
Anomaly detection on compressed data in

resource-constrained smart water meters

Sarah Klein

Sirris, Brussels, Belgium

Email: sarah.klein@sirris.be

Anna Hristoskova

Sirris, Brussels, Belgium

Annanda Rath

Sirris, Brussels, Belgium

Renaud Gonce

Shayp, Brussels, Belgium

Abstract—Increasing amount of devices in our daily life are
equipped with sensors that transfer information to a cloud
solution where the data is finally analysed. By improving the data
intelligence on the edge, the data transfer can be reduced, which
not only saves bandwidth and thus reduces energy consumption,
but also leads to increased privacy protection. In this paper, we
propose a privacy-friendly water leakage detection approach for
various kind of water meters (optical and digital) performed on
a very constrained, wireless devices.

I. INTRODUCTION

T
HE amount of IoT devices on our homes increases

for several years already. While most of them promise

easier living and higher comfort, the actual applications are

often neither environment nor privacy friendly. In this paper,

we introduce a water leakage detection algorithm that takes

both into account by running analytics directly on a long-

living, energy-saving device in a privacy-preserving manner.

For this, we apply a very lightweight data compression at the

edge that enables leakage detection and significantly reduces

the bandwidth needed to transfer the data from the edge to

a central cloud device. By this, public as well as private

buildings all over the world can profit from a solution that

is easy to install and that reduces the waste of fresh water.

This work was performed in close collaboration between Sirris

and Shayp, who are leading specialists in water efficiency

and monitoring, such that the evaluation of the approach was

performed on real-world data.

The remainder of this paper is organized as follows: We

will first provide an overview of current solutions in section II,

before describing the technical setup in section III. In section

IV we will explain in detail our solution for an on-the-edge

leakage detection that respects privacy aspects. Its evaluation

will be discussed in V-1 on both, artificial and real-world data

before concluding in section VI.

II. RELATED WORK

Recently, several solutions on leakage detection by smart

meters were suggested. The common approach entails a con-

nected device at water meter level, which sends pulse data to a

cloud back-end for further collection and analysis. Hence, the

leakage detection is executed only in the cloud [1], [2], [3].

In [1], a solution for remote monitoring of water consumption

and leakage detection is discussed. The setup consists of a

water meter is connected to an Arduino micro-controller that

sends the data to a Raspberry Pi gateway. Only from there,

the data is hourly transferred to a cloud back-end that the

end user can consult. From a hardware point of view, this

solution is error prone as the two-fold messaging can lead to

data loss and increased latency. Further, a wall socket has to

be available in the vicinity of the water meter which makes it

hard to generalise the solution.

The leakage detection suggested by the authors is performed

at cloud level and consists of the detection of four different

scenarios: (i) a negative consumption trend, which indicates

a problem with the data transfer; (ii) a continuous water

flow over 24 hours, which indicates a strong leakage; (iii)

a coincidence with the last two measurements, which also

indicates a leakage; and finally (iv) a significant deviation from

the historical consumption. However, this solution suffers from

a cold-start problem for detecting leakages reliably. Further,

some of the rules are only meaningful in residential buildings,

as e.g. hospitals can indeed show a significant hourly water

consumption throughout an entire day.

Similarly, in [3], a wireless open source middleware was

developed. Also here, the data is collected locally via an

edge gateway but the leakage detection is only performed at

cloud level. The empiric algorithm looks for the absence of

water consumption during a specific interval across the day

that deviates from historical consumption. With this rather

rough estimate, it is possible to detect leakages in residential

buildings, but it will probably fail in other types of buildings

like hospitals, which were not investigated in the publication.

