
Sensor Data Protection in Cyber-Physical Systems

1stAnton Hristozov

Polytechnic Institute

Purdue University

West Lafayette, Indiana, USA

ahristoz@purdue.edu

2nd Dr. Eric Matson

Polytechnic Institute

Purdue University

West Lafayette, Indiana, USA

ematson@purdue.edu

3rd Dr. Eric Dietz

Polytechnic Institute

Purdue University

West Lafayette, Indiana, USA

jedietz@purdue.edu

4th Dr. Marcus Rogers

Polytechnic Institute

Purdue University

West Lafayette, Indiana, USA

rogersmk@purdue.edu

Abstract—Cyber-Physical Systems (CPS) have a physical part
that can interact with sensors and actuators. The data that is
read from sensors and the one generated to drive actuators is
crucial for the correct operation of this class of devices. Most
implementations trust the data being read from sensors and the
outputted data to actuators. Real-time validation of the input
and output of data for any system is crucial for the safety of
its operation. This paper proposes an architecture for handling
this issue through smart data guards detached from sensors
and controllers and acting solely on the data. This mitigates
potential issues of malfunctioning sensors and intentional sensor
and controller attacks. The data guards understand the expected
data, can detect anomalies and can correct them in real-time.
This approach adds more guarantees for fault-tolerant behavior
in the presence of attacks and sensor failures.

Index Terms—CPS, robots, software architecture, fault toler-
ance, resilience, ROS

I. INTRODUCTION

IT IS not always possible to trust sensor data because of

reliability issues in sensors, intentional sensor attacks, and

issues like EMI interference [1]. Since sensor data are used in

control loops, it is better if we could make sure that the data

is not compromised and has not deviated from an acceptable

range. This problem is very pertinent for control algorithms.

In the era of AI solutions, the data streams can determine the

success or failure of neural networks or other machine learning

algorithms used in the device. Therefore the issue applies to

ML solutions.

Using data guards exploits a separation of concerns ap-

proach, applicable to off-the-shelf controllers or AI solutions

that are complex and hard to understand. Data guards are much

more straightforward in their operation and focus on guarding

the validity of the data, independently of how complex the

controllers or sensors are. Tuning such complex components is

difficult and guaranteeing that they will work in all conditions

is sometimes impossible. Therefore using data guards before

data is fed to the controller is a security and reliability

guarantee which enables safer system operation. A further

benefit of separating data guards from the rest of the system

is that they can be validated separately, as they tend not to

contain too much code and complexity. In this respect, they

can be similar to the enforcers presented in the literature [2]

but are focused on data instead of behavior.

The paper’s main contribution is the proposal of dedicated

smart data guards that take care of sensor data in real-time.

The definition of data contracts is another contribution. The

enforcement of such contracts in an existing architecture is

a way to enhance systems and enforce security and safety

properties. The contribution related to this is that we propose

to use separation of concerns through data-centric components

that abide by the data contracts we define, depending on the

data.

The paper starts with analyzing what data protection means

and why we need it. Then the next section discusses data

contracts and provides formal presentation examples. The

following section discusses how they can improve an existing

control architecture. A data guard implementation is also

discussed. A reference implementation in PX4 is next. The

paper ends with future directions and a conclusion section.

II. DATA PROTECTION ANALYSIS

Sensor data requires attention since it is used for control

decisions and can affect the safety of a CPS and is therefore

critical. Controllers and observers operate by using sensor

data, trusting it is correct. Most of the controllers are designed

with the assumption of data correctness. In reality, possible

attacks and noise in the data, as well as sensor degradation and

failure, are facts that cannot be ignored. Both sources of sensor

data incorrectness can be dealt with if we take precautions to

validate the data in real-time.

A. Sensor Attacks

If we consider a Cyber-Physical System such as an au-

tonomous vehicle or a UAV, there are generally many sensors

used by such a system. Some sensors, such as cameras and

other object detection sensors, may need to be processed by

complex machine learning algorithms to integrate them into

the system. Many other sensors, though, are simpler and can

generate fewer data per unit of time. The main issue with

trusting sensor data is that there is no way to know if the

data are valid since there is usually no authentication and

encryption of the data sent from the sensors to the controller.

There is also no guarantee that the measured physical value is

not affected by an attack. A class of attacks can affect physical

values without coming into contact with the sensors using EMI

or acoustic waves, for example, [3].

