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Abstract—Typical Low-Code Development platforms enable
model-driven generation of web applications from high-level
visual notations. They normally express the UI and the appli-
cation logic, which allows generating the frontend and basic
CRUD operations. However, more complex domain logic (data
processing) operations still necessitate the use of traditional
programming. This paper presents a visual language, called RSL-
DL, to represent domain knowledge with complex domain rules
aligned with requirements models. The language synthesises and
extends approaches found in knowledge representation (ontolo-
gies) and software modelling language engineering. Its purpose
is to enable a fully automatic generation of domain logic code by
reasoning over and reusing domain knowledge. The language’s
abstract syntax is defined using a meta-model expressed in MOF.
Its semantics is expressed with several translational rules that
map RSL-DL models onto typical programming language con-
structs. The rules are explained informally in natural language
and formalised using a graphical transformation notation. It is
also supported by introducing an inference engine that enables
processing queries to domain models and selecting appropriate
invocations to generated code. The presented language was imple-
mented by building a dedicated model editor and transformation
engine. It was also initially validated through usability studies.
Based on these results, we conclude that declarative knowledge
representations can be successfully used to produce imperative
back-end code with non-trivial logic.

I. INTRODUCTION

T
HE TERM “Low-Code Software Development” (LCSD)

has emerged as a new approach to application develop-

ment where only a limited amount of coding is required. Since

its emergence around seven years ago [25], the term was used

in the industry to label cloud-based development platforms

that use visual notations to reduce the need for traditional pro-

gramming. Research on low-code approaches is currently yet

sparse. However, just recently, it has been observed that LCSD

can be seen as a subdomain [7] or as overlapping [27] with

the Model-Driven Software Development (MDSD, MDD),

where it concentrates on automatic generation of data-rich

web/mobile applications from visual specifications (models).
Our research was done in the context of the ReDSeeDS1

platform [33]. The system was created before the emergence

of the low-code movement, but it certainly fulfils the definition

of LCSD. It uses precisely specified requirements models:

use cases, scenarios in constrained language, and visual do-

main vocabularies. Similarly to low-code platforms, these

1https://github.com/smialekm/redseeds

artefacts are represented with a visual language called RSL

(Requirements Specification Language) [21]. Specifications

expressed in RSL allow for the generation of fully functional

UI and application logic code for data-rich web applications.

However, based on RSL alone, one cannot generate data

processing (domain logic) code beyond simple CRUD, and

data persistence operations [39]. Thus, similarly to other low-

code platforms, more complex data processing has to be coded

manually.

In this paper, we raise the question of representing more

complex domain logic at the level of abstraction used by low-

code and requirements-based MDD approaches. Inspiration for

responding to this question can be drawn from research on

ontologies and knowledge representations. These approaches

enable the representation of domain knowledge, independently

of any technology and any particular problem domain. Our

research aims at investigating how the features of ontology-

based domain logic representations, especially their reasoning

capabilities, can be applied in the context of LCSD.

We present an extension to the RSL mentioned above,

which we call RSL-DL (RSL Domain Logic, see the initial

version of the language in our previous work [28]). The new

language draws several of its constructs from ontology-based

knowledge representation approaches. It then extends and

combines them with MDD technologies to provide full code

generation capabilities. What is important, RSL-DL allows for

the generation of fully operational code directly from general

domain rules (descriptions of reality) as required by specific

requirements models (use cases and their logic). Hence, such

generated back-end code is fully compatible with the front-

end code generated from RSL specifications. Through this, we

demonstrate a visual extension to a low-code language (RSL)

that has the potential of eliminating the need to code (in a

traditional sense) complex data processing services.

II. MOTIVATION AND RELATED WORK

The term “low-code” was probably first used in a Forrester

report [25] only in 2014. Current studies report numerous

industry-grade low-code platforms used extensively by pro-

fessionals [29]. Sparse research results on LCSD can be

supported by previous and current research on Model-Driven

Web Engineering [17] which can be seen as a predecessor and

now a synonym for LCSD. A study by Wakil and Jawani [38]
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shows that research on MDWE is already quite broad and

mature. LCSD and MDWE approaches are typically based

on some form of visual notation (language). Such notations

offer high-level representations of the flows of interaction

between application users and the system under development.

A prominent example in the MDWE domain is the Interaction

Flow Modeling Language (IFML) [4]. Other examples – in the

LCSD domain – are the Business Process Technology (BPT)

language [13] and the Mendix notation [12].

