
Flexible user query order for the speculative query

support in RDBMS.

Anna Sasak-Okoń

Maria Sklodowska-Curie University in Lublin

Pl. M. Curie-Skłodowskiej 5, 20-031 Lublin, Poland

Email: anna.sasak@umcs.pl

Abstract—This paper concerns speculative query execution
support for RDBMS based on the dynamic analysis of input
(user) query stream. A middleware called the Speculative Layer
is presented. Based on a specific multigraph representation
of groups of consecutive input queries, called the Speculation
Window, the Speculative Layer generates speculative queries
for look-ahead execution. These speculatively obtained results
are then used while executing user queries. This paper shortly
presents the structure of the Speculative Layer and the adopted
graph modelling method. Then, a new strategy of queries in the
Speculation Window is introduced. Depending on the availability
of executed speculative queries results we allow order of user
queries in the Speculation Window changes. If a user query was
to be executed without the speculative support, we prefer to delay
its execution in favour of one of the consecutive user queries,
expecting that speculative results obtained in the nearest future
will by useful for the delayed query. The experimental results
presented in a multithreaded environment, cooperating with a
SQLite database, show that the proposed strategy reduces the
number of user queries executed without the speculative results.
Additional series of experiments verifies that the certain param-
eters describing the speculative support system, like Speculation
Window size, are properly chosen.

I. INTRODUCTION

S
PECULATIVE Parallelization, sometimes called Opti-

mistic Parallelization[1] is a technique which allows par-

allel execution of code fragments that were originally intended

for a sequential run. To ensure correctness, speculative results

must be verified to avoid dependence violations. In such case

a violating thread and its results are usually discarded and

restarted with updated data [7][8][9]. The practical use of the

speculative approach in relational databases usually supports

single queries, ranked queries [14] or transactions (speculative

transaction protocols) [12][13] by performing some antici-

pated, potentially useful operations or subqueries out of its

standard order [10] or in advance based on received earlier

tips [11]. There are also papers, like [15][16], which focus on

multiple query optimization although without the concept of

the speculative execution.

Graph structures often used as a formalism helping represent

and analyse queries are very popular as they naturally represent

and model entities and their relationships [17][18].

It should be noted that none of the described above optimiza-

tion methods aims at speculative support which covers need

of many future queries at a time. Saving the results obtained

speculatively reminds caching methods [19][20][21][22], but

instead of history based methods we prefer to analyse queries

which are waiting for execution in the nearest future and

support them with data prepared in advance. The specula-

tive execution model we introduced in our previous papers

[2][3][5][6] focuses on parallelised speculative support for

execution of input (user) query streams. It includes a multi-

threaded middleware called the Speculative Layer, which is

situated between user applications and the RDBMS. The aim

of the Speculative Layer is to choose and execute speculative

queries. These speculative results stored in the main memory

structures called Speculative DB constitute quick access data

set available while executing user queries. The process of

choosing speculative queries to be executed is called the

Speculative Analysis. The Speculative Analysis is performed

continuously for groups of consecutive user queries called the

Speculation Window (SW). For each Speculation Window a

specific graph representations of each user query are created,

which are then combined into one multigraph according to the

defined set of rules.

The Speculation Window (SW) moves over the user query

queue by one query. So far, for each SW, the first in order user

query was executed nonspeculatively with or without the use

of speculative results. In this paper we propose a new strategy

for a nonspeculative query execution which is dependent on

the availability of the speculative results. If a first query in the

SW would have to be executed without speculative results we

allow to replace it with a next query in the SW which has at

least one executed speculative query assigned. We assume that

one of the speculative results obtained in the nearest future will

be useful for the delayed query. Speculation Window moves

after the execution of the nonseculative query and we repeat

the attempt to execute the first user query nonspeculatively.

The remaining text of the paper is composed of 3 parts. In

the first part a general structure of the Speculative Layer is

presented. We describe rules for query graphs creation and

the process of Speculative Analysis resulting in optimally

defined set of speculative queries ready for use. Section III

describes the new strategy for the nonspeculative query execu-

tion. Section IV contains results of two series of experiments.