The solution presented in [4] makes use of wireless,

battery-driven vibration sensors, instead of directly mea-

suring the water consumption. Increasing vibrations in a

pump indicate a pipe burst in the network. The proposed

system uses a lightweight edge anomaly detection algo-

rithm based on compression rates. The leakage detection

splits the data x from the stream into two equally long

sequences of length wstream, e.g. at time t, the data se-

quences consist of [x(t 2 2wstream, ..., x(t 2 wstream)] and

[x(t2wstream, ..., x(wstream)]. For both, they apply miniLZO

compression [5]. When the compression rate changes signif-

icantly from one window to the next, they assume that a

leakage occurred. By using lossless compression in their lab-

based test rig, the authors could reduce communication by

90% compared to periodical messaging which leads to an

increasing battery lifetime. While this algorithm offers very
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suitable performance for big pipes and big bursts, it does not

detect small leakages that are most common in residential

households or schools [6]. Further, the authors do not consider

privacy or security aspects critical when reducing the amount

of messages sent. In case of a residential building, the number

of messages being sent can already leak private information

on the consumption pattern of this particular household. Lack

of messages poses a more critical security thread as one can

assume people are away.

III. TECHNICAL SETUP

Shayp’s solution for monitoring water consumption and

detecting anomalies in water usage consists of a wireless water

meter reading device. It has long-range, battery-powered data

logger compatible with all pulse-ready meters, specifically

designed to withstand water immersion, harsh conditions and

ensure an ideal performance in deep indoor situations. This

is enabled using a Narrowband IoT (NB-IoT) connection

to a back-end cloud. In addition of being low-power, this

radio standard also offers a very good connectivity, allowing

communication inside deep basements where water meters

are usually to be found. Coupled to the periodic sending

schema as explained below and thanks to the low-power micro-

controller of the device, NB-IoT allows to meet a 10-year

battery lifetime.

Through a pulse emitter placed on the water meter, the

water consumption takes the form of pulses, each of which,

depending on the water meter, corresponds to a certain amount

of water (typically 1L or 10L) consumed per defined time

window. A sensor connected to the pulse emitter detects these

pulses. The data logger collects these pulses and sends this

consumption data to a cloud back-end where water consump-

tion analysis and leak detection take place.

1) Periodic sending schema: Shayp’s device aggregates

hourly consumption data in periods of 30 s and then sends

a message to the cloud. Although the message length is 512

bytes, the actual used space is about 152 bytes (32 bytes for

payload and 120 bytes for 120 data points). This results in

360 unused bytes in a message.

2) Cloud solution for leakage detection: Currently, Shayp

supports leakage detection at the cloud level. For residential

buildings this takes between 1-3 hours, while corporate build-

ings vary from 3 up to 24 hours. This is due to the complex

water consumption pattern for buildings such as schools and

hospitals, where water usage is constant. The lack of on-device

analytics and the hourly message pattern prevent any anomaly

detection in less than an hour. The data made available for this

research consists of the number of consumption pulses and

the estimated leakage size in pulses per 30 seconds. Further,

information about the type of building, e.g. a public building

or a private household, is provided.

With the method described in this publication, we improve

the detection time even further (<1h for residential, <3h for

corporate) by applying a lightweight analysis executed on the

device at near real-time. This should however not hamper the

lifetime of the battery, which ideally could even be extended

to up to 16 years, which is the expected life time of water

meters.

IV. LEAKAGE DETECTION

In this work, we introduce a leakage detection algorithm

operating on a very constrained edge device based on data

compression. The algorithm has to fulfill the following re-

quirements in order to be applicable in real-world scenarios:

1) Minimal power consumption in order to guarantee at

least 16 years of battery lifetime.

2) Fast leakage detection such that a warning can be sent

with short delay (<1h for residential, <3h for corporate

buildings).

3) Preserve the privacy of the underlying data

Interestingly, the three points above contradict each other: i.e.

in order to increase the battery lifetime, the device should

send as few messages as possible. But with less messages,

it is harder to detect leakages early enough. One solution

could be to only send messages once water consumption

was measured and a risk of leakage was detected. Though,

under this assumption, privacy and security in households or

corporate buildings are at risk, as in this case an attacker can

easily derive consumption patterns by profiling the message

sending patterns.

In order to deal with these contradicting requirements, we

developed a leakage risk assessment at the edge based on

the compression of the consumption data. This approach is

combined with a leakage-sensitive random messaging schema

in order to ensure privacy preservation.

1) Data Consumption Compression: Per message, 480

bytes of data can be sent. In order to use this space as

efficiently as possible, while not losing information, we apply

a lightweight lossless sequential compression. We either use:

1) Fibonacci codes [7] on the unprocessed sequence, as it

has proven to be very robust and efficient [8].

