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Abstract—Most recently, a link between principal component
analysis (PCA) based on L1-norm and independent component
analysis (ICA) has been discovered. It was shown that the ICA
can actually be performed by L1-PCA under the whitening
assumption, inheriting the improved robustness to outliers. In this
paper, a novel ICA algorithm based on Jacobi iterative frame-
work is proposed that utilizes the non-differentiable L1-norm
criterion as an objective function. We show that such function
can be optimized by sequentially applying Jacobi rotations to the
whitened data, wherein optimal rotation angles are found using
an exhaustive search method. The experiments show that the
proposed method provides a superior convergence as compared
to FastICA variants. It also outperforms existing methods in
terms of source extraction performance for Laplacian distributed
sources. Although the proposed approach exploits the exhaustive
search method, it offers a lower computational complexity than
that of the optimal L1-PCA algorithm.

I. INTRODUCTION

I
NDEPENDENT component analysis (ICA) [1] is one of

the most widely used techniques in multivariate signal

processing. The major goal of the ICA is to transform ob-

served mixtures to components that are as independent from

each other as possible. Since the only assumption about the

components is that they are mutually independent, the ICA

can be viewed as a special case of blind source separation

(BBS) problem [2]. Such a problem arises in a wide range of

applications, including speech/image source separation, noise

reduction, feature extraction, watermark detection.

Most of the ICA algorithms are based on the central limit

theorem. Among them, FastICA approach [3], [4], [5] is

probably the most well-known example. It attempts to find

directions in multidimensional space in which some measure

of non-Gaussianity is maximized, thereby enforcing mutual

independence between components. The projections of the

observed multivariate data onto these directions are viewed as

independent components, and often reveal much of the data’s

structure.

The ICA could also be seen as a generalization of the

classical principal component analysis (PCA) [6] by assuming

independent and non-Gaussian source distributions. In more

detail, the PCA only tries to identify orthogonal directions,

along which the data exhibit the greatest variability. Tra-

ditionally, this variability is measured using the Frobenius
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norm (L2-norm on matrices), which allows to decorrelate the

components but not to make them independent. Though, the

PCA is often used in many ICA algorithms as a pre-processing

step for whitening or sphering the data.

In recent years, a growing interest in approaches to the PCA

based on the L1-norm can be observed [7], [8], [9]. Unlike

conventional PCA, the L1-norm techniques offer an improved

robustness to outliers, i.e., data points that differ significantly

from the other observations. Most recently, it was shown in

[10] that the ICA can actually be performed by L1-norm PCA

under the whitening assumption. When the source distribution

fulfills certain conditions, it is possible to extract independent

components using optimal L1-PCA algorithms with guar-

anteed global convergence. It was demonstrated that such

algorithms may give better accuracy and robustness than those

of conventional ICA methods. Unfortunately, optimal L1-

PCA algorithms are computationally expensive. In addition,

the global convergence is guaranteed only for distributions

with negative kurtosis sign. In the work [10], a new variant

of the FastICA algorithm with absolute value nonlinearity

was considered. Although the accuracy and robustness of this

approach were comparable to that of the optimal L1-PCA

algorithm, it shows serious convergence difficulties.

In this paper, a novel approach to ICA based on di-

rect optimization of the L1-norm criterion is proposed. The

method follows Jacobi iterative framework, whereby the global

solution is reached by successively applying Jacobi/Givens

rotations to whitened observation vectors [11], [1], [12], [13].

In this way high-dimensional ICA problem is reduced to

solving a set of the simpler one-dimensional subproblems.

Namely, at every iteration step, we are looking for the angle

that maximizes negentropy of the transformed components.

Unlike conventional Jacobi methods, the proposed algorithm

exploits the contrast function based on the L1-norm, inheriting

increased robustness to outliers. Since the local cost functions

are of simple form, the optimal rotation angle is found using

an exhaustive search method. Therefore, the differentiability of

the objective function is no longer required and the method can

deal with saddle points and multiple extrema. The simulation

results show that the proposed method offers a superior

convergence compared to the FastICA method with absolute

value function nonlinearity. Furthermore, it outperforms con-

ventional methods in source extraction performance for the

mixtures with Laplacian distributions.
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The paper is organized as follows. Section II describes the

connection between the ICA and L1-norm criterion. It also

introduces the mathematical formulations behind the FastICA

technique and its recent variant using absolute value function

as non-linearity. In Section III, a novel ICA algorithm is

proposed based on the Jacobi iterative framework and non-

differentiable L1-norm criterion. Section IV investigates the

performance of the presented method via numerical simula-

tions. Finally, the conclusions are given in Section V.

