
Abstract4 Most Internet-of-Things (IoT) devices and smart

sensors are connected via the Internet using IP communication

directly accessed by a server that collect sensor information

periodically or event-based. The spatial context (the

environment in which the sensor or devices is situated) is not

reflected accurately by Internet connectivity, and which is

additionally not everywhere available. In this work, smart

devices communicate connectionless and ad-hoc by using low-

energy Bluetooth broadcasting available in any smartphone

and in most embedded computers. Bi-directional connectionless

communication is established via the advertisements and

scanning modes. The communication nodes can exchange data

via functional tuples using a tuple space service on each node.

Tuple space access is performed by simple evenat-based agents.

The Bluetooth Low Energy Tuple Space (BeeTS) service

enables opportunistic, ad-hoc and loosely coupled device

communication with a spatial context.

INTRODUCTION AND OVERVIEW

HE number of embedded systems grows exponentially.

Ubiquitous and pervasive computing introduced visible

and non-visible low-resource and mobile devices. Most

Internet-of-Thing (IoT) devices and smart sensors are still

connected via the Internet using IP communication that are

accessed by a server that collect sensor information

periodically or event-based. Internet access is not

everywhere available. Additionally, the residential time of

mobile devices can be short, not suitable for ad-hoc

connection-based and negotiated communication. Finally,

the spatial context (the environment in which the sensor or

device is situated) is not considered (or inaccurately

determined) by Internet connectivity. even new 5G

technologies will not fully solve context-aware

communication [1]. In this work, smart devices

communicate connectionless and ad-hoc by using low-

energy Bluetooth available in any Smartphone and in most

embedded computers, e.g., the Raspberry PI or ESP32

devices. Bi-directional connectionless communication is

established via the advertisement and scanning modes used

in parallel. The communication nodes can exchange small

data or functional tuples using a tuple space service. Mobile

devices act as tuple carriers that can carry tuples between

T

different locations. Additionally, UDP-based Intranet

communication can be used to connect tuple spaces.

Tuple spaces are widely used for data storage for loosely

coupled distributed data processing systems. The Bluetooth

Low Energy Tuple Space (BeeTS) service is a lazy

distributed tuple space server and client. BeeTS uses

Bluetooth and UDP broadcasting for tuple space interaction

and tuple exchange. BeeTS supports tuples with an arity up

to 4.

A tuple space provides a spatial context, i.e., tuple space

access (by mobile devices) is limited to nearby devices, well

suited for mobile networks [2]. Distributed tuple spaces can

be connected by routers using IP communication if

available. The router composes global space sets by tuple

exchange and replication using hybrid rule- and event-based

agents. These rules can be changed at run-time and the code

can use Machine Learning algorithms to optimally distribute

tuples under resource and spatial constraints.

The novelty of this work is two-folded. Firstly, an

ubiquitous radio broadcast medium is used for low-distance

communication in ad-hoc mobile networks combined with a

unified tuple space paradigm. Secondly, the tuple space

communication is performed by simple reactive event-based

agents programmed in JavaScript that can be sent to a node

via the tuple space operations, too. Agent-based message

routing [3] is well suited in highly dynamic and unstructured

network environments. The generative tuple space paradigm

is well suited for ad-hoc mobile networks [4], especially if

this paradigm is coupled with the agent paradigm [5].

COMMUNICATION

It is assumed that there is a broadcast medium B, e.g.,

using radio waves, which can reach a number of nodes

NB={ni}i=1
k defining a receive area/range coverage C(B,N)(t)

that changes over time t. B can send broadcast messages m

to all listening nodes reachable by B. The set of nodes within

B can vary on time and spatial scale. Furthermore, it is

assumed that there is a probability pi(m,ri,j,[t0,t¹]) ∈ [0,1] that

a message m is received by a node i sent by node j in

distance r within a time interval [t0,t¹]. These two

assumptions are fundamental for the proposed distributed

tuple spaces.

Wireless Agent-based Distributed Sensor Tuple Spaces using

Bluetooth and IP Broadcasting

Stefan Bosse
University of Bremen, Dept. of

Computer Science, and Institute

for Digitization

28359 Bremen, Germany

Email: sbosse@uni-bremen.de

Proceedings of the of the 17th Conference on Computer

Science and Intelligence Systems pp. 601–604

DOI: 10.15439/2022F119

ISSN 2300-5963 ACSIS, Vol. 30

IEEE Catalog Number: CFP2285N-ART ©2022, PTI 601

It is assumed that single packets that can be send over B

are strictly limited by a small number of bits, e.g., 200-300

Bits. This requires a compact and optimized message format,

discussed in the next sub-section.