LCSD/MDWE systems have limited capabilities regarding

the generation of the domain/business logic code, or more

broadly – the system’s back-end. Current LCSD/MDWE lan-

guages can support generation of code for elementary CRUD

(Create-Read-Update-Delete) operations [3], [26]. Generation

of code for more complex data processing (general Domain

Logic - DL) is limited by the information scope of the

visual language constructs. In this research, we propose new

constructs that significantly extend capabilities to generate

complex domain logic code. What is important, these new

constructs are domain-agnostic, as contrasted with various

domain-specific and often very formalised notations (see, e.g.

work by Hinchey et al. [14] and Brito et al. [5]).

Our research is in line with the work by Atkinson et

al. [2] that shows significant similarities between ontologies

and models. The authors argue that the concept of ontology

constitutes a subset of the concept of model. Also, Henderson-

Sellers [11] points out that a combination of models and

meta-models with domain ontologies is helpful in representing

vocabularies for specific problem domains. He argues that

modelling languages such as UML can describe domain

knowledge, but they need particular extensions to provide

adequate reasoning support. Our approach goes in this specific

direction, as it extends RSL, which is also an extension to

UML. In summary, the above discussions give good motivation

for our work, where a modelling language that combines

ontology constructs is applied to generate code directly from

requirements.

Marrying ontologies with models allows applying model-

driven techniques and especially model transformations. Ap-

propriate works include more general discussions on in-

troducing comprehensive formalised propositions on meta-

models for ontology languages [23], [9]. An example of

such a language is CoCoViLa by Haav, and Ojamma [10].

Our current work can be compared or even contrasted with

such approaches, as it introduces a common meta-model for

a semantically rich language that can express any problem

domain. In this context, an essential feature of our approach

is its extensive reliance on inference mechanisms, especially

for generating data processing code. It is somewhat similar

to business rule engines [8]. However, instead of interpret-

ing them during runtime, it generates code fully integrated

with the rest of the system. Similarly, our solution can be

compared with the approaches that enable code generation

directly from ontologies. Stevenson and Dibson [34] propose

a tooling framework for generating Java code from OWL

specifications. Another example is work by Völkel and Sure

[36] in which Java-based APIs are generated directly from

ontologies expressed in RDF Schema.

III. RSL: LOW-CODE AT THE REQUIREMENTS LEVEL

The necessary background to our research on RSL-DL

is the Requirements Specification Language and its tooling

environment (ReDSeeDS). As we strive to achieve compati-

bility between these two languages, some aspects of RSL-DL

were strongly influenced by RSL. The most important for this

purpose are use case scenarios, like the example one shown

in Fig. 1. Scenarios consist of sequences of simple subject-

verb-object sentences of various types. The most important of

them from the point of view of this paper is the ‘Query’ type

sentences. These sentences define actions of the system that

are performed on certain data elements.

According to RSL semantics rules [31], we can transform

scenarios into code. Fig. 2 presents fragments of an application

logic class generated from the presented scenario. The class

contains methods for handling user interactions, as specified

by the ‘Select’ sentences in the scenarios. For instance, the

sentence no. 1 is translated into the “summarizeSemesterTrig-

gered” method. Contents of these methods reflect consecutive

sentences in the scenarios. ‘Query’ and CRUD type sentences

are translated into calls to back-end service operation. For

Fig. 1. Example scenario

Fig. 2. Presenter code generated for the use case scenario
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Fig. 3. Backend access code generated for the example scenario

instance, the sentence no. 7 is transformed into a call to

the “realizesSemesterSummarizationData” service. UI presen-

tation sentences are translated into calls to the View layer.

A more detailed discussion of the rules and generated code,

including code of the View layer, is presented elsewhere [32].

The relevant parts of the back-end service code generated

from the RSL scenario is presented in Fig. 3. It contains an

interface implementation with empty methods. The operation

parameters are determined from scenario sentences before the

appropriate calls. In further sections, we will present the syntax

and semantics of RSL-DL that will fill the currently empty

method bodies.

IV. RSL-DL SYNTAX

The syntax of RSL-DL aims to represent all information im-

portant from the point of view of code generation. It includes

detailed dependencies between individual domain elements

and proper definitions of the elements themselves. Fig. 4

presents an elementary example of concrete syntactic elements

of the language. It contains definitions of four “Identity” type

entity notions (student, course, partial grade, weighted grade),

describing concrete objects in the specific problem domain.