II. LINK BETWEEN ICA AND L1-PCA

Let us denote by x = [x1, x2, . . . , xN ]T * R
N ob-

servable, zero-mean N -dimensional random vector and by

y = [y1, y2, . . . , yN ]T * R
N its linear transform, i.e. y = Bx.

Then, the ICA problem consists of finding an unmixing

matrix B * R
N×N such that the components of y are as

independent as possible. Since statistical independence implies

uncorrelatedness, many ICA algorithms assume explicitly that

E{yyT } = I, where E{.} stands for expectation operator.

This is usually enforced by the following factorization of the

unmixing matrix:

B = WC21/2
xx

, (1)

where C
21/2
xx denotes the whitening matrix which is com-

puted by inverting a square root of the observation signal

covariance matrix. It can be easily verified that the constraint

E{yyT } = I holds for any orthogonal matrix W. Since the

whitening transformation is always possible, the ICA problem

can be viewed as finding an orthogonal transformation of the

whitened data vector z = C
21/2
xx x, i.e. y = Wz, such that

the components of y are as independent as possible. This can

in particular be achieved by maximizing the negentropy of the

random vector y defined as follows:

J(y) = h(v)2 h(y), (2)

where h(.) is the differential entropy [14] and v is the

Gaussian random variable of the same covariance matrix as

y. Unfortunately, computation of (2) is not an easy task and

in practice some approximations of negentropy [3], [5] have

to be used. Let y = wT z denote a random variable being

a linear projection of the whitened data vector onto some

direction w * R
N . Then, the negentropy of this projection

can be approximated as follows:

Jg(y) j c[E{g(y)} 2 E{g(v)}]2, (3)

where c is irrelevant constant and g is any non-quadratic, suf-

ficiently smooth even function. The variables v, y are assumed

to be of zero mean and unit variance, with v being a Gaussian-

distributed variable. The approximation (3) is interpreted as a

measure of non-Gaussianity as it is always non-negative, and

it equals to zero if and only if y is Gaussian.

In the case of the deflationary FastICA algorithm [4], the

independent components are found sequentially, one after

another. For each source, the criterion (3) is optimized iter-

atively, using an approximate Newton technique. Namely, the

following fixed-point iteration is used:

ŵ = E{zg2(wT z)}+ E{g22(wT z)}w, (4)

w+ = ŵ/'ŵ'2, (5)

where w+ stands for the direction vector of the estimated in-

dependent component after the current iteration. These vectors

are projected onto the space orthogonal to the space spanned

by the earlier found vectors, so that at the end, we obtain the

set {wT
i }Ni=1 of orthogonal projectors that are stored in the

rows of the matrix W.

A. FastICA based on absolute value function

A crucial step in optimizing the FastICA algorithm is to

choose the best non-linearity g(.) [15]. Many ICA algorithms

[11], [1], [12], [16] use kurtosis-based contrast functions,

which correspond to the fourth-power non-linearity g(y) =
1/4y4. Such a choice can be justified on statistical grounds

only for estimating sub-Gaussian sources (i.e. those with

negative kurtosis) when there are no outliers. However, in

practice we mostly deal with super-Gaussian variables [17]

that have positive kurtosis. It was suggested in [3], [4] that

for super-Gaussian densities, the optimal contrast function is

a function that grows slower than quadratically. In particular,

as a general-purpose contrast function, one should choose,

g(y) = |y|α, ³ < 2. (6)

Nevertheless, no attempt has been made to implement this idea

in practice. The reason is that the FastICA algorithm assumes

the differentiability of g(y), whereas for the absolute value

function, this property fails at origin. Therefore, the following

differentiable approximation of the absolute value function has

been proposed:

g(y) =
1

a
log cosh(ay), (7)

with 1 f a f 2. However, this approximation may not provide

the same independent source extraction performance as the

absolute value function.

In the recent work [10], the authors admitted differentia-

bility of g(y) = |y| by assuming that g2(y) = sign(y) and

g22(y) = 2¶(y), where ¶(y) denotes Dirac’s delta function. It

resulted in the modified FastICA method with the following

iteration step in place of (4):

ŵ = E{z sign(wT z)} 2 2fy(0)w, (8)

where fy(0) stands for the probability density function (PDF)

of y evaluated at the origin. As proposed in [10], it can be

computed through the kernel density estimate with Gaussian

kernel. It was also demonstrated that, for small data sizes (e.g.