First series of experiments presents effectiveness comparison

between the Speculative Layer execution with old and new

strategies for the nonspeculative query execution. The second

series of experiments verifies the validity of the parameter

Proceedings of the of the 17th Conference on Computer

Science and Intelligence Systems pp. 467–471

DOI: 10.15439/2022F154

ISSN 2300-5963 ACSIS, Vol. 30

IEEE Catalog Number: CFP2285N-ART ©2022, PTI 467



describing the size of the Speculation Window chosen for the

previous versions of the speculative algorithm.

II. THE SPECULATIVE LAYER

Fast evolution of online activities induced development of

database applications with the specific characteristics. These

applications are intensively used as products browsing tools

and thus execute many queries of a specific structure. Such

queries are created by shop users who define search criteria,

directly influencing attributes and conditions in the SELECT

and WHERE query clauses. Therefore, the consecutive queries

contain some common constituent operations, whose results,

if executed speculatively can be used many times.

The above observations were an inspiration to propose a

dynamic speculative support for execution of sql user queries.

This model is implemented as an additional multithreaded

middleware called the Speculative Layer and is located be-

tween user database applications and the RDBMS. The stream

of user queries forms a queue which is continuously analysed

by the Speculative Layer. The analysis (Speculative Analysis)

is performed for the consecutive user queries grouped in a

structure called the Speculation Window (SW) which slides

on the query stream. Each user query is represented by its

query graph created with a set of defined rules. Then, the

single query representations for each Speculation Window are

merged together to create a joint representation of the whole

query group in the form of query Multigraph (QM ).

The Speculative Layer is implemented to support and analyse

CQAC (Conjunctive Queries with Arithmetic Comparisons)

queries with functionality extended by two more allowed oper-

ators: IN for value sets and LIKE for strings comparisons. Ad-

ditionally we allow a nested query in a WHERE clause return-

ing a value for the attribute condition (...WHERE...attribute

operator (SELECT...FROM...WHERE...)).

The aim of the Speculative Analysis process is to identify

some common constituent operations in user queries which

are then used to generate new queries, called the Speculative

Queries. For this, an extended version of QM is created called

Speculative Query Multigraph (SQM ). It contains speculative

edges which are a special type of edges which mark potential

speculative queries. Based on the speculation result we intro-

duce two types of speculative queries: Speculative Parameter

or Speculative Data Queries. As there is allowed possibility

of the modifying query occurrence in the query stream, and

thus in the Speculation Window, we introduce additional type

of speculative edges called Speculative State. Details of the

strategy for modifying query handling process can be found

in [6]. Fig.1 presents the SQM created for the following

component queries:

(Q1) SELECT A1,2, A1,3 FROM R1 WHERE A1,2 = 4

(Q2) SELECT A2,2, A2,3, A1,3 FROM R1, R2 WHERE

A1,4 = A2,1 AND A2,2 > 7

(Q3) SELECT A1,2, A2,2 FROM R1, R2 WHERE A1,4 = A1,2

AND A1,3 LIKE 2%xx2 AND A2,2 < 2

(Q4) SELECT A2,2, A2,3 FROM R2 WHERE A2,2 > 5

Fig. 1. Query Multigraph representing four user queries.

It has also Speculative Data edges inserted (red stripped lines)

which represent one of 5 possible speculative queries to be

executed for this SW: (sq1) SELECT A2,1, A2,2, A2,3 FROM

R2 WHERE A2,2 > 5. Such speculative query results, if

executed, can be used while executing two user queries from

this SW: Q2 and Q4.

Chosen speculative queries are executed in parallel with the

original user queries and its results are stored in a dedicated

RAM memory database structure called the Speculative DB.

The data from the Speculative DB is ready to be used during

execution of input user queries, called nonspeculative queries,

minimizing disk database reads.

The original user query executed for each Speculation Window

(so far it was always the first query in the SW) is called the

nonspeculative query. If there are executed speculative queries

assigned to the nonspeculative query it is transformed to use

them, otherwise it is executed without the speculative support.

Each user query can be executed with the use of the speculative

results prepared for each relation present in its FROM clause.

More details about algorithms implemented for query graph

manipulation and strategies of multiple speculative queries

results combining for the execution of one user query can be

found in [4] and [3]. After the nonspeculative query’s results

are returned to the user, the SW moves by one query. As a re-

sult, the representation of the executed user query in the QM is

replaced by the representation of the next user query from the

queue, which just entered the Speculation Window. The SW

move is followed by the aforementioned Speculative Analysis

process to generate a new group of speculative queries for

execution. Described operational scheme is repeated until there

are user queries waiting for execution.