An example of a possible attack is an EMI burst that disrupts

a sensor ([4]). The other likely attack can happen when the

measured data are transferred to the controller, for example,

Proceedings of the of the 17th Conference on Computer

Science and Intelligence Systems pp. 855–859

DOI: 10.15439/2022F12

ISSN 2300-5963 ACSIS, Vol. 30

IEEE Catalog Number: CFP2285N-ART ©2022, PTI 855

through CAN bus [5]. Flipping bits or controlling the sensor

data bus can be even an easier way to perform an attack.

Sensor buses can be in many different forms and can be, for

example, i2c or Spi or a dedicated Ethernet and even a wireless

connection in some cases [6]. Given that the attack surface is

large, we cannot and should not trust sensor data for safety-

critical systems. There is a need to add a mechanism to detect

and remedy the effects of an attack that manipulates sensor

data.

The data coming from sensors could also be encrypted

as a security measure, but this is a pretty resource-intensive

operation and can severely affect the timing of transporting

the data and using it [7]. Controllers are sensitive to delays,

and this approach may become impractical for resource-

constrained CPS [8]. There are also hardware solutions that

enable encryption ,but it is unlikely that all the sensors in an

AV can be equipped with such capabilities. Therefore, for this

study, we can assume that sensor data travels in the open and

can be vulnerable to attacks.

B. Data Guard Components

A sensor typically sends a digital stream of bytes repre-

senting a physical parameter, for example, position, velocity,

or acceleration in the case of UAVs. In the event of a sensor

attack or sensor malfunctioning, we can have data that is

not physically realistic at a particular moment, based on the

system’s state. A data guard can use sensor-specific parameters

to guarantee the sensor data [9]. For example, the following

parameters can be used in a simple universal approach to

sensor validation:

• MAX value - The maximum allowed value for all cases

• MIN value - The minimum allowed value for all cases

• MAX delta - The maximum change in unit time

• MIN delta - The minimum change in unit time

• MAX time for stale data - The maximum time when data

can stay the same.

• DEFAULT safe value - When the input value is out of

bounds or stale, this value can be fed to the controller.

Note that in addition to static default values, we can cal-

culate a default based on historical data when we consider

that the system operates under normal conditions.

C. Sensor Data

As one possible example we can have a look at a GPS

message in the PX4 autopilot which has the following message

abbreviated format in Listing 1:

Listing 1 GPS message details

uint64 timestamp

int32 lat

int32 lon

int32 alt

...

The individual fields of the GPS message are either integers

or real numbers. They can be validated as each message

arrives in a software component as part of the system. Such an

approach takes care of each message instance but does not help

check data deviations between successive message instances.

We need an algorithm that contains meta parameters used for

all messages, such as delta max, delta min, stale timer values,

and default values. All these parameters can be considered as

data contract parameters. Each data guard expects the sensor

to provide data that is within the data contract parameters [10].

Defining and enforcing such contracts is the main contribution

of the paper.

D. Data Guard Utilization

Data guard components can work independently from other

components in separate threads. The goal is to provide minimal

overhead and be transparent to the rest of the control system.

The main goal is to have the guards provide reasonable values

when the data stream contains unexpected values. In other

words, this is not just filtering specific values but actively

reconstructing the sensor data when deemed incorrect. This

takes care of spikes or short attacks and can even be used to

detect a persistent sensor attack. For example, if the data guard

keeps a default value for a certain period, it can then generate

a signal indicating that something has gone wrong with that

sensor. This is a relatively simple implementation but general

enough to be used with many different sensors.

III. DATA CONTRACTS

Software contracts have been used in many aspects of

software engineering, especially in designing object-oriented

systems [11], [12]. In this work, we extend the software con-

tract concepts to be used for the specification of data guards,

used to guarantee specific properties in the sensor data and

the data sent to actuators. Contracts are based on assumptions

and guarantees and can be applied to software interfaces. The

general representation is given through equation 1 [11], [12]:

C = A,G (1)

Where C is the contract, A is the set of assumptions, and G

is the set of guarantees. The contract definition can happen

during design time since the sensor and actuator data are

usually known to the designer. This allows for a thorough

analysis of the data and the associated data contract. We start

by defining the assumptions A of our data guard contract can

be different for different cases and can be expressed as a set

according to 2.