Notions can also have conditions, and in our example, we can

see one kind of condition: “inheritance”. Thus, the condition

for the “partial grade” notion is that it must follow all the rules

for the “weighted grade” notion. In addition to entity notions,

we can define property notions, like “grade weight” in Fig. 4.

This kind of notions define concrete atomic values and can be

used as attributes of other notions, which can be indicated by

‘attribute links’ (lines with a diamond shape).

Relationships in RSL-DL (see “grading” in Fig. 4) are

represented by hexagons and can link many notions. To some

Fig. 4. RSL-DL concrete syntax example

extent, this syntax resembles that of UML’s n-ary associations.

In our example, the relationship is of type “Data-Based

Reference” which is a basic type that reflects the situation

where references between objects are contained in their data

(e.g. in their attributes). In our current example, “student” and

“course” contribute to the relationship “grading” that results

with a “partial grade”. Arrow directions distinguish between

types of notion participations in the specific relationship. Since

a given student can have many partial grades in a course, then

the particular participation is marked as ‘multiple’.

The abstract syntax for the above-presented core language

elements is presented in Fig. 5a using the MOF notation

[22]. The meta-class “DLNotion” represents notions and the

meta-class “DLRelationship” represents dependencies between

them. Concrete participations of notions in relationships are

represented by the meta-class “DLRelationshipParticipation”.

The meta-model contains two types of such participations –

standard and auxiliary. Standard ones correspond to the main

subjects of relationships and are denoted with solid arrows in

concrete syntax. Auxiliary ones point to elements that define

relationship contexts and are denoted with dashed lines. For

example, one could use a relationship context to indicate

which object should be used when computing values based on

that object’s attributes. In this case, the attributes participate

through standard participations, and their ‘parent’ participates

through auxiliary participation.

Besides notions, there is a special kind of relationship

participants – primitives (“DLPrimitive” meta-class). These

elements define general concepts that do not have concrete

instances. Examples of such primitives in RSL-DL are “current

date”, “number Pi” and “Planck constant”.

As indicated above, notions can have types. The first one

(“identity”) was explained in the example above. The “tem-

plate” type indicates templates that can be used to simplify

defining other notions. These two types correspond approxi-

mately to concrete and abstract classes of e.g. UML. Two other

types define notions whose representatives’ (objects’) roles can

change during their lifetime. It is inspired by ontology-based

inference engines with their capabilities to “discover” object

types or change them dynamically. The “inferred role” type

indicates roles that can be inferred, e.g. from various status

attributes of an object. The “assigned role” type indicates roles

that can be explicitly changed during the lifetime of an object.

More details related to the syntax for notions are shown in

Fig. 5b. The “DLProperty” meta-class is used to denote notions

with concrete atomic values or value sets. The “DLEntity”

meta-class denotes more complex notions that cannot be

reduced to single values. The “DLAttributeLink” meta-class

allows indicating attribute dependencies between notions. Such

links can be marked as ‘derived’, which means that their values

need to be inferred from other notions. An important type

of notion features are conditions (“DLCondition” meta-class).

Their role is to further detail notion characteristics. Apart

from the previously described ‘inheritance condition’, two

additional condition types exist. The ‘identity condition’ type

defines conditions that have to be fulfilled for a given notion’s
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a)

b)

Fig. 5. Meta-model fragments for core RSL-DL elements (a), and for notions
(b)

object to make sense. The ‘validity conditions’ type defines

conditions that denote the correctness of a given notion’s

object. In general, there can exist objects that meet appropriate

identity conditions but do not meet validity conditions and thus

are treated as invalid but belonging to the given notion. We

should note that conditions do not include graphical links to

other model elements. It is due to their potential complexity

and interweaving. Thus, for instance, inheritance was not

represented using a simple arrow as in UML.

Fig. 6. Meta-model details for relationships

Fig. 6 presents the hierarchy of relationships found in RSL-

DL. From the conceptual point of view, two main types of

dependencies exist between notions in the problem domain

that are significant for code generation. It is reflected in

RSL-DL through dividing relationships into two categories:

transitions (“DLTransition”) and references (“DLReference”).

Transitions describe how to obtain notion objects based on

other notion objects. References describe specific roles played

by objects in relation to other objects. Both relationship

categories are further divided based on how they are defined.

‘Transitions’ can be described using simple rules (“DLPat-

ternBasedTransition”) or algorithms consisting of many steps

(“DLAlgorithmicTransition”). ‘References’ can be described

using rules that define certain conditions (“DLPatternBase-

dReference”) or take the form of the previously described data-

based references (“DLDataBasedReference”). This division of

references is inspired by the division into fact and rule spaces

found in ontologies. In practice, of all these relationships, the

algorithmic transitions are not preferred as they are not fully

declarative and thus arguably less usable [15], [37].

