 2 1) of the algorithm SUBCATISO, we design

another algorithm SUBCATISO2 in Algorithm 2.

The main difference between the algorithms SUBCATISO

and SUBCATISO2 is that the index i accessed to the array

match is determined by height [hj21] without accessing to

match[i] for every i (1 f i f n2 1).

TOMOYA MIYAZAKI, KOUICHI HIRATA: SUBCATERPILLAR ISOMORPHISM: SUBTREE ISOMORPHISM RESTRICTED PATTERN TREES 353

procedure SUBCATISO2(P, T)
/* P : caterpillar such that bb(P) = ïv1, . . . , vnð */
/* T : tree consisting of vertices w1, . . . , wm in postorder
traversal */
for i = 1 to n do match[i]± ';1

for j = 1 to m do current(j)± 0;2

for h = 1 to h(T)2 1 do height [h]± ';3

for j = 2 to m do4

hj ± h(wj); hj−1 ± h(wj−1);5

if hj−1 = hj + 1 then6

/* wj = par(wj−1) */
foreach k * height [hj−1] do7

height [hj−1]± height [hj−1] \ {k};8

if h(wk) = hj + current(k) then9

/* wj = par(wk) */
i± current(k);10

match[i]± match[i] \ {k};11

current(k)± 0;12

if l(vi+1) = l(wj) and13

�ch(vi+1) ¦ �ch(wj) then
if i+ 1 = n then output k;14

else15

match[i+ 1]±16

match[i+ 1] * {k};
height [hj]± height [hj] * {k};17

current(k)± i+ 1;18

if l(v1) = l(wj) and �ch(v1) ¦ �ch(wj) then19

if n = 1 then output j;20

else21

match[1]± match[1] * {j};22

height [hj]± height [hj] * {j};23

current(j)± 1;24

Algorithm 2: SUBCATISO2.

Example 3: We apply the algorithm SUBCATISO2 to the

pattern caterpillar P and the text tree T in Example 1 in

Figure 1. Then, Table II illustrates the transitions of match[i]
and height [j] for the algorithm SUBCATISO2.

TABLE II
THE TRANSITIONS OF match[i] AND height [j] FOR THE ALGORITHM

SUBCATISO2.

j = 6 j = 8 j = 9 j = 16 j = 17 j = 18

match[1] 6 8 ∅ 16 ∅ ∅
match[2] ∅ 6 8 8 8, 16 ∅

output 6 8, 16

height [1] ∅ ∅ 8 8 8, 16 ∅
height [2] ∅ 6, 8 ∅ 16 ∅ ∅
height [3] 6 ∅ ∅ ∅ ∅ ∅

1) For j = 6, by lines 3 and 13, 6 is stored to match[1]
and height [3], and current(6) is set to 1.

2) For j = 8, by lines 6 and 7, 6 is selected as k *
height [3]. Since h(w6) = 3 = 2+1 = h8+ current(6),
6 is deleted from match[1]. By line 13, 6 is stored to

match[2] and height [2], and current(6) is set to 2.

By line 18, 8 is stored to match[1] and height [2], and

current(8) is set to 1.

3) For j = 9, by lines 6 and 7, 6 and 8 are selected as

k * height [2]. For k = 6, by line 9, i is set to 2 =
current(6) and 6 is deleted from match[2]. By lines 13

and 14, 6 is output. Also, for k = 8, by line 9, i is

set to 1 = current(8) and 8 is deleted from match[1].
By line 13, 8 is stored to match[2] and height [1], and

current(8) is set to 2.

4) For j = 16, by lines 3 and 13, 16 is stored to height [2]
and match[1], and current(16) is set to 1.

5) For j = 17, by lines 6 and 7, 16 is selected as k *
height [2]. By line 9, i is set to 1 = current(16) and

16 is deleted from match[1]. By line 13, 16 is stored to

match[2] and height [1], and current(8) is set to 2.

6) For j = 18, by lines 6 and 7, 8 and 16 are selected

as k * height [1]. For k = 8, by line 9, i is set to

2 = current(8) and 8 is deleted from match[2]. By lines

13 and 14, 8 is output. Also, for k = 16, by the same

reason, 16 is output.