2) A combination of run-length encoding (RLE) [9] and

Fibonacci codes where in a first step we apply RLE and

only after Fibonacci codes.

For each device, more than 200.000 data points were used. One

can see that the overall performance of the combined compres-

sion (RLE + Fibonacci) leads to better results, hence higher

compression rates, for most devices (Fig. IV-1). Nevertheless,

two extreme outliers can easily be detected, i.e. the two devices

at the bottom rows, namely NE83A580 and N389F2E8. By

analysing the statistics of the consumption and leakage pulses

given in Table I, it is possible to explain why the compression

is so different in these cases: For (N389F2E8), the overall

consumption is high such that the raw Fibonacci encoding is

less effective as the strings encoding the integers are becoming

longer. The mean leakage pulses for this device is NaN, as

no leakage was detected by the leakage detection algorithm

that is used in production. For NE83A580, the difference

in compression between the sole Fibonacci encoding and

combined compression indicates that the consumption values

are fluctuating a lot such that the hardly any longer periods of
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Fig. 1. Compression ratio for all devices for the two different compression
approaches.

TABLE I
OVERALL STATISTICS OF CONSUMPTION AND LEAKAGE PULSES

device ID consumption pulses leak pulses

NEC592E3 0.004244 0.000005
NF112C6C 0.015171 0.004336
NEEB3006 0.016815 0.000212
N4D0B95C 0.085269 0.017191
N4DACB14 0.113889 0.000000
N08FCFD4 0.226471 0.045114
N96A1423 0.308077 0.113322

NABB27BF 0.475513 0.027130
NE83A580 0.784921 NaN
N389F2E8 21.086333 0.210611

the same (or no) consumption are given in the data. This gives

a hint for (continuous) leakage in the data as also indicated by

the high number of mean leakage pulses given in Table I. We

will in more detail discuss the results per device in subsection

V-2.

2) Anomaly detection: In most production-ready solutions,

leakages in water supply are detected at cloud level [3],

[1] where sufficient computational resources and historical

consumption data are available. The approach we present here

aims at estimating the risk of a leakage at edge level as early

as possible. For this, we use the specific consumption patterns

of a leaking asset. In case of a leakage, the consumption

pulses c(t) of a specific strength occur very regularly - the

consumption of a leakage. Mathematically speaking, we define

· = |F (c(tm))||RLF (c(tm))|−1
, where |F (c(tm))| is the

length of the Fibonacci code of the consumption sequence

c(tm) during a time window tm, and |RLF (c(tm))| is the

length of the combined compression (RLE + Fibonacci encod-

ing) of the same sequence. Based on ·, we define the binary

variable L(c(tm)) indicating whether a leakage was detected

in sequence c(tm) as being 1 for · > ë and 0 otherwise. where

ë, the leakage threshold, is a free parameter of the model.

This inflation given by a high ·-value can be used for leakage

detection. In the case of a comparably strong leakage, the

combination of RLE and Fibonacci codes is about twice as

long as the sequences encoded by Fibonacci codes.

The overall idea is similar to the one in [4] but while they

compare the compression in two consecutive windows, we

compare the compression of the data within the same window

with two different compression algorithms. This does not only

reduce the possible alarm delay as our window can be shorter,

it also takes into account the specific consumption pattern in

case of a leakage.

3) Random sending schema: The sending schema is crucial

in order to fulfill the requirements listed in the beginning of

Section IV. When sending as few messages as possible the

battery lifetime is strongly extended. The simplest solution is

thus sending a message once the message space of 480 bytes

is filled or a specific anomaly is detected. However, water

consumption in residential buildings, similar to electricity

consumption [10], is highly privacy sensitive. Even if we

assume that the messages are properly and strongly encrypted,

an attacker can deduce information on the consumption pattern

and the presence of inhabitants by only counting the number

of messages per time interval. Though a schema in which

messages are sent in regular intervals prevents this possible

privacy breach, it should be avoided: In order to increase the

battery lifetime, the regular sending interval should be as large

as possible but this leads to a significantly delayed leakage

detection. For this reason, we suggest a privacy-preserving

sending schema based on random timing as sketched, de-

scribed in detail below. The algorithm takes the following

variables as input:

• T : the expectation time for sending a message,

• ë: The leakage threshold as defined above

• Ë: the look-back window on which to calculate the

leakage risk, e.g. 2 hours

• nmax: the maximal warnings to send per detected leakage

• R: the force radius

• ·: a constant that defines noise in the sending pattern.