Figs. 5b and 6 contain two additional elements: “DLTransi-

tionPattern” and “DLConditionPattern”. Each instance of these

two meta-classes contains a string with a textual condition, a

specific condition type and optionally – the condition’s subject

link. The syntax of the condition is expressed in a language

based on the notation used in the Symja library [18]. Some

examples of several types of these patterns are given in section

VI in descriptions of the generated code.

V. TRANSLATIONAL SEMANTICS RULES

Of the many approaches to define semantics for RSL-DL

(treated as a programming language [30]) we choose the

translational method, which is more in line with the model-

driven paradigm. This approach defines rules that translate

specific patterns of RSL-DL constructs into fragments of Java

code. Each rule has an informal textual description and is

formalised as a procedure in the MOLA graphical model

transformation language [16].

Full specification of semantics for RSL-DL consists of

16 translational rules (all the details can be accessed in

the Supplement2). The first ten rules define the generation

2https://github.com/smialekm/redseeds/tree/main/RSL-DL
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of the target Java class structure, including their fields and

method signatures. These rules depend only on the structure of

notions and relationships between them, found in a particular

RSL-DL model. The following two rules additionally use an

inference engine and are used to generate method bodies.

Rules 13-16 further add to the generation of method bodies.

They use a symbolic computation library to transform Symja-

based formulas found in pattern condition expressions into

the contents of method bodies. The results are used directly

or as part of a loop or a condition depending on the pattern

type. In summary, each ‘non-trivial’ notion in the source RSL-

DL model produces two Java classes. One class represents (in

simplified terms) a data transfer object (DTO) corresponding

to the given notion. The other class is a utility class that holds

various data handling methods. These classes are appropriately

amended with CRUD and condition-related operations. The

“DTO” classes are also organised in an appropriate inheritance

hierarchy. Additionally, supportive classes are created for all

the relationships in the model. These classes contain methods

that return objects participating in relevant relationships.

As introduced above, all the rules are formalised using

MOLA procedures. MOLA uses a declarative-imperative vi-

sual syntax presented in Fig. 8 and 9. Its imperative flow

definition is based on a notation resembling activity diagrams

in UML. Arrows denote control flow. Iteration ‘actions’ are

denoted with thick black frames. Rule ‘actions’ constitute the

declarative part of the language. Each rule contains a query

on objects expressed through a diagram resembling a UML

object diagram combined with a MOF meta-model diagram.

Black solid lines denote queried objects, while red dashed lines

denote created objects. More details and a tutorial can be found

in the MOLA handbook [1].

For brevity, we will limit our presentation of rule formal-

isation to only rule 11. To implement it, we need to use

a dedicated inference engine, implemented as part of this

work. The engine processes queries derived from ‘Query’ type

scenario sentences (see again Fig. 1). For each such query, it

produces a sequence of inference rules, where each of the

rules is based on domain elements defined within an RSL-

DL model. The appropriate sequences can be represented with

a meta-model shown in a simplified form in Fig. 7. The

meta-model uses a structure of nested “Rule” meta-classes to

reflect appropriate sequences of inference invocations needed

to solve specific problems. Each “Rule” points to a domain

Fig. 7. Inference rule meta-model

Fig. 8. Algorithm for generating the method body in Rule 11

element (“element”) that is the basis for generating a specific

method according to one of the previous rules. The “type :

RuleType” meta-attribute defines the concrete type of such

generation. This “Rule” meta-class also points to a ‘conclu-

sion’ that constitutes a specific notion reflecting objects being

the inference results. Furthermore, the given rule’s ‘premises’

constitute other rules, preceding this rule in the rule sequence.

Base premises that reflect query parameters are represented as

additional ‘artificial’ rules.

The algorithm that generates the respective sequence of

method invocations from the inference rule structure is pre-

sented in Fig. 8. It starts from invoking itself (‘generate-

CodeFromSolution’) recursively for all the ‘premises’ of the

current rule and joining code generated from these premises.

If the current element is used as a ‘premise’ in other rules, a

proper variable is declared based on the object corresponding

to the rule’s ‘conclusion’. Otherwise, a ‘return’ statement is

generated. In both cases, the way to obtain the assigned or

the returned value depends on the type of the rule. In most

cases, such a value is obtained by invoking an appropriate ‘get’

method. This method retrieves an object that corresponds to

the ‘conclusion’ and is contained in the class derived from

the rule’s ‘element’. Besides, the ‘get’ method’s call accepts
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Fig. 9. Formalization of transformation rule 11

parameters that correspond to the rule’s premises.