A = {Ai} (2)

The data set of each data source by the following set in 3:

D = {Di} (3)

, where each data member can have a different type.

Some common assumptions for the data in the set D are:

• expected data should have no overflow or underflow for

these data types.

856 PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022

• Another assumption can be that new data will be received

with a certain minimum frequency.

The guarantees G can include a different set for different

data. According to our running example, the guarantees G can

be composed through a set of rules 4:

G = {Gi} (4)

An example set of guarantees based on our example follows:

• No data item will exceed its expected maximum value

• No data item will become less than its expected minimum

value

• No two successive values will exceed the maximum

allowed delta for that data item. The delta is the difference

between two consecutive readings.

• A data item will not be stale longer than the maximum

allowed number of readings

• Any reading should not deviate from the average of the

last N readings by a certain delta value.

• When any of the above rules are violated, a default value

will be provided for each data item

Some examples from the set of guarantees G can be

represented mathematically in the following way:

G1 : Di <= Dimax,

G2 : Di >= Dimin,

G3 : Di2 2Di1 <= Diδ

G4 : Di 2Dj ;= 0 , where j = i+ k over k time periods

G5 : Di * Du ó Di = Dd

where Du is unacceptable value and Dd is default value

IV. ATTACK RESISTANT CONTROL ARCHITECTURE

Using our defined data contract from the previous section,

we can show the proposed control architecture in figure 1. This

type of control architecture is typical for a variety of CPS,

including UAVs [13]. It is very similar to the classic control

loop architecture with the addition of data guard components

for each sensor and a data guard for the controller output.

Having a data guard for each sensor makes handling each

sensor data stream’s timing and specific data characteristics

easier. This also allows for the sensor fusion to be done

separately. The approach assumes that all data guards will be

running in parallel so that the streams coming from sensors

and the controller can work independently. It is also possible

to place data guards after the fusion block; in some situations,

this may be a better approach.

Figure 2 shows a possible architecture of a generic data

guard. There are two independent timers for calculating the

deltas and for the detection of stale data. Stale data means

a faulty sensor or a sensor under constant attack. These

parameters can be part of the data contract established for each

sensor data stream in the system. The data guard component

checks for range violations in each message as well as jumps

in data readings between messages that are not realistic, given

the characteristics of a particular sensor. For example, an

accelerometer cannot generate impossible values given the

abilities of a UAV or UGV.

Fig. 1. Control architecture

Fig. 2. Data Guard Component

A. Implementation of a Data Guard

Data guards can be implemented in a separate module using

a variety of programming languages. For existing systems,

they will most likely be in the programming language used

to develop the system. Our implementation of a data guard

follows the generic approach shown in figure 2. An example

algorithm for a data guard is written in pseudo-code in Listing

2. This algorithm utilizes two timers and works continuously

on incoming data. The implementation can protect against

sudden changes that are not physically expected and can

detect if a sensor is faulty and does not function anymore.

Generating a signal to the system can be used to make a

higher-level decision to enter a different fail-safe mode of

control. In that respect, the data guard can be the first level in

ANTON HRISTOZOV ET AL.: SENSOR DATA PROTECTION IN CYBER-PHYSICAL SYSTEMS 857

Listing 2 Pseudo-code example of a data guard

read_value()

if data > max or data < min then

data = default_data

endif

if delta_timer_expiration()

check_delta_max()

check_delta_min()

endif

if delta > delta_max

or delta < delta-min then

data = default_data

endif

if stale_time_expired()

check_for_stale_data()

endif

if stale_data() then

send_stale_alarm()

endif

the decision-making when implementing fault-tolerant system-

wide behavior.

B. PX4 autopilot as a prototyping platform

PX4 can be used within a Software in the Loop (SITL)

environment with Jmavsim, or the Gazebo flight simulator

[14]. In either case, the sensors of the drone are part of the

simulator, and the data from them is sent periodically to PX4,

where the data is analyzed and dispatched to other modules.

This is done via the Mavlink protocol, which is a standard

protocol for messaging in UAVs [15]. Adding a new custom

module and intercepting the data stream from one or more

sensors is relatively easy, and this is the chosen approach for

the experiments. Similarly, defining new messages and writing

code for them is very well supported, and we took advantage

of it in this work.