Theorem 3: Let P be a caterpillar and T a tree. Then, the

algorithm SUBCATISO2 correctly outputs all of the matching

positions of P in T in O(p + tDσ) time and O(D(h +H))
space.

Proof: The difference between the algorithms SUB-

CATISO and SUBCATISO2 is the usage of current and height

without accessing to match[i] for every i (1 f i f n2 1).

For the selected k * height [hj21] at line 7, current(k) is

the already processed index i as vi (1 f i f n 2 1). Then,

if wk satisfies the condition at line 13, then current(k) is

updated to i+ 1 at line 17.

On the other hand, for the current j in the for-loop at

line 4 and for k * height [hj21] at line 7, k is deleted

from height [hj21] at line 8. If h(wk) = hj + current(k)
at line 9, then hj is the corresponding height to vi such that

i = current(k). Then, k determines the index i at line 10 to

access the array match[i]. Furthermore, if vi+1 satisfies the

condition at line 13, then k is stored to match[i + 1] and

height [hj], and current(k) is updated to i+ 1.

Hence, the algorithm SUBCATISO2 correctly accesses the

array match[i] for every i (1 f i f n 2 1). Then, by

Theorem 2, the algorithm SUBCATISO2 is correct.

Next, consider the complexity of the algorithm SUB-

CATISO2. The prepossessing time is O(p + t) from the

proof of Theorem 2. It is necessary to initialize current(j)
and height [h] in O(t) and O(H), respectively. The foreach-

loop between lines 7 and 18 is iterated in O(D) time since

|height [hj21]| f D, and then the foreach-loop is executed

to O(Dσ) time. Since the for-loop between lines 4 and 22 is

executed to m = t time, the total running time of the algorithm

SUBCATISO2 is O(p+ t+ t+H + tDσ) = O(p+ tDσ). The

total space of the algorithm SUBCATISO2 is the space spent

by the arrays match[i] for every i (1 f i f n 2 1) and

height [h] for every h (1 f h f h(T)2 1), which is bounded

by O(D(h+H)).

Theorems 2 and 3 imply the following corollary.

354 PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022

Corollary 1: Let P be a caterpillar and T a tree such that

p < t, h j t and h < H . Then, the algorithm SUBCATISO

determines whether or not P ¶ T in O(tDσ) time and O(Dh)
space. Also the algorithm SUBCATISO2 determines whether or

not P ¶ T in O(tDσ) time and O(DH) space.

IV. EXPERIMENTAL RESULTS

In this section, we give experimental results of the algo-

rithms SUBCATISO and SUBCATISO2 for both the artificial

data and the real data. Here, the computer environment is

that OS is Ubuntu 18.04.4, CPU is Intel Xeon E5-1650

v3 (3.50GHz) and RAM is 3.8GB.

A. Artificial data

First, in order to investigate the efficiency of the algorithm

SUBCATISO2, we adopt a binary caterpillar Pk with height

k and the unique label, which is a caterpillar such that every

internal vertex has just two children, and a complete binary

tree T2k with height 2k and the unique label, which is a tree

such that every internal vertex has just two children and the

height of every leaf is just 2k. It is obvious that Pk ¶ T2k.

Note that the algorithm SUBCATISO2 is more efficient than

the algorithm SUBCATISO when the number of the matching

points of P in T are large. Then, Table III illustrates the

running time of the algorithms SUBCATISO and SUBCATISO2

for Pk and T2k and the number (#match) of matching points

of Pk for T2k for 4 f k f 11.

TABLE III
THE RUNNING TIME (MSEC.) OF THE ALGORITHMS SUBCATISO AND

SUBCATISO2 FOR Pk AND T2k AND THE NUMBER (#MATCH) OF

MATCHING POINTS OF Pk FOR T2k FOR 4 ≤ k ≤ 11.