There are seven different message types:

÷ OUT stores a tuple in all tuple spaces receiving this

message;

÷ RD and INP requesting tuples from all receiving tu-

ple spaces;

÷ TEST checks for the existence of a tuple or set of

tuples;

÷ TUPLE is either an initial message sending this tu-

ple to all receiving nodes without; storing the tuple

in the respective tuple space, or a reply to a tuple

request;

÷ IAMHERE and WHERE messages are used for node

search.

The message format consists of a message header and the

data payload. The sequence number is required to detect the

reception of multiple copies of the same message, a

prerequisite for deployment with the Bluetooth device back-

end that sends a message multiple times. The signature byte

specifies the following tuple data pay-load. Depending on

the back-end communication device and the supported

packet format, the number of pay-load bytes can be very

small. The signature field specifies the type of each tuple

element with a tuple limit of four elements. For Bluetooth

advertisement packages there is NBLE=32, for the UDP back-

end it is at most NUDPg512. The message header and the data

payload is encoded in an BLE advertisement packet using

one device local name attribute (ASCII85 encoded) and

seven 16 Bit service UUID attribute fields.

In contrast to typical tuple space services, the tuple

operations are not atomic here. They can be executed at any

given time point t in the near future or never, and the set of

reachable tuple spaces that execute the request is not bound

and can be zero. There is no assumption that neither a

message arrives at a specific node nor that request is

processed successfully. There are filter rules processed by

agents that can be prevent tuple operation execution, too.

That means, the INP operation is only a suggestion to all

receiving tuple spaces to remove a matching tuple. All

operations pose a probabilistic behaviour, i.e., there is a

probability g 0 that a message is processed.

The encoding of tuples is done automatically. Before a

tuple is encoded and packed, a signature is derived, numbers

are classified either in integer 16 Bit or float 32 Bit values

depending on the actual value.

Devices can access remote tuple spaces of nearby

neighbouring nodes (typically in the range of 1-10m) by

using BLE broadcasting (called ble-ts). A device in

advertisement mode will send out periodically advertisement

message that contain a small payload depending on the

advertisement message class. In this work, the pay-load is

limited to 32 Bytes. There are 40 RF channels in BLE, each

separated by 2 MHz (centre-to-centre). Three of these

channels are called the primary advertising channels

(labelled 37, 38, and 39), while the remaining 37 channels

are called the secondary advertisement channels (they are

also the ones used for data transfer during a connection). The

primary channels are switched randomly in periods. On the

other side, the scanning devices has to switch the (primary)

receiving channels randomly, too. There is a probability p,

that an advertisement packet is received if both scanner and

advertiser are switch on the same channel and if there is no

other sending within the receiving range creating collision

(invalidation of the message).

In addition to the BLE broadcast communication, nodes

that are connected to a local IP network can exchange tuple

requests via UDP broadcast messages (called udp-ts).

Although, UDP messaging is theoretically reliable, UDP

broadcasting via wireless connections is not supported.

Security is provided by a symmetric two-way encryption

with format-preserving encryption of tuple messages using

byte look-up tables.

BEETS

The principle network architecture combining Bluetooth

and UDP-IP broadcast communication technologies is

shown in Fig. 1. Tuple messages can either be sent via

Bluetooth advertisement (based on [7]) or via single UDP

packets within a local IP network. BeeTS is programmed

entirely in JavaScript and can be executed by node.js with a

Bluetooth socket modules for BLE access, the noble module

for the central BLE part, and bleno for the peripheral part.

Note that BeeTS uses the peripheral and central (master)

mode simultaneously (advertising and scanning), requiring a

Bluetooth device with version g 4.0. BeeTS is basically a

small library module written in JavaScript. Smartphones act

as mobile devices and provide both a rich set of sensors and

BLE connectivity. Each communication back-end can

receive tuple requests. If there is a listener installed for

tuples (with pattern matching), incoming tuples (TUPLE

message) can be consumed by the listener or not. Otherwise,

incoming tuples are stored in the local tuple space.

There are agents acting as a bridge between the

communication back-end and the tuple space. They can filter

incoming messages and decide to reply immediately, to

access the tuple space, or to discard the message. Agents are

functional code that listen to incoming tuple requests. There

can be more than one agent. Communication between agents

is established via the tuple space, too.

A broadcast message sending via BLE enables the

advertisement mode of the device for a specific time interval

[ts,te], shown in Fig. 1 (a). The duration of the time interval

�t determines the receiving probability, the collision

probability (if more than one station is sending), the number

of advertisement packets that contain the message m, and the

number of different messages that can be sent per second.

The interval time �t must at least 3 × tsw, with tsw as the

602 PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022

average channel switching time of the sender (and receiver).