V. REFERENCE IMPLEMENTATION OF DATA GUARDS

Figure 3 demonstrates the reference implementation with

the Gazebo simulator and PX4. Gazebo is a physical simulator

used to perform robotic vehicle simulations. One excellent

characteristic of Gazebo is that it has plugins, which are

essentially software modules that the user can add or mod-

ify. This allows for easy additions and modifications of the

simulator. There are several types of plugins, among which

are sensor plugins. There is one sensor plugin for each sensor

as part of the PX4 integration with Gazebo. For the purposes

of this implementation, the GPS plugin was chosen so that

perturbations for the GPS signal could be introduced. A simple

scheme such as randomly generating a spike in the altitude by

generating a random number every ten readings or so is a

simple way to perturb the GPS data stream. This emulates

a GPS sensor attack or a malfunction in the GPS module.

Gazebo sends all sensor data to PX4 through the Mavlink

protocol, including the periodic GPS message.

Fig. 3. Reference architecture

The reference implementation is a representative example

of the approach based on a popular platform for UAVs and

the fact that GPS spoofing is such a common GPS attack.

The results show that it is fairly straightforward to introduce a

data guard component in a publish-subscriber architecture such

as PX4. The same can be done for similar architectures, for

example ROS and ROS2 [16], [17]. The performance penalty

is minimal if we perform just simple checks. This may not be

the case if the data is fairly complex. In this case, our data

guard may need to use some ML algorithm or fuzzy logic

to achieve its goals. Our experiments showed no degradation

of the autopilot’s performance, and we expect that in many

cases, some spare CPU cycles can be utilized to provide the

necessary data protection controllers need.

VI. FUTURE DIRECTIONS

The data guards that we discussed were mainly static as their

behavior was specified at design time. However, there may

be situations when data fluctuations may require adaptable

data guards with more changeable behavior based on ML

algorithms. This direction is pretty exciting and also more

ambitious. Still, in the era of the ever-increasing use of better

hardware and pervasive AI solutions, it is not something that

is far from reality. Adaptive behavior has been used in control

for a long time, as well as in digital filters. Some of the already

established ideas can be applied to complex and variable

sensor data with the goal of their online sanitation.

Another possibility is to have an automatic code generator

of data guards based on a custom language defining the rules

that govern them. This kind of approach can make their

implementation even more straightforward and widespread.

Automatic code generation can be done from a modeling

language or from a data flow language such as Lustre [18].

The objective is to capture the relationships in data processing

at a higher level in a fairly representative way and then

generate code for the target system. This future direction can

be achieved by developing unique tools for the task.

858 PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022

VII. CONCLUSION

This paper demonstrated a flexible architecture for simulat-

ing sensor and controller attacks and a mechanism to react

to them by introducing data guards. The data guard can be

as complex as needed but still be practical for maintaining

the real-time response of the system. The approach applies to

any sensor and actuator and any controller or module which

consumes sensor data. This can include complicated sensors

such as image and Lidar sensors. The approach minimizes

or eliminates the possibility of affecting the system’s stability

and normal operation due to sensor data issues. The method

is a complementary run-time strategy to data sanitation used

during the training of machine learning systems. It makes

sensor data more important as part of the set of concerns

for robotic systems. Furthermore, the approach applies to the

reliability of sensors and malicious modifications of sensor

and controller behavior.

REFERENCES

[1] H. Pearce, S. Pinisetty, P. S. Roop, M. M. Y. Kuo, and A. Ukil, “Smart
i/o modules for mitigating cyber-physical attacks on industrial control
systems,” IEEE Transactions on Industrial Informatics, vol. 16, no. 7,
pp. 4659–4669, 2020.