Pk T2k SUBCATISO SUBCATISO2 #match

P4 T8 4 3 248
P5 T10 23 21 1,008
P6 T12 115 98 4,064
P7 T14 585 473 16,320
P8 T16 3,256 2,331 65,408
P9 T18 21,493 12,126 261,888
P10 T20 181,978 67,697 1,048,064
P11 T22 1,579,043 417,140 4,193,280

Table III shows that the algorithm SUBCATISO2 is faster

than the algorithm SUBCATISO for Pk and T2k when k is

larger.

The number of the matching points of Pk+1 is about 4

times of those of Pk. On the other hand, the running time of

P8 (resp., P9, P10, P11) by the algorithm SUBCATISO is about

5.5 times (resp., about 6.5 times, about 8.5 times, about 8.7

times) of that of P7 (resp., P8, P9, P10). Also the running time

of P8 (resp., P9, P10, P11) by the algorithm SUBCATISO2 is

about 5 times (resp., about 5.2 times, about 5.6 times, about

6.2 times) of that of P7 (resp., P8, P9, P10).

B. Real data

Next, we give experimental results for caterpillars and

trees in real data. We deal with data for N-glycans and all-

glycans from KEGG3, CSLOGS4, dblp5 and TPC-H, Auction,

Nasa, Protein and University from UW XML Repository6.

In particular, we deal with the largest 51,546 trees (1%) in

dblp (refer to dblp1%). As pattern caterpillars, we deal with

non-isomorphic caterpillars in TPC-H, caterpillars obtained by

deleting the root in Auction and non-isomorphic caterpillars

obtained by deleting the root in Nasa, Protein, and University.

Note that we use all the trees as text trees in TPC-H, Auction,

Nasa, Protein and University.

Table IV illustrates the information of such caterpillars and

trees. Here, #, n, d and h are the number of caterpillars and

trees, the average number of vertices, the average degree and

the average height.

TABLE IV
THE INFORMATION OF CATERPILLARS AND TREES.

caterpillars trees
n d h # n d h

N-glycans 514 6.40 1.84 4.22 2,124 11.06 2.07 5.38
all-glycans 7,984 4.74 1.49 3.02 10,683 6.38 1.65 3.59
CSLOGS 41,592 5.84 3.05 2.20 59,691 12.93 4.48 3.42
dblp1% 51,395 21.29 20.21 1.04 51,546 21.29 20.18 1.04
SwissProt 6,804 35.10 24.96 2.00 50,000 59.54 31.33 2.76
TCP-H 8 8.63 7.63 1.00 86,805 14.46 13.46 1.00
Auction 259 4.29 3.00 0.71 37 31.00 12.00 3.00
Nasa 33 7.27 5.15 1.64 2,435 195.74 21.53 5.76
Protein 5,150 4,97 3.63 1.16 262,525 81.15 23.27 4.99
University 26 1.35 0.35 0.19 6,739 22.52 11.75 2.31

Then, Table V illustrates the total and average running

time (msec.) of the algorithms SUBCATISO and SUBCATISO2

applying to data in Table IV by regarding caterpillars as pattern

caterpillars and trees as text trees. Here, #cat denotes the

number of pattern caterpillars and #tree denotes the number

of text trees. Also the average running time is obtained by

dividing the total running time by the total number of pairs,

that is, (#cat)×(#tree).

TABLE V
THE TOTAL AND AVERAGE RUNNING TIME (MSEC.) OF THE ALGORITHMS

SUBCATISO AND SUBCATISO2 APPLYING TO DATA IN TABLE IV.

SUBCATISO SUBCATISO2
#cat #tree total ave. total ave.