Based on previous experiments presented in [2] the Specu-

lation Window size was set to 5 and the number of active

threads for each SW was set to 3 (bigger SW or more

468 PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022



threads didn’t provide further improvement in user queries

execution). One thread is always dedicated to the execution of

the nonspeculative user query, so the remaining two threads

can execute chosen Speculative Queries. From the group of

awaiting Specualtive Queries generated in the process of the

QM Speculative Analysis, two of them can be chosen for

execution. The highest execution priority is always assigned

to speculative queries which can be used by the highest

number of user queries. Additionally, we consider values of

two defined size reduction metrics for speculative queries -

Vertical and Horizontal Selectivity (for definition see [5]). As

we want to avoid creating full copies of database relations

in the RAM memory we look for speculative queries with

possibly low values of these metrics. If it was not possible for

a particular Speculation Window to choose a new speculative

query for execution, the speculative thread would report a

nojob status for this SW. Executed Speculative Queries are

registered on the list and assigned to user queries which can

then use their results.

III. A NEW STRATEGY FOR THE SW EXECUTION

The old execution strategy for the Speculation Window

(SW) was fixed, id est. the nonspeculative query was always

the first query in the SW. This way, we kept the execution order

of user queries risking that for some of them the speculative

results might not be ready yet.

New strategy allows the nonspeculative query not to be the

first one in the SW. If the first query in the SW would be

executed without the use of the speculative results, then a next

query in the SW which can be executed with already obtained

speculative query results is executed nonspeculatively. This

way, the speculative algorithm has a chance to prepare and

execute new speculative query/queries whose results will be

beneficial for the delayed user query. The expected execution

time reduction provided by the use of the speculative results

should outweigh the potential execution delay.

Such situation is presented in Fig.2. We can see a Speculation

Window containing 5 user queries (Q2-Q6). Below each blue

user query square, there are orange circles containing ids of

the executed speculative queries assigned to a particular user

query for the potential use. The first query in the SW has

no executed speculative queries assigned (no circles below).

Thus, we look for the next query in the SW which could be

executed with the use of the speculative results. The Q3 user

query is then executed nonspeculatively with the use of one of

two assigned speculative queries (in certain cases it is possible

to use more than one speculative result for one user query).

Then SW moves, the nonexecuted Q2 remains in it, while the

Q3 is replaced by the next query from the user query queue.

IV. EXPERIMENTAL RESULTS

A. Test Environment and Queries

The Speculative Layer is implemented in C++ with the

multithreaded execution with the Pthread library. The SQLite

3.8.11.1 engine is used as a database management system.

For the experiments we used the database structure and

Fig. 2. New nonspeculative query execution strategy.

data (8 relations, 1GB data) from the well known database

benchmark TPC-H [23]. Additionally, a set of 8 Query

Templates was prepared and used to generate 3 sets of

1000 input queries each, with random values used in the

attribute conditions in WHERE clauses. Structures of the T1-

T8 templates are listed below with the following notation:

TemplateId:RelationName(number of WHERE conditions re-

ferring to its attributes,...,RelationName(number of WHERE

conditions...)

T1: LINEITEM(1 with a nested query)

T2: LINEITEM(4), PART(2)

T3: PART(3), PARTSUPP(1)

T4: LINEITEM(4), ORDERS(3), CUSTOMER(1)

T5: LINEITEM(3), PART(4), PARTSUPP(1)

T6: LINEITEM(3), ORDERS(1), CUSTOMER(1), PART(2)

T7: LINEITEM(3), ORDERS(1), CUSTOMER(1), PART(2),

PARTSUPP(1)

T8: UPDATE ORDERS

Templates T2-T7 are Select query templates which join from

two to five database relations. Template T1 refers to one

relation but includes a nested query in its WHERE clause. T8

represents modifying queries. Each test queries set contains

approximately 4% of modifying queries and 96% of select

queries with the same density for each of T1-T7 templates.