N = 2, 3), this algorithm can provide some improvements

in source extraction performance when dealing with outliers.

However, the iteration (8) may present difficulties converging

to the right solution. Please note that, at each iteration, the

PDF of the extractor output must be estimated, which may be

impractical.
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B. ICA via L1-PCA

Let Z = [z1, z2, . . . , zM ] * R
N×M denotes data matrix,

where {zm}Mm=1 are realizations of a zero-mean random vector

z. Assuming ergodicity conditions and that g(y) = |y|, it can

be shown that for large enough sample size the L1-norm of

the projection wTZ becomes proportional to E{g(y)},

'wTZ'1 =
M
�

m=1

|wT zm| ³ ME{g(y)}. (9)

Please note that the second term in (3) is always constant.

Thus, the solution is reached at a certain optimum (i.e.

maximum or minimum) of E{g(y)} under the constraint

'w'2 = 1. For this reason, the ICA can also be accomplished

by whitening, followed by the minimization or maximization

of the L1-norm. It was shown in [10] that symmetric sources

with negative (respectively, positive) kurtosis are maximizers

(respectively, minimizers) of E{|y|}. Whereas, the optimiza-

tion problem of finding L1 principal component can be for-

mulated as follows [8], [9]:

wL1 = argmax
w*RN ,'w'2=1

'wTZ'1. (10)

Since the objective function is non-differentiable, the problem

is difficult to solve by means of conventional optimization

techniques such as gradient-based methods. However, it was

shown in [8] that wL1 = Zcopt/'Zcopt'2, where

copt = argmax
c*{±1}M

'Zc'2. (11)

Hence, the L1-norm maximization can be viewed as a combi-

natorial problem over the binary field. A globally convergent

L1-PCA algorithm with complexity O(M rank(Z)) was pro-

posed in [8]. A faster, yet suboptimal version of this approach

[9] is based on consecutive bit-flipping operations. Though,

its time complexity can still be prohibitive for large data

sizes. The most computationally efficient L1-PCA method

was proposed earlier in [7]. It is based on the fixed-point

iterative scheme similar to that used in FastICA algorithm.

Unfortunately, the method often gets trapped in local extrema.

Despite these shortcomings, the L1-PCA algorithms can be

used directly to extract independent sources with negative

kurtosis sign (i.e. sub-Gaussians) under whitening assumption.

It was shown in [10] that globally convergent L1-PCA al-

gorithm may give better accuracy and robustness than those

of the conventional ICA methods, especially when dealing

with outliers. The L1-PCA algorithm can also be modified

to perform L1-norm minimization. However, in such case

the global convergence property is lost because the L1-norm

and the L2-norm minimization problems are not related as

in (10)-(11). In addition, computational complexity of this

algorithm can become prohibitive for large sample size and/or

observation dimensions. In most applications, only suboptimal

L1-PCA algorithms [9], [7] can be considered.

III. PROPOSED METHOD

The proposed method is based on the Jacobi iterative

framework [12]. Namely, an objective function is optimized

by applying successively orthogonal transformations to the

whitened observation data vectors:

y(k+1) = G(pk, qk, ¹k)y
(k), k = 1, 2, ..., (12)

where y(1) = z = C
21/2
xx x. The matrix G(p, q, ¹) represents

Jacobi rotation [18] by the angle ¹ in the plane determined by

the p and q coordinates, i.e.:

G(p, q, ¹) =

þ

ÿ

ÿ

ÿ

ÿ

ø

Ip21 0 0 0 0

0 cos ¹ 0 sin ¹ 0

0 0 Iq2p21 0 0

0 2 sin ¹ 0 cos ¹ 0

0 0 0 0 IN2q21

ù

ú

ú

ú

ú

û

,

(13)

with 1 f p < q f N , Thus, the unmixing matrix after the kth

iteration can be expressed as follows:

B̂(k) =

û

ü

ý

·

k
�

i=1

G(pi, qi, ¹i)

þ

ÿ

ø
C21/2

xx
. (14)

Please note that for N -dimensional space we have N(N 2
1)/2 possible rotation planes, each uniquely represented by

pair (p, q). A sequence of rotations represented by these pairs

is arranged in a so-called sweep. In fact, any rotation order is

allowed, but some may work better than others [19], [20]. In

this work, a typical row-cycling ordering is used as described

in Tab. I. Usually, it is necessary to go through several sweeps

before convergence is achieved. The algorithm is terminated

when, for all rotations in the current sweep, we have |¹k| <
¹min, or when the maximum number of sweeps is reached.