[2] D. de Niz, B. Andersson, and G. Moreno, “Safety enforcement for
the verification of autonomous systems,” in Autonomous Systems:

Sensors, Vehicles, Security, and the Internet of Everything, M. C.
Dudzik and J. C. Ricklin, Eds., vol. 10643, International Society for
Optics and Photonics. SPIE, 2018, pp. 1 – 10. [Online]. Available:
https://doi.org/10.1117/12.2307575

[3] H. Choi, W.-C. Lee, Y. Aafer, F. Fei, Z. Tu, X. Zhang, D. Xu,
and X. Xinyan, “Detecting attacks against robotic vehicles: A control
invariant approach,” Proceedings of the 2018 ACM SIGSAC Conference

on Computer and Communications Security, 2018.
[4] Y. Zhang and K. Rasmussen, “Detection of electromagnetic

interference attacks on sensor systems,” in 2020 IEEE Symposium

on Security and Privacy (SP). Los Alamitos, CA, USA: IEEE
Computer Society, may 2020, pp. 1–1. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/SP.2020.00001

[5] J. Park, R. Ivanov, J. Weimer, M. Pajic, and I. Lee, “Sensor
attack detection in the presence of transient faults,” in Proceedings

of the ACM/IEEE Sixth International Conference on Cyber-Physical

Systems, ser. ICCPS ’15. New York, NY, USA: Association

for Computing Machinery, 2015, p. 1–10. [Online]. Available:
https://doi.org/10.1145/2735960.2735984

[6] M. T. Leccadito, “A hierarchical architectural framework for securing
unmanned aerial systems,” 2017.

[7] A. Allouch, O. Cheikhrouhou, A. Koubaa, M. Khalgui, and T. Abbes,
“Mavsec: Securing the mavlink protocol for ardupilot/px4 unmanned
aerial systems,” 2019 15th International Wireless Communications &

Mobile Computing Conference (IWCMC), pp. 621–628, 2019.
[8] J. Zeng, L. T. Yang, M. Lin, H. Ning, and J. Ma,

“A survey: Cyber-physical-social systems and their system-
level design methodology,” Future Generation Computer

Systems, vol. 105, pp. 1028–1042, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167739X1630228X

[9] M. Wu, H. Zeng, C. Wang, and H. Yu, “Invited: Safety guard: Runtime
enforcement for safety-critical cyber-physical systems,” in 2017 54th

ACM/EDAC/IEEE Design Automation Conference (DAC), 2017, pp. 1–
6.

[10] A. Sangiovanni-Vincentelli, W. Damm, and R. Passerone, “Taming
dr. frankenstein: Contract-based design for cyber-physical systems,”
European journal of control, vol. 18, no. 3, pp. 217–238, 2012.

[11] A. Benveniste, B. Caillaud, D. Nickovic, R. Passerone, J.-B. Raclet,
P. Reinkemeier, A. Sangiovanni-Vincentelli, W. Damm, T. A. Henzinger,
and K. G. Larsen, Contracts for System Design, 2018.

[12] Y. Liu and C. Cunningham, “Software component specification using
design by contract,” 03 2002.

[13] M. Sadraey, Unmanned Aircraft Design: A Review of Fundamentals,
2017.

[14] E. Ebeid, M. Skriver, K. H. Terkildsen, K. Jensen,
and U. P. Schultz, “A survey of open-source uav
flight controllers and flight simulators,” Microprocessors and

Microsystems, vol. 61, pp. 11–20, 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0141933118300930

[15] A. Kouba, A. Allouch, M. Alajlan, Y. Javed, A. Belghith, and M. Khal-
gui, “Micro air vehicle link (mavlink) in a nutshell: A survey,” IEEE

Access, vol. 7, pp. 87 658–87 680, 2019.
[16] M. Lauer, M. Amy, J.-C. Fabre, M. Roy, W. Excoffon, and M. Sto-

icescu, “Engineering adaptive fault-tolerance mechanisms for resilient
computing on ros,” in 2016 IEEE 17th International Symposium on High

Assurance Systems Engineering (HASE), 2016, pp. 94–101.
[17] I. Malavolta, G. Lewis, B. Schmerl, P. Lago, and D. Garlan, “How do

you architect your robots? state of the practice and guidelines for ros-
based systems,” in 2020 IEEE/ACM 42nd International Conference on

Software Engineering: Software Engineering in Practice (ICSE-SEIP),
2020, pp. 31–40.

[18] J.-L. Colaço, B. Pagano, and M. Pouzet, “Scade 6: A formal language
for embedded critical software development (invited paper),” in 2017 In-

ternational Symposium on Theoretical Aspects of Software Engineering

(TASE), 2017, pp. 1–11.

ANTON HRISTOZOV ET AL.: SENSOR DATA PROTECTION IN CYBER-PHYSICAL SYSTEMS 859