N-glycans 514 2,142 53,969 0.0490 55,638 0.0505
all-glycans 7,894 10,683 1,353,490 0.0159 1,521,891 0.0178

CSLOGS 41,592 59,691 35,681,928 0.0144 42,296,479 0.0170
dblp1% 51,395 51,546 82,881,047 0.0313 85,767,789 0.0324

SwissProt 6,804 50,000 52,694,341 0.1549 53,326,537 0.1568
TCP-H 8 86,805 37,488 0.0540 39,461 0.0568

Auction 259 37 566 0.0591 589 0.0615
Nasa 33 2,435 21,462 0.2671 21,556 0.2683

Protein 5,150 262,525 78,939,972 0.0584 81,660,905 0.0604
University 26 6,739 1,348 0.0077 1,401 0.0080

Furthermore, Table VI illustrates the number (#(P ¶ T))

of pairs such that P ¶ T and its ratio in the total number of

3Kyoto Encyclopedia of Genes and Genomes, http://www.kegg.jp/
4http://www.cs.rpi.edu/˜zaki/www-new/pmwiki.php/Software/Software
5http://dblp.uni-trier.de/
6http://aiweb.cs.washington.edu/research/projects/xmltk/

xmldata/www/repository.html

TOMOYA MIYAZAKI, KOUICHI HIRATA: SUBCATERPILLAR ISOMORPHISM: SUBTREE ISOMORPHISM RESTRICTED PATTERN TREES 355

pairs, and the total and average number (#match) of matching

points when P ¶ T .

TABLE VI
THE NUMBER (#(P ¶ T)) OF PAIRS SUCH THAT P ¶ T AND ITS RATIO,

AND THE TOTAL AND AVERAGE NUMBER (#MATCH) OF MATCHING POINTS

WHEN P ¶ T .

#(P ¶ T) #match
#cat #tree total ratio (%) total ave.

N-glycans 514 2,142 58,128 5.277 96,729 1.664
all-glycans 7,894 10,683 983,163 1.153 1,625,099 1.653

CSLOGS 41,592 59,691 3,201,441 0.129 3,201,441 1.000
dblp1% 51,395 51,546 364,237,724 13.749 364,238,110 1.000

SwissProt 6,804 50,000 20,259,951 5.955 34,465,633 1.701
TCP-H 8 86,805 86,805 12.500 86,805 1.000

Auction 259 37 5,476 57.143 5,476 1.000
Nasa 33 2,435 17,850 22.214 42,687 2.391

Protein 5,150 262,525 2,413,404 0.179 2,515,642 1.042
University 26 6,739 9.260 5.285 9,260 1.000

In contrast to Table III, Table V shows that the algo-

rithm SUBCATISO is faster than the algorithm SUBCATISO2

for real data like as Corollary 1. One of the reasons is that the

number of the matching points for real data is much smaller

than that for artificial data. In fact, Table VI shows that the

average number of matching points for real data when P ¶ T
is less than 2.

Table V also shows that the average running time of both

algorithms for Nasa is largest and that for SwissProt is next

largest for all the data. The reason is that both the average

number of vertices of text trees in Table IV and the average

number of matching points in Table VI are larger than other

data.

Table VI shows that, for CSLOGS, TCP-H, Auction and

University, the number of the matching point is always exactly

one when P ¶ T . Then, for the other data as N-glycans,

all-glycans, dblp1%, SwissProt, Nasa and Protein, Table VII

illustrates the histograms of the number of matching points and

the maximum value (max) of matching points when P ¶ T .

TABLE VII
THE HISTOGRAMS FOR THE NUMBER OF MATCHING POINTS AND THE

MAXIMUM VALUE (MAX) OF MATCHING POINTS FOR N-GLYCANS,
ALL-GLYCANS, DBLP1% , SWISSPROT, NASA AND PROTEIN WHEN P ¶ T .

#match N-glycans all-glycans dblp1% SwissProt Nasa Protein

1 29,909 640,541 364,237,418 13,589,834 10,209 2,344,390
2 20,869 195,221 253 3,828,308 2,692 51,684
3 4,432 72,597 40 1,422,806 3,558 9,862
4 2,804 39,496 6 598,676 590 3,882
5 114 16,172 0 295,015 265 1,394
6 0 9,799 7 161,599 150 1,160
7 0 4,297 0 100,317 99 425
8 0 1,998 0 64,968 59 298
9 0 1,211 0 47,901 48 97

≥ 10 0 1,858 0 150,527 180 212

max 5 21 6 79 1,178 32

Table VII shows that the number of cases whose matching

points are more than 1 for SwissProt is largest and that for

all-glycans is next largest for all the data. On the other hand,
the maximum value of matching points for Nasa is extremely

largest and that for SwissProt is next largest for all the data.