• b: The maximal sending time, e.g. 24 hours.

In a first step, we draw a random sending time interval ti
for i * N0 from a truncated exponential distribution fT (t|», b)
for 0 < t f b where » = 1

T
> 0 and save it to the list of

random times. We use a truncated function in order to ensure

that messages are sent within time b (e.g. 24h). Every time a

new sensor measurement is available (in our case every 30s),

we run the following steps:

1) Calculate the encoding values of the sequence in the

look-back window F (c(Ç ij )) and RLF (c(Ç ij)), where Ç ij
is the time of the j-th measurement in the i-th message.

2) If Ç ij = ti, hence the time when the message should

be sent, send the message with content (leakage risk,

encoded sequence) and then calculate the average of the

last R sending times from the random times list. We

use this average sending time T æ in order to calculate

the next random sending time ti+1 drawn from the

distribution

f(ti+1|», b) =
1

»
exp

(

1

»

)

12 exp
(

2 b
»

) with » = T +K
T 2 T æ

T æ
.

(1)

We can see this similarly to a canonical description of

a confined ideal gas in an external potential [11], where
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T is the equilibrium value and the potential is given

by the earlier sending of a message due to a detected

leakage. The system is pushed back to equilibrium with

the artificial temperature K . We then add the calculated

next sending time ti+1 to the list of random sending

times and set i = i+ 1 and j = 0.

3) Otherwise, if Ç ij �= ti, calculate · from F (c(Ç ij )) and

RLF (c(Ç ij)). In case · > ë, hence L(c(tm)) = 1 and

the number of sent warnings n < nmax, draw a normally

distributed random number r = N (·, 0.2·). In case

Ç ij < (n + 1)r, send the message. We use this in order

to add an additional level of randomness to the sending

pattern as well as to prevent too many warnings for

the same detected and continuous leakage. The factor

n+ 1 gives here an additional damping. Just as above,

calculate the new random sending time as given in eq.

(1) and add it to the list of sending times.

4) In all other cases, wait for the next measurement.

In the next section, we will evaluate our approach on artificial

as well as real-world data. We will judge our method by

the accuracy of the detected leakages, the number of sent

messages, which indicates the battery consumption on the

device and will further perform an analysis on the distribution

of sending times.

V. EVALUATION

In this section, we will evaluate the proposed leakage

detection and messaging algorithm on the edge with respect

to the leakage detection accuracy and privacy preservation.

In order to perform the analysis of the leakage detection

performance, we will not only use the real-world consumption

data but also artificially created data as in that case the actual

starting point of the leakage is exactly known and we can

perform exact statistics on leakage detection time. For privacy

evaluation, we will use the real-world data only.

1) Artificial data: In order to create the artificial data, we

extract the daily consumption per weekday from the data

without leakages. For this, we first manually remove the

consumption pulses related to leakages from the time series

data from device N96A1423, which is a school building.

Hence, the general consumption patterns for weekdays are

very different from those on weekends but also the overall

consumption per day is quite irregular. For each day of one

year of artificial data, we select every 30 seconds randomly a

consumption value from the same time and day of week from

the historical consumption. We add some normally distributed

noise from r = N (0, 0.2) and round the resulting value to

an integer. In this way, the overall consumption pattern per

day of the week is kept. Based on this consumption without

leakages, we add pulses of leakages of different severity (S),

different strength (s) and different length (∆t) to create the

final artificial consumption. The severity S defines how strong

the leakage is, i.e. if S = n > 1 at every 1/n-th pulse, s
pulses are added to the normal consumption for the following

measurement during ∆t.

Fig. 2. Time until detection for different pulse severity and strength calculated
on artificial data.
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Fig. 3. Accuracy (top) and F1-score (bottom) of the leakage detection on the
edge for all devices compared to the cloud solution. The color of the bars
indicates the artificial temperature K .