The actual formalisation of Rule 11 that uses the above

algorithm is presented in Fig. 9. It defines a procedure for

creating a method, where the method’s contents are generated

with the algorithm. The procedure starts by creating a method

with the name based on the ‘conclusion’ of the final rule and

having the prefix “get”. This method is placed in the class

derived from the domain element pointed to by this final rule.

The return type of this method again corresponds to the rule’s

‘conclusion’, and the method’s parameters are based on the

‘premises’ within the whole rule sequence.

VI. CASE STUDY

This section will present a selected fragment of a more

extensive case study that illustrates several important uses of

RSL-DL. The case study refers to the functional requirements

specification presented in Section III. Here we will concentrate

only on presenting examples of the various concrete RSL-

DL language constructs, generated domain logic code, and

references to application logic code from Section III.

Fig. 10 involves constructs for checking specific conditions.

The model contains elements that describe information related

to checking whether the given student is eligible to get a

registration for the next semester. It consists of three basic

notions – ‘student’, ‘course’ and ‘final grade’. All of them

are connected by the “final grading” relationship, which is a

data-based reference. It indicates that information about con-

crete dependencies between representatives of these notions is

stored in some data objects. Finally, we define the ‘student to

Fig. 10. RSL-DL model defining eligibility of students to be registered for
the next semester

Fig. 11. RSL-DL model containing knowledge about computing of weighted
average grades

accept’ relationship that is used to define conditions about

students’ eligibility to be registered for the next semester.

The concrete condition embedded in this relationship (not

shown here) requires that all the final grades for the student’s

courses have a value of at least 3 (minimum passing level).

The relationship has only one participant – the student, that

participates as its target.

Fig. 11 involves constructs for computing values. It contains

the ‘weighted average grade computation’ relationship that

contains a transition pattern with an equation that computes

the weighted average grade. This equation requires two other

values represented by the notions ‘weighted grades sum’ and

‘grades sum’. Therefore, the model contains also transitions

that allow for the computation of these two values.

The final part of the presented model fragment involves

constructs for modifying complex objects and is shown in

Fig. 12. The whole modification is handled by the ‘sum-

marize student after semester’ transition, which requires two

other transitions: “accept student”, and “fail student”. These

transitions will be used interchangeably, depending on the

fulfilment of a condition. This condition refers to the ‘student

to accept’ relationship presented in Fig. 10. If the student

meets the ‘student to accept’ relationship, the ‘accept student’

transition is invoked, while in the opposite case, the ‘fail
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Fig. 12. RSL-DL model containing knowledge about the rules for promoting
students to the next level of studies

Fig. 13. Code for checking students’ registration eligibility

student’ transition is invoked.

The next step in our case study is to generate code. The

above specification in RSL-DL was formulated within a ded-

icated RSL-DL tool. The tool also includes a code generation

engine that implements all the rules introduced in the previous

section. Here we will present some key fragments of code

generated from the above-presented excerpts of the dean office

model.

Fig. 13 shows code generated on the basis of the model from

Fig. 10. The actual class (MSStudentToAccept) is generated

per rule no. 9 (generate classes and static methods from

relationships). It is a supportive class that corresponds to

the ‘student to accept’ relationship and contains only static

methods. The ‘checkStudentToAccept’ method was generated

based on rule no. 10 (generate existence checking methods).

It checks for the eligibility of a given Student to be accepted

for the next semester. The student is passed as the parameter

of this method. It can be noted that the type of this parameter

(‘IMStudent’) is the class corresponding to the ‘student’

Fig. 14. Code for computing weighted average grades

notion, generated according to rule no. 1 (generate classes

from notions).

The method returns a logical value reflecting the result of

the eligibility check. The actual check is based on the contents

of the condition pattern in the ‘student to accept’ relationship

(not shown in Fig. 10). This pattern is defined through three

values: 1) formula ‘gradeValue($)>=3’, 2) type ‘universal

quantification’, and 3) subject link ‘finalGrading(student)’ that

relates to the ‘final grading’ relationship. Note that the ‘$’ sign

denotes the target of the ‘final grading’ relationship, which is

the ‘final grade’ notion. The above formula was transformed

into the appropriate ‘if’ statement in Fig. 13. The ‘for’ loop is

generated based on rule no. 13 (generate condition checking

code from condition patterns), considering the above pattern

type. This way, the eligibility check is done for all the grades

of a particular student.