B. A New Nonspeculative Query Execution Strategy

First, we have compared how the new nonspeculative query

execution strategy for the Speculation Window affects the

execution of user queries. For this, we compare the results

obtained with the old execution strategy (nonspeculative query

is always the first one in the SW) with the new strategy

(nonspeculative query is the first query in the SW which can

use already obtained speculative query results). The experi-

ment was conducted for the Speculation Window size=5 and 3

active threads. Fig.3 presents average execution times obtained

for each query template depending on how many speculative

query results were used (from 0-red bars to 3-yellow bars

speculative queries results for one user query). We can see

that each speculative query used, provides further reduction

in the user query execution time. The highest speedups are

obtained for T5 and T7 templates. These user queries have

considerably longer execution times if executed without the

speculative support (approximately 163 and 181 sec.). With

ANNA SASAK-OKOŃ: FLEXIBLE USER QUERY ORDER FOR THE SPECULATIVE QUERY SUPPORT IN RDBMS 469



Fig. 3. The average execution time for 7 query templates with and without
use of the speculative query results.

three speculative queries results used (one speculative query

for each relation appearing in a query) we managed to signifi-

cantly reduce their execution times (up to 9 times shorter).

For the remaining templates the average time reduction is

approximately 2 times. We have next studied how the new

strategy influenced the general numbers of queries executed

with or without the speculative support. The new strategy

reduced the number of user queries executed without the use

of the speculative result from approximately 113 to 57 (for

1000 user queries), which is almost two times less. The query

order change (id est. as a nonspeculative query was executed

a user query not being the first in the SW), was reported 132

times and concerned 58 user queries. The maximal delay of

the first query in the Speculation Window execution was 4,

with average delay for the whole set equal 2.59.

C. Speculation Window Size

As the implementation of the new strategy for the non-

speculative query choice provided considerable reduction in

the number of user queries executed without the speculative

support, we decided to run a new series of experiments to

verify, if the Speculation Window (SW) size change can

provide any further benefits. Table 1 presents the results we

obtained for the SW sizes from 5 to 15. The size of the

SW equals the number of user queries used to form a Query

Multigraph. We can see that with the growing size of the SW,

the number of nojob reports is also growing significantly, up to

232 for the SW size=15. The reason for this is that with bigger

Speculation Windows (and bigger multigraphs) sizes, each SW

move is still replacing only one user query in the multigraph

structure. Such structure change is not enough to generate new

and unique speculative queries for execution. Thus we can

see, that the total number of executed speculative queries for

the test set is actually decreasing. Even though each executed

speculative query is assigned to more user queries for potential

use (on average 1.98 for SW size 5 to 3.56 for SW size 15)

it doesn’t influence (preferably reduce) the number of user

queries executed without the speculative support. The reduced

number of queries obtained for SW=5 decreases further for

SW size 6 to reach an average value around 33 for bigger

Speculation Windows.

Four bottom rows of Table 1 present results characteristic

for the new strategy of nonspeculative query execution. We

can see that the number of the user queries whose execution

were delayed due to missing speculative query results, varies

around 60 and doesn’t seem to be dependent on the SW size.

However, the bigger SW gets, the execution delay of such

queries grows up to 13 steps for the SW size 15, which is not

an advantageous feature. Too long delays would require a new

mechanism preventing query starvation, when the waiting time

predominate the potential benefits from using the speculative

query results.

D. Modifying Queries

In Section IV(A), it was said that the query test sets

contained approximately 4% of modifying queries. Since

the modifying query enters the Speculation Window until it

reaches its head and is executed as a nonspeculative query,

it endangers all speculative queries to be executed on invalid

data. Just after the execution of a modifying query a validation

process is executed for the queries marked with the Speculative

State. The aim of that process is to save (positive validation)

as many speculative results as possible from being deleted.

For the execution of the whole query test set with the old

strategy an approximate number of 40 speculative results (for

1000 user queries) were saved from being deleted and 22 had

to be deleted due to negative validation. Experiments show,

that the new strategy for the nonspeculative query execution

doesn’t interfere with the strategy for the modifying query

handling presented in [6]. For the SW size 5 numbers of

deleted and saved queries remains almost unchanged. With the

growing size of the Speculation Window the number of deleted

speculative results grows slowly to reach an approximate value

of 36 queries for the SW size 15. The number of queries

endangered with invalid data and saved from being deleted

grows faster and reaches an approximate value of 130 for the

biggest SW, which in general doesn’t seem to have a negative

influence on the speculative execution.