V. CONCLUSION

In this paper, we have investigated the subcaterpillar iso-

morphism and designed two algorithms SUBCATISO running

in O(p + tDhσ) time and O(Dh) space and SUBCATISO2

running in O(p+ tDσ) time and O(D(h+H)) space, where

p = |P |, t = |T |, h = h(P), H = h(T), D = d(T) and

σ = |Σ|. Also we give experimental results for artificial data

and real data.

Then, as same as Theorems 2 and 3, we have confirmed

that the algorithm SUBCATISO2 is faster than the algorithm

SUBCATISO for artificial data whose number of the matching

points of P in T are large. On the other hand, we have

confirmed that the algorithm SUBCATISO is faster than the

algorithm SUBCATISO2 for real data. One of the reason is that

the running time of using the array height [h] in the algorithm

SUBCATISO2 cannot be absorbed like as Corollary 1 when the

number of the matching points is not large.

The reason why we cannot apply the SETH-hardness to

subcaterpillar isomorphism is that a caterpillar has a unique

backbone. Then, it is a future work to extend a caterpillar to a

tree with the bounded number of backbones, in order to avoid

to the SETH-hardness of subtree isomorphism [1]. Also it is a

future work to extend the algorithms in this paper to unrooted

subcaterpillar isomorphism like as [10].

REFERENCES

[1] A. Abboud, A. Backurs, T. D. Hansen, V. v. Williams, O. Zamir:
Subtree isomorphism revisited, ACM Trans. Algo. 14, 27 (2018).
https://doi.org/10.1145/3093239.

[2] T. Akutsu, D. Fukagawa, M. M. Halldórsson, A. Takasu, K. Tanaka:
Approximation and parameterized algorithms for common subtrees and

edit distance between unordered trees, Theoret. Comput. Sci. 470, 10–22
(2013). https://doi.org/10.1016/j.tcs.2012.11.017.

[3] J. A. Gallian: A dynamic survey of graph labeling, Electorn. J. Combin.,
DS6 (2018).

[4] K. Hirata, Y. Yamamoto, T. Kuboyama: Improved MAX SNP-hard results

for finding an edit distance between unordered trees, Proc. CPM’11,
LNCS 6661, 402–415 (2011). https://doi.org/10.1007/978-3-642-21458-
5 34.

[5] J. E. Hopcroft, R. M. Karp: An n5/2 algorithm for maximum

matching in bipartite graphs, SIAM J. Comput. 2, 225–231 (1973).
https://doi.org/10.1137/10.1137/0202019.

[6] P. Kilpeläinen, H. Mannila: Ordered and unordered

tree inclusion, SIAM J. Comput. 24, 340–356 (1995).
https://doi.org/10.1137/S0097539791218202.

[7] T. Miyazaki, M. Hagihara, K. Hirata: Caterpillar inclusion: Inclusion

problem for rooted labeled caterpillars, Proc. ICPRAM’22, 280–287
(2022). https://doi.org/10.5220/0010826300003122.

[8] K. Muraka, T. Yoshino, K. Hirata: Computing edit distance be-

tween rooted labeled caterpillars, Proc. FedCSIS’18, 245–252 (2018).
http://dx.doi.org/10.15439/2018F179.

[9] K. Muraka, T. Yoshino, K. Hirata: Vertical and hori-

zontal distance to approximate edit distance for rooted

labeled caterpillars, Proc. ICPRAM’19, 590–597 (2019).
https://dx.doi.org/10.5220/0007387205900597.

[10] R. Shamir, D. Tsur: Faster subtree isomorphism, J. Algo. 33, 267–280
(1999). https://doi.org/10.1006/jagm.1999.1044.

[11] K. Zhang, T. Jiang: Some MAX SNP-hard results concerning un-

ordered labeled trees, Inform. Process. Lett. 49, 249–254 (1994).
https://doi.org/10.1016/0020-0190(94)90062-0.

356 PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022