The second method of this class (‘getStudents’) applies the

above eligibility check to all the students. This method was

generated based on rule no. 14 (generate object filtering code

from condition patterns), and it filters out all the subjects (here:

students) that fulfil an appropriate condition pattern (here:

student eligibility check). We should also note that the code

for obtaining the list of all students was generated using rule

no. 16 (generate auxiliary code).

Fig. 14 shows code generated on the basis of the model

from Fig. 11, using data structured according to Fig. 4. This

time, the situation in somewhat different to that in the previous

code fragments. This part of the code results from answering

a query that asks to compute the ‘weighted average grade’ for

the given set of grades. It contains two overloaded methods

(‘getWeightedAverageGrade’). The second one (with the ‘List’

parameter) is generated according to rule no. 11. It accepts a

list of partial grades and produces a specific average value. The

method contains a sequence of method calls that reflect the

sequence of inference rules returned by the inference engine

(see Fig. 8). The first one of the overloaded methods is called

from the second one. Its signature was generated according to

rule no. 9. Its body was based on translating a transition pattern

with the ‘simple’ formula ‘weightedGradesSum/weightsSum’
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Fig. 15. Code for determining student’s eligibility for promotion to the next
semester

Fig. 16. Additional back-end access code

according to rule no. 15 (generate code from transition pat-

terns).

Fig. 15 shows code generated on the basis of the model

from Fig. 12. This time we can see only one method (“get-

summarizedStudent”) generated according to rule no. 9. The

method’s body is generated on the basis of a ‘mapping’ tran-

sition pattern with the formula ‘studentToAccept(student); ac-

ceptStudent(student); failStudent(student)’. Formulas for this

type of transition patterns are composed of three sections: a

‘simple’ condition pattern formula and two ‘simple’ transition

pattern formulas (the first one used when the condition is true,

and the second one otherwise). Here, the condition pattern

refers to the ‘student to accept’ relationship shown in Fig. 10.

Thus, the current method calls the ‘checkStudentToAccept’

method shown in Fig. 13. Depending on its result, it calls

one of two methods resulting from transforming the ‘accept

student’ and ‘fail student’ relationships. The other method

in this class invokes the above described one over a set of

appropriate objects (list of students).

Finally, relevant code fragments as presented above, can be

now applied to fill-in appropriate empty methods of the back-

end service class (see Fig. 3). In our example this pertains

to the method that corresponds to a non-CRUD operation.

Appropriate additional code is presented in Fig. 16. It contains

a simple call to the operation presented in Fig. 15. It is worth

noting that such operations are optimised to use only required

parameters.

VII. LANGUAGE VALIDATION AND DISCUSSION

To initially validate the presented language, we have used

two different approaches. Their aim was to assess certain

aspects of the language’s usability: understandability and

operability. The first approach was to determine language

comprehension by its first-time users. It consisted in testing

language proficiency, following a brief introduction to the

language. The second approach was to determine efficiency

of language usage by the users with various experience levels.

In both cases, we have used a specially developed RSL-DL

editor, used in conjunction with the ReDSeeDS environment.

A. Validation of understandability

The first validation study was conducted with a group of

post-graduate computer science students attending the “Model-

Driven Software Development” course at the Warsaw Univer-

sity of Technology. The course curriculum included classes on

the design and usage of various Domain-Specific Languages.

The study was thus well aligned with the aim to acquaint the

students with this topic.

The setup of the study was as follows. First, the students

attended two lab sessions (four class hours) where they were

presented with the RSL and the ReDSeeDS tool. Note that

prior to this, the students had no experience with Software

Language Engineering but have attended a parallel lecture

where they were introduced with the fundamentals of meta-

modelling. Next, the students were presented with a brief, one-

hour introduction to the language. Then, they have spent two

hours solving simple exercises using the aforementioned RSL-

DL editor. After this, the students were presented with correct

solutions to the exercises. Finally, the students were asked to

answer 12 questions in an online questionnaire. All of the

questions were single-choice, and referred to specific RSL-

DL diagrams. Each question had four possible answers. The

first eight questions were related to the understanding of the

language syntax, the next three related to language usage, and

the final one checked more nuanced usage of the language

related to its declarative nature. The students were given one

class hour (45 minutes) to finish the questionnaire, but most

of them have finished in less than 20 minutes.