V. CONCLUSION

The paper describes a new strategy for the nonspeculative

query execution in the speculative query execution support

system called the Speculative Layer. We now allow to change

the order of user queries execution, if the first query in the

Speculation Window would have to be executed without the

use of the speculative results. The first series of experimental

results for the test database and three sets of 1000 input

queries each, reduced the number of user queries executed

without the use of the speculative results by approximately

50%, thus in general, almost 95% of user queries were

executed with the use of at least one speculative query results.

The proposed speculative support provides the query average

execution time reduction up to 9 times for long running queries

470 PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022



TABLE I
EXECUTION RESULTS OBTAINED FOR DIFFERENT SIZES OF THE SPECULATION WINDOW

Speculation Window Size

5 6 7 8 9 10 11 12 13 14 15

Nojob reports 70 85 106 135 142 169 200 186 185 200 232

No Spec. Results Used 57 29 31 35 35 34 39 36 34 32 36

Total Num. of Executed Spec. Queries 1748 1717 1667 1594 1592 1539 1496 1480 1481 1445 1419

Avg. Num. of Spec. Queries Assignment 1.98 2.14 2.25 2.47 2.66 2.81 2.9 3.12 3.29 3.46 3.56

Num.of Nonspec. Queries executed with
changed order

58 61 61 66 66 70 70 66 64 59 66

Num.of User Queries order change 132 180 226 274 300 335 372 383 406 373 402

Max delay in Nonspec. Query execution 4 5 6 7 8 9 11 11 12 13 13

Avg. delay in Nonspec. Query execution 2.59 2.95 3.70 4.15 4.55 4.78 5.46 5.80 6.34 6.32 6.09

(approximately 2 times for the whole test set). The execution

order change was reported for approximately 58 queries, with

the maximal execution delay of 4 queries (average delay 2.59).

With the second series of experiments we have proved that the

SW size equal 5 is a good choice. Changes in the SW size

provided minor changes in the number of queries executed

with the use of the speculative results. On the other hand, the

average delay of a nonspeculative query execution, grew for

the bigger SWs from 2.59 to 6.09.

Further work will focus on the development of an even

more flexible user query execution strategy for a Speculation

Window. A concept of a Variable Shift Speculation Window

will be considered, which includes more than one user query

executed as a nonspeculative query for each SW, depending

on the available speculative results.

REFERENCES

[1] A. Estebanez, D.R.Llanos, A.Gonzales-Escribano, “A Survey on Thread-
Level Speculation Techniques,” ACM Computing Surveys, vol. 49(2), pp.
1-39, 2017, https://doi.org/10.1145/2938369

[2] A. Sasak-Okoń, “Speculative query execution in Relational databases
with Graph Modelling,” in Proceedings of the FEDCSIS 2016, ACSIS,
Vol. 8., pp.1383-1387, 2016, https://doi.org/10.15439/2016F123

[3] A. Sasak-Okoń, M.Tudruj, “Graph-Based speculative Query Execution
in Relational Databases,” in ISPDC 2017, Innsbruck, Austria, IEEE
Explore, https://doi.org/ 10.1109/ISPDC.2017.14

[4] A. Sasak-Okoń, M. Tudruj, “Graph-Based Speculative Query Execu-
tion for RDBMS,” in PPAM 2017, LNCS, Vol. 10777, pp. 303-313,
https://doi.org/ 10.1007/978-3-319-78024-5_27

[5] A. Sasak-Okoń, M. Tudruj, “Speculative Query Execution in RDBMS
Bsed in Analysis of Query Stream Multigraphs,” in 24th IDEAS 2020,
Seoul, Korea, pp. 208-218, https://doi.org/10.1145/3410566.3410604

[6] A. Sasak-Okoń, “Modifying Queries Strategy for Graph-Based Specula-
tive Query Execution for RDBMS,” in PPAM 2019, LNCS, Vol. 12043,
pp. 408-418, 2020, https://doi.org/10.1007/978-3-030-43229-4_35

[7] J. Silc, T. Ungerer, B. Robic, “Dynamic branch prediction and control
speculation,” Int. Journal of High Performance Systems Arch., Vol. 1(1),
pp.2-13, 2007, https://doi.org/10.1504/IJHPSA.2007.013287