The parameter ¹min is an empirically chosen small angle [12],

which controls the accuracy of the optimization.

It is crucial for this estimation framework to compute the ro-

tation angles ¹k so that a given objective function is gradually

optimized. Motivated by the ideas presented in the previous

section, we propose to maximize negentropy approximation

(3) with g(y) = |y| directly. Since we deal with a sequence of

two-dimensional ICA problems, the objective function for two

units must be considered. As suggested in [4], such a function

can be defined as the sum of the one-unit functions:

J (k)(¹) =
�

i*{pk,qk}

|E{|ŷ(k)i (¹)|} 2 E{|v|}|, (15)

where

ŷ(k)pk
(¹) = y(k)pk

cos ¹ + y(k)qk
sin ¹, (16)

TABLE I: Arrangement of rotation planes using a row-cycling

ordering for N = 3.

sweep no. 1 2 ...

k 1 2 3 4 5 6 ...

(pk, qk) (1,2) (1,3) (2,3) (1,2) (1,3) (2,3) ...
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ŷ(k)qk
(¹) = y(k)qk

cos ¹ 2 y(k)pk
sin ¹, (17)

are respectively the pkth and qkth coefficient of the currently

transformed data vector y(k). Please note that for a normally

distributed random variable v with mean µ and variance Ã2,

the random variable u = |v| has a folded normal distribution.

The mean of the folded distribution is given by [21]:

µu = Ã
�

2/Ã exp

�

2 µ2

2Ã2

�

+ µ erf

�

µ:
2Ã2

�

(18)

For µ = 0 and Ã2 = 1, the expectation E{|v|} in (15) reduces

to the constant factor
�

2/Ã. Examples of the objective

function (15) evaluated at 12 consecutive data rotations are

presented in Fig. 1. As we see, these functions are always

periodic with period Ã/2. Therefore, the search for the optimal

angle can be restricted to the interval [2Ã/4;Ã/4), i.e.:

¹̂k = argmax
2π/4fθ<π/4

J (k)(¹). (19)

In order to construct Newton-type iteration scheme, one can

admit differentiability of g(y) = |y| in a similar way as for

the FastICA approach. In Fig. 1 we see that the objective

function contains multiple local maxima and saddle points,

thus even if we use a differentiable approximation for the

absolute value function, it would be difficult to reach the global

maximum of (15). However, in this case, each plane rotation

depends on a single parameter ¹k, reducing the N -dimensional

optimization problem to the sequence of the N(N 2 1)/2
one-dimensional search subproblems per sweep. Therefore, as

opposed to the FastICA approach, the solution can be found

using an exhaustive method in a reasonable execution time.

In particular, for each data rotation, the function (15) can be

evaluated at the set of D equidistant points:

¹ * {2Ã/4 + iÃ/(2D) : i = 0, 1, ..., D 2 1}. (20)

The greater the value of D, the better the accuracy of the

optimization. For even D, the set (20) always contains a

zero value. Hence, in order to ensure local convergence, the

parameter ¹min for stop condition should be set to any value in

the interval (0;Ã/(2D)). We have found empirically that the

rotation angles tend to decrease in subsequent sweeps, and

some optimizations are possible. For example, it may not be

necessary to search for optimal angle over entire interval at

the later sweeps. The exhaustive search algorithm can also be

replaced by more sophisticated non-gradient techniques such

as simplex bisection method [22], particle swarm optimization

[23], genetic algorithms [24], simulated annealing [25].

The Matlab implementation of the proposed approach is

given in Alg. 1. The expectations in (15), are replaced by sums

with observables in place of random variables. Please note that

since the matrix G(p, q, ¹) modifies only (p, q) rows, it is not

necessary to compute it explicitly. It is easy to see that in each

sweep, we must perform N(N 2 1)/2 data rotations. Each

rotation costs 4M multiplications, but this operation must be

repeated D times as the objective function is evaluated at D
points. Thus, the time complexity of the single sweep can be

roughly estimated as of order O(N2MD).
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Fig. 1: Examples of the function (15) evaluated at 12 consecu-

tive data rotations for a randomly generated mixture of N = 4
Laplacian distributed sources with sample size M = 400.