The results of the study consist in 42 replies to the

questionnaire. The average of correct answers in the whole

questionnaire was 69%. For syntax understanding (the first

eight questions), it was 75%, for usage understanding (the

next three questions), it was 60%, and for the last question it

was 40%. Detailed results, together with the question contents

are provided in the Supplement.

The relatively low result in the case of the last question

can be explained by its advanced nature, going beyond the

explanations given to the students. Thus, the 40% can be seen

as an unexpectedly good result. It is also worth noting that

relatively low percentages of correct answers were associated

with questions about differentiation between inferred roles and

assigned roles (questions no. 3, 5 and 9). These results were

similar to the case of the last question. Further research is

926 PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022



TABLE I
RESULTS OF THE OPERABILITY STUDY

Participant Task RSL-DL time Java time

Author No. 1 3:00 min. 5:00 min.
Ph.D. Student No. 1 9:00 min 12:00 min.
Undergrad. Student No. 1 13:35 min 4:50 min.
Author No. 2 1:45 min. 3:40 min.
Ph.D. Student No. 2 4:00 min 10:00 min.
Undergrad. Student No. 2 16:45 min 5:30 min.
Author No. 3 4:30 min. 6:00 min.
Ph.D. Student No. 3 15:00 min 15:00 min.
Undergrad. Student No. 3 12:25 min 6:20 min.

needed to determine if that was caused by insufficient explana-

tions (this aspect was under-represented in the exercises) or in-

herent difficulties caused by the language design. In summary,

the overall results of this study indicate that the language is

comprehensible even after a very short introduction. However,

a more thorough validation with statistical analysis is needed

to confirm this, and can be seen as future work.

B. Validation of operability

The second validation study was conducted with a group of

three software developers with different programming skills.

The first person is one of the language authors and thus has

very good knowledge of RSL-DL. At the same time, he is an

experienced Java programmer. The second person is a Ph.D.

student with wide general computer science knowledge and

average Java programming experience. The third person is

an undergraduate student with more narrow CS knowledge

but with relatively high experience in Java programming. The

students were not involved in the development of RSL-DL and

had no previous knowledge of it.

The study consisted in comparison of coding efficiency and

was based on solving specific problems. The setup of the study

was as follows. First, the study participants were presented

with a 1.5 hour long introduction of RSL-DL and its editor.

This included the presentation of three problems: calculation

of square mean error (no. 1), calculation of definite integrals

(no. 2), and calculation of VAT for product lists (no. 3). The

problem formulations involved appropriate formulas and are

presented in detail in the Supplement. Next, the participants

were supplied with artefacts generated from appropriate RSL

specifications (use cases with scenarios) by the ReDSeeDS

system. These consisted of pre-initialised RSL-DL models

(just the notions) and code skeletons (Data Transfer Objects

and method signatures) in Java.

The goal of the participants was to fill-in the provided

artefacts to complete domain logic functionality. To prevent

from negative bias, the participants were asked to solve the

problems using RSL-DL first, and only then to solve them in

Java. The participants were also asked to measure time spent

on all the tasks. The results of these measurements are given

in Table I.

Comparison of times for the three study participants can be

treated as rather anecdotal evidence but they give some insight

on the productivity of developing domain logic (backend) code

with RSL-DL. As it can be noticed, productivity of RSL-

DL development vs. Java development is significantly higher

for an experienced RSL-DL user. Also, a less experienced

Java programmer (the Ph.D. student) had certain productivity

gains. On the other hand, a very experienced Java programmer

(the undergraduate student) had performed much better using

a traditional programming language. Thus, it can be argued

that as general knowledge of developers and their RSL-DL

skills raise - productivity gains tend to be significant. It can

also be argued that RSL-DL has the potential for extending

productivity gains for less experienced programmers. Still,

this argumentation has to be acknowledged through a more

thorough experimentation with a larger participant scope. This

can be seen as future work.

VIII. SUMMARY AND FUTURE WORK

In this paper, we have shown that declarative knowledge

representations can be used to produce imperative (3GL) back-

end code with non-trivial domain logic. Moreover, this code

can be interfaced with front-end code produced from low-code

specifications that use formalised requirements models (use

cases, scenarios). To achieve this, we have used a combination

of techniques from model-driven development and ontology-

based inference. In this environment, most “programming”

activities could be made using a high-level visual language.

Thus, programming becomes equivalent to specifying models

that define various aspects of the system and its problem

domain. An RSL-DL conceptual model can be treated – in fact

– as a high-level program that can be executed immediately

after compiling it into eg. Java and then – executable code.