It is assumed that the sender and receiver have the same

switching time, typically 100 ms. Important to note that

channel switching introduces small dead time intervals

(about 1-10ms). A suitable value for �t is about 500ms.

Fig. 1. (a) BLE communication (b) Security by FPE (c) The hybrid network

architecture using BLE and UDP-IP broadcast communication; n:

stationary node, b: Stationary beacon, m: Mobile node, TS: Tuple space, R:

Rule-based router (d) Message routing by agents between different TS

Each physical communication interface (BLE/UDP) is

attached to itws own tuple space, i.e., there ate two

distributed space sets connected via BLE and UDP,

respectively. This division is grounded in the spatial context

of tuple spaces. Using BLE communication only nearby

nodes can insert or remove tuples, whereas UDP

communication enables tuple exchange over short and large

distances, too. Tuple exchange between BLE and UDP tuple

spaces is provided by a customisable router, shown in Fig. 1

(c). Application-specific routing rules (functional code)

provide transfers based on patterns and content of tuples.

The rule set is dynamic and can be changed at run-time. The

router extends the visibility and scope of tuples based on

adaptive code. The code can use Machine Learning, e.g.,

reinforcement learning, to improve tuple space distribution.

The routers connect local spaces and compose organised

global spaces.

Each time a message is received it is passed to the Remote

Procedure Call layer (RPC). Among the message data, the

sender MAC ID, a time stamp, and the signal strength is

added to the message.

The BeeTS framework basically provides a

communication platform using radio communication like

Bluetooth or WLAN. The communication bandwidth of

various devices can be significantly limited (e.g., in the case

of Bluetooth advertisement mode that can be only 2

messages/second). One main feature of BeeTS nodes is the

capability to execute event-based reactive agents

programmed in JavaScript that perform, e.g., filtering of

incoming tuple space requests. An agent is functional data

consisting of private body variables (including functional

values) and event handlers that are activated by incoming

messages, sensors (if the host platform provides them),

periodically, or only one time. Agents are executed in sand-

boxed containers and are used for message filtering and

routing between different tuple spaces, shown in Fig. 1 (d).

The format-preserving encryption of tuple messages using

look-up tables is shown in Fig. 1 (b).

USE-CASE: DISTRIBUTED SMART BUILDING CONTROL

This use-case deploys three different node classes

implementing a distributed building light control system:

1. Stationary beacons (Raspberry 3) equipped with

BLE and WLAN connectivity and supporting ble-

and udp-connected tuple spaces in both test and

production deployment;

2. Mobile devices (battery powered RP Zero stacked

with a smartphone for testing, stand-alone smart-

phone in production systems) supporting ble- and

udp-connected tuple spaces in test and ble-con-

nected tuple spaces only in production environ-

ments;

3. A central monitoring and light control service sup-

porting udp-connected tuple spaces.

Each node deploys at least one event-based agent that

implements necessary node operations like interaction with

mobile devices or users, and tuple filtering and bridging.

Beacons consume and aggregate mainly sensor data from

mobile (sensorised) devices like smartphones and forward

micro-surveys from the central server to mobile devices. But

beacons can initiate and manage micro-surveys, too. To

minimise the number of sent tuples via the BLE device, the

mobile nodes monitor the user behaviour by analysing the

accelerometer and gyroscope sensors. Updates of light

sensor tuples are only sent if either the light conditions

changes or the mobile device was moved in space. For rapid

prototyping, smartphones are using generic Web browser

loading an application page from the locally attached

Raspberry PI zero bundled with the smartphone. All sensor

data is sent to the embedded computer that executes the

mobile application logic and that performed the BLE

communication.

Mobile devices uses their light sensor in conjunction with

accelerometer and gyroscope sensors to estimate the ambient

STEFAN BOSSE: WIRELESS AGENT-BASED DISTRIBUTED SENSOR TUPLE SPACES USING BLUETOOTH AND IP BROADCASTING 603

light conditions and the user mobility by classifying the user

activity in rest, smartphone use, and movement phases.

The measured light sensor data is processed by a sensor

agent that tries to estimate if the smartphone is currently

exposed to external light or if it is stored in a box. If external

light is detected, sensor light tuples are sent via BLE.

Nearby beacons distributed in the building about every 10-

20m (and one per room/floor) collect these tuples and send

aggregated sensor light values to the central server via udp-

connected tuple spaces.

Among sensor tuples, there are micro-survey tuples that

are sent from a beacon (initially delivered by the central

server via the UDP tuple space) to mobile devices. If a

device supports HMI (e.g., a smartphone), a short question is

posted to a chat dialogue platform embedded either. The

user can answer the question and the answer is passed back

to the beacon (or any other beacon due to movement). The

beacons collect the micro-survey replies and forward them

to the central server.