[8] S. Pan, K. So, J. T. Rahmeh, “Improving the accuracy of dynamic branch
prediction using branch correlation,” in Int. Conference on Architectural

Support for Programming Languages and Operating Systems, Boston,
1992, pp.76-84, https://doi.org/10.1145/143371.143490

[9] A. Moshovos, S. E. Breach, T. N. Vijaykumar, G. S. Sohi, “ Dy-
namic Speculation and Synchronization of Data Dependences,” in 24th

ISCA, ACM SIGARCH Computer Architecture News, 1997, Vol.25(2),
https://doi.org/10.1145/264107.264189

[10] N. Polyzotis, Y.Ioannidis, “Speculative query processing,” CIDR Con-

ference Proceesings, Asilomar, 2003, pp. 1-12,
[11] G. Barish, C.A. Knoblock, “ Speculative Plan Execution for Information

Gathering,” Artificial Inteligence, 2008, vol. 172(4-5), pp. 413-453,
https://doi.org/10.1016/j.artint.2007.08.002

[12] P.K. Reddy, M. Kitsuregawa, “Speculative locking Protocols to Improve
Performance for Distributed Database Systems,” IEEE Transactions

on Knowledge and Data Engineering, 2004, Vol.16(2), p.154-169,
https://doi.org/10.1109/TKDE.2004.1269595

[13] T. Ragunathan T, R.P. Krishna, “Improving the performance of Read-
only Transactions through Asynchronous Speculation,” SpringSim Con-

ference Proceedings, Ottawa, 2008, p.467-474
[14] V. Hristidis, Y. Papakonstantinou, “Algorithms and Applications for

answering Ranked Queries using Ranked Views,” VLDB Journal, 2004,
Vol.13(1), p.49-70.

[15] X.Ge, B.Yao, M.Guo, et al., “LSShare: an efficient multiple query
optimization system in the cloud,” Distrib. Parallel Databases, 2014,
Vol.32(4), pp. 593-605, https://doi.org/10.1007/s10619-014-7150-1

[16] M.B.Chaudhari, S.W.Dietrich, “Detecting common subexpressions for
multiple query optimization over loosely-coupled heterogeneous data
sources,” Distrib. Parallel Databases, 2016, Vol.34, pp.119-143,
https://doi.org/10.1007/s10619-014-7166-6

[17] G.Preti, M.Lissandrini, D.Mottin, Y.Velegrakis, “Mining patterns in
graphs with multiple weights,” Distributed and Parallel Databases,

Special Issue on extending Database Technology, 2019, pp.1-39,
https://doi.org/10.1007/s10619-019-07259-w

[18] O.Goonetilleke, D.Koutra, K.Liao, T.Sellis, “On effective and efficient
graph edge labeling,” Distributed and Parallel Databases, 2019, Vol.37,
pp.5-38, https://doi.org/10.1007/s10619-018-7234-4

[19] H.M. Faisal, M.A. Tariq, Atta-ur-Rahman, A. Alghamdi, N. Alowain,
“A Query Matching Approach for Object Relational Databases Over Se-
mantic Cache,” Chapter in Application of Decision Science in Business

and Management, 2020, https://doi.org/10.5772/intechopen.90004
[20] M. Ahmad, M. A. Qadir, M. Sanaullah, “Query Processing Over

Relational Databases with Semantic Cache: A Survey,” 2008 IEEE

International Multitopic Conference, Karachi, 2008, pp. 558-564,
https://doi.org/10.1109/INMIC.2008.4777801.

[21] F.Wang, G. Agrawal, “Query Reuse Based Query Planning for Searches
over the Deep Web,” Database and Expert Systems Applications. DEXA

2010. LNCS, Vol 6262, 2010, https://doi.org/10.1007/978-3-642-15251-
1_5

[22] P. Cybula, K. Subieta, “Query Optimization by Result Caching in the
Stack-Based Approach,” Objects and Databases. ICOODB 2010, LNCS,
Vol.6348, 2010, https://doi.org/10.1007/978-3-642-16092-9_7

[23] TPC benchmarks, http://www.tpc.org/tpch/default.asp, 2020.

ANNA SASAK-OKOŃ: FLEXIBLE USER QUERY ORDER FOR THE SPECULATIVE QUERY SUPPORT IN RDBMS 471