Moreover, RSL-DL models can be seen as “ontologies as

code” [19] and a step towards a “fifth generation language”

as postulated by Thalheim and Jaakkola [35].

We see two main areas where our approach can benefit

software development: reduction of complexity and increased

reuse. The first area is in line with the general goals of the

low-code movement – to offer means for reducing accidental

(technological) complexity in favour of concentrating on the

essential (e.g. domain) complexity (see early insights on this

by Brooks [6]). A thorough comparison of complexity between

RSL-DL and traditional programming languages, and analysis

of reusability can be seen as interesting areas of future work.

Another area for future work is the analysis of RLS-DL

usability as a low-code language. Generally, it can be expected

that better usability is assured through declarative character-

istics of the language (see appropriate comparative analyses

[15], [37]). This is in line with our initial studies presented

in the previous section. However, to fully support this claim,

more extensive experimentation should be conducted.

Other areas which we plan to investigate in the future

include better integration with requirements processing mecha-

nisms. One aspect of this is the application of natural language

processing. Here, valuable insights can be drawn from the con-

cept of naturalistic programming [24]. This concept postulates

the use of natural language elements to design programming

languages that are more expressive from the programmers’
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point of view. Another interesting approach in this area is

that of Mefteh et al. [20]. In this approach, natural language

scenarios are transformed into constrained language models

expressed in RSL. On the other hand, we also plan to integrate

our approach with existing approaches to generate CRUD

operations and database schemas directly from requirements

models expressed in RSL [39].
As a final remark we address the question of creating a

distinct new language as opposed to using an extension to the

existing language (e.g. a UML profile). In our opinion, from

the practical point of view, both approaches can be seen as

equivalent. However, creating a language from scratch favours

solutions that go beyond the “beaten path”.
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Engineering and Ontology Development. Springer, 2009.
[10] Hele Mai Haav and Andres Ojamaa. Semi-automated integration of

domain ontologies to DSL meta-models. International Journal of

Intelligent Information and Database Systems, 10(1/2):94–116, 2017.
[11] Brian Henderson-Sellers. Bridging metamodels and ontologies in

software engineering. Journal of Systems and Software, 84(2):301–313,
2011.

[12] Martin Henkel and Janis Stirna. Pondering on the key functionality of
model driven development tools: The case of Mendix. In International

Conference on Business Informatics Research, pages 146–160. Springer,
2010.

[13] Henrique Henriques, Hugo Lourenço, Vasco Amaral, and Miguel
Goulão. Improving the developer experience with a low-code process
modelling language. In 21th ACM/IEEE International Conference on

Model Driven Engineering Languages and Systems, pages 200–210,
2018.

[14] Michael G Hinchey, James L Rash, and Christopher A Rouff. Require-
ments to design to code: Towards a fully formal approach to automatic
code generation. Technical report, NASA, 2005.

[15] Ahmad Jbara, Arieh Bibliowicz, Niva Wengrowicz, Natali Levi, and
Dov Dori. Toward integrating systems engineering with software
engineering through object-process programming. International Journal

of Information Technology, pages 1–35, 2020.
[16] Audris Kalnins, Janis Barzdins, and Edgars Celms. Model transforma-

tion language MOLA. Lecture Notes in Computer Science, 3599:62–76,
2004.

[17] Nora Koch, Santiago Meliá-Beigbeder, Nathalie Moreno-Vergara, Vi-
cente Pelechano-Ferragud, Fernando Sánchez-Figueroa, and J Vara-
Mesa. Model-driven web engineering. Upgrade-Novática Journal

(English and Spanish), 2:40–45, 2008.

[18] Axel Kramer. Symja library-Java symbolic math system, 2018. last
accessed May 2020.

[19] Beatriz Franco Martins. The OntoOO-method: An ontology-driven
conceptual modeling approach for evolving the oo-method. In Advances

in Conceptual Modeling, pages 247–254, 2019.
[20] Mariem Mefteh, Nadia Bouassida, and Hanene Ben-Abdallah. Towards

naturalistic programming: Mapping language-independent requirements
to constrained language specifications. Science of Computer Program-

ming, 166:89–119, 2018.
[21] Wiktor Nowakowski, Michał Śmiałek, Albert Ambroziewicz, and
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[31] Michał Śmiałek, Norbert Jarzebowski, and Wiktor Nowakowski. Run-

time semantics of use case stories. In Visual Languages and Human-

Centric Computing (VL/HCC), 2012 IEEE Symposium on, pages 159–
162. IEEE, 2012.
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