For the evaluation of the loss rate of BLE tuple space

communication, a partial set-up was chosen with four

beacons at four different spatial positions and four mobile

devices here all at the same position. An average loss below

10% can be achieved within a radius of about 5m. Some

nodes can communicate over larger distances up to 10m.

The tuple message send time interval has no significant

impact on the loss rate within time interval [500s,2000s] and

with this (small) set-up. If the number of nodes within the

radio range increases, the loss rate will increase.

CONCLUSION

In this work, The Bluetooth Low Energy Tuple Space

(BeeTS) service enables opportunistic, ad-hoc and loosely

coupled device communication with distributed tuple spaces

that are used to exchange data between devices providing a

spatial context with respect to data and communication.

Smart devices access the tuple spaces by tuple message

communication using event-based agents. The

communication is connectionless and ad-hoc by using low-

energy Bluetooth broadcasting available in any Smartphone

and in most embedded computers, e.g., the Raspberry PI

devices. Bi-directional connectionless communication is

established via the advertisement and scanning modes used

in parallel by transferring encoded tuple messages. Mobile

devices act as tuple carriers that can carry tuples between

different locations. Additionally, UDP-based Intranet

communication can be used to connect tuple spaces. with

spatial context. Multiple independent tuple spaces can be

serviced on one network node bridged by agents. Among the

tuple spaces, BeeTS implements simple reactive event-based

agents. These agents perform tuple space management,

interaction between devices and users, and they act as tuple

filters and forwarders between multiple tuple spaces. A

preliminary study showed the suitability of the broadcast

communication for distributed ad-hoc networks preserving a

spatial context lacking in other approaches. Analysis showed

a low loss of BLE broadcast messages (about 10-20%) but

higher and unpredictable loss rates of UDP broadcast

communication using WLAN, even if N:1 unicast

communication was used to simulate broadcast messages.

APPENDIX: EXAMPLE AGENT

The following example shows an event-based agent

programmed in JavaScript reacting on tuple messages. It

consists of body variables and the event section. A specific

tuple space can be selected.

var agent = {
- x : 0,
' y : 0,
5 ..
- on : {
' 'ts.udp:(TIME,?)': function (ev) {
' ts.ble.notify(ev.tuple);
' return consumed?;
' },
' 'ts.ble:(SENSOR,?,?,?)':function (ev) {
' log(ev.tuple,ev.from,ev.rssi)
' ts.udp.out(['EVENT',
' JSON.stringify(ev.tuple),
' ev.from,ev.time]);
' return consumed?;
' },
' init : function () {
' this.x=random(1,1000);
' },
' 1000 : function (counter) {
' // called each 1000 ms
' return true
' },
' 'sensor.light:abs(sensor-sensor0)>50':
' function (ev) {
' if (ev.sensor>500)
' ts.ble.notify(['ALARM',
' 'LIGHT','HIGH']);
' }
5 },
}
Agent.create(agent);

REFERENCES

[1] A. Gupta and R. K. Jha, <A Survey of 5G Network: Architecture and

Emerging Technologies=, IEEE Access, vol. 3, 2016.

[2] P. Costa, L. Mottola, A. L. Murphy, G. P. Picco. "Teenylime:

transiently shared tuple space middleware for wireless sensor

networks." In Proceedings of the international workshop on

Middleware for sensor networks, pp. 43-48. 2006

[3] E. Shakshuki, H. Malik, and X. Xing, <Agent-Based Routing for

Wireless Sensor Network=, Lecture Notes in Computer

Science,Advanced Intelligent Computing Theories and Applications.

With Aspects of Theoretical and Methodological Issues, vol. 4681, pp.

68-79, 2007.

[4] N. Davies, A. Friday, S. P. Wade, G. S. Blair, <L2imbo: A distributed

systems platform for mobile computing=, Mobile Networks and

Applications 3(2), 143-156., 1998

[5] S. Bosse, <Unified Distributed Sensor and Environmental Information

Processing with Multi-Agent Systems: Models, Platforms, and

Technological Aspects=, ISBN 9783746752228, epubli, 2018

[6] S. Bosse, <BeeTS: Smart Distributed Sensor Tuple Spaces combined

with Agents using Bluetooth and IP Broadcasting=, CoRR

abs/2204.02464, 2022

[7] M. Nikodem and M. Bawiec, <Experimental Evaluation of

Advertisement-Based Bluetooth Low Energy Communication=,

Sensors, vol. 20, no. 107, 2020

604 PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022