With an overall accuracy of more than 93% and a F1-

score of 90% over all samples, our edge algorithm performs

very well even on 30 s data granularity. Further, the detection

time (Fig. 2) on the edge ranges from less than 30 min from

leakages with S = 2 to about one hour for leakages with lower

severity. This fulfills the requirements of leakage detection of

1-3 hours as defined above.

2) Real-world data: For the evaluation of the leakage

detection performance on the real-world data, we use the

cloud-based leakage detection as ground truth. We expect our

accuracy to be slightly lower, as we might detect leakages

earlier. Hence, the ground truth does not yet indicate a leakage

Fig. 4. Kullback-Leibler divergence for all devices given by the different
colors. The size of the markers indicates the artificial temperature K .
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though it has already started. In Fig. 3, we show the accuracy

and the F1-score. For 80% of devices, the accuracy is higher

than 0.8, while for one of the remaining devices (NE83A580),

the ground truth data is missing. Further, the F1-score, the

ratio of correctly detected instances of leakages, are similarly

high as the accuracy. Note that the devices with a F1-score

of zero are those devices that have (quasi) no leakages (c.f.

Table I). For both devices (NEC592E3, NEEB3006), we only

see a leakage in the first 5 minutes of the full data set which

rather indicates a misclassification due to a cold start problem.

The devices with lower F1-score, namely N08FCFD4 and

NF112C6C, are a school and a sports facility, respectively. By

analysing the data in more detail, the following factors lead to

a reduced accuracy and F1-score: i.e. first, for N08FCFD4, the

average leakage is at 0.049 pulses, hence every twentieth pulse

indicates a leakage. With the current threshold, this leakage is

too weak to be detected reliably. However, for such a weak

leakage, which is probably a dripping water tab, the timely

detection is less crucial. For the latter, device NF112C6C,

we can see that at the time when the actual leakage begins,

the leakage detection at the edge triggers a warning almost

24 hours earlier than the cloud algorithm, which explains the

reduced and in this case misleading F1-score.

Additionally, in order to ensure that it is not possible

to extract privacy-sensitive information from the number of

message that are sent, we calculate the Kullback-Leibler (KL)

divergence DKL(P ||Q) [12]. We chose the KL divergence

as it is usually used in adversarial Neyman–Pearson tests for

identifying distribution differences [13]. For P , we derive

the discrete distribution from a sample of random variables

drawn from the truncated exponential distribution as given in

equation (1) derived from as many samples as messages were

sent (for each device and temperature) with T æ = T . Q is the

discrete distribution derived from the random sending times

when applying our algorithm. We use it as a measure of infor-

mation gained when approximating the truncated exponential

distribution P with the out-of-equilibrium distribution Q that

enables early leakage warnings.

In Fig. 4 the divergence is shown against the number of

send messages for all devices (color) and for different artificial

temperatures (size). There is no clear correlation between the

artificial temperature and the KL-divergence and hence does

not change anything in the information that can be extracted

from the distribution. On the contrary, the KL is clearly related

to the number of messages being sent. Hence, over long run

times of the algorithm, the KL divergence decreases such that

no private information can be extracted from the distribution

of messages sending times.

VI. CONCLUSION AND NEXT STEPS

We introduced an on-the-edge water leakage detection ap-

proach that addresses three contradicting requirements: (i)

an overall reduced number of messages in order to extend

the device’s battery lifetime, (ii) early-alarming in case of a

detected leakage on the edge, and (iii) a privacy-ensuring mes-

sage sending schema. The approach is based on lightweight

compression performed on the edge in order to timely detect

leakages and on random messaging for privacy protection. We

evaluated it against artificial as well as against real-world data

from devices installed in different types of buildings, such as

private households and public buildings. In both cases, we

observe a high leakage detection accuracy as well as a timely

detection of the leakage, fulfilling the industrial requirements.

As next steps, we plan to further improve our approach by

considering building-type specific leakage detection. Addition-

ally, we will analyse our approach on pipe bursts, which show

a very specific pattern. From our initial results, we see already

that we receive reliable warnings also for those. Further, we

will perform an on-the-edge battery lifetime study in order

to give a realistic estimation when applying our approach in

production.
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