Algorithm 1 Matlab implementation of the proposed method

function [Y,B,k] = JICA_abs(X, k_max, D)

[N, M] = size(X);

X = X - mean(X, 2);

B = inv(sqrtm((X*X’)/M));

Y = B*X;

D = D + mod(D, 2);

theta = linspace(-pi/4, pi/4-pi/2/D, D);

c = cos(theta)’;

s = sin(theta)’;

Gp = [ c s ];

Gq = [ -s c ];

mu = M * sqrt(2/pi);

k = 1; encore = 1;

while k <= k_max && encore

encore = 0;

for p = 1:N-1

for q = p+1:N

r = [p q];

Yp = Gp*Y(r,:);

Yq = Gq*Y(r,:);

J = abs(sum(abs(Yp), 2)-mu) +...

abs(sum(abs(Yq), 2)-mu);

[~, I] = max(J);

if abs(theta(I)) > pi/4/D

encore = 1;

Y(r,:)=[Yp(I,:);Yq(I,:)];

B(r,:)=[Gp(I,:);Gq(I,:)]*B(r,:);

end

end

end

k = k + 1;

end
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(a)

(b)

Fig. 2: Separation of the images with various distributions of pixel gray levels. (a) Randomly mixed images and histograms.

(b) Recovered images and histograms.

IV. EXPERIMENTS

A. Illustrative examples

As a toy example, we considered a mixture of three Matlab

built-in images and uniform noise. The images were resized

to the same size 256 × 256 pixels with an 8-bit grayscale.

The mixtures and their histograms are depicted in Fig. 2a.

As can be seen, the source images have been significantly

degraded, but also the form of the mixed data histograms is

more like the Gaussian function. Fig. 2b shows the images

recovered using the proposed method and the corresponding

histograms. This example clearly shows that the algorithm is

capable of transforming data from normality to independent

marginal distributions.

B. Independent source extraction performance

In this experiment, the source extraction performance of the

proposed algorithm is evaluated. In order to distinguish the

algorithm from the existing techniques, it was denoted by the

acronym JICA-abs, which stands for “Jacobi-type ICA based

on absolute value function.” Also, several existing techniques

including state-of-art methods were chosen for comparison,

namely: joint approximate diagonalization of eigenmatrices

(JADE) [11], the conventional FastICA algorithms with the

fourth-power non-linearity (FastICA-4power) and the differen-

tiable approximation of the absolute value (FastICA-logcosh)

[4], the modified FastICA algorithm based on direct use of the

absolute value criterion (FastICA-abs) [10], the iterative L1-

PCA [7] and more accurate bit-flipping L1-PCA method (L1-

BF) [9]. In this comparison, we do not consider the optimal

L1-PCA algorithm [8] due to high computational demands.

On the other hand, it was shown in [10] that for the sources

with uniform densities, the source extraction performance of

the iterative L1-PCA method is similar to that of the optimal

algorithm.

It is rather common that the performance of an iterative

algorithm may vary depending on the stop conditions and

initialization. Therefore, in all methods, the matrix W was

initialized to the identity matrix. The FastICA and iterative

L1-PCA algorithms were stopped when for all sources the

following condition was met: 1 2 |wTw+| < ÷, or when a

maximum number of 1000 iterations was reached. For all these

methods, except FastICA-abs, the ÷ parameter was set to 1024.

In the case of the FastICA-abs, it was necessary to increase its

value to 1023 due to convergence difficulties. For the JICA-

abs and JADE methods, the reliable and stable results were

obtained when the maximum number of sweeps was set to 20
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Fig. 3: Independent source extraction performance as a function of the outlier contamination rate, for N = 4 sources with

Laplacian distribution (left), and uniform distribution (right). The length of source signals is fixed at M = 400 samples.

and the angle ¹min = Ã/(4D) with D = 128. We verified

empirically that rotations at a smaller angle than Ã/512 are

not statistically significant.

For comparative purposes, we considered the linear mixtures

of N = 4 synthetic sources, all with negative or positive

kurtosis sign generated from uniform and Laplacian distribu-

tion, respectively. The length of each source signal was set

to M = 400 samples. The coefficients of the mixing matrix

were generated from the uniform distribution. Ill-conditioned

matrices (with a condition number greater than 100) were

excluded from the evaluation. In order to evaluate the ro-

bustness of the algorithms against outliers, randomly chosen

observations were replaced with noise spikes drawn from a

Gaussian distribution N (10, 1) at varying contamination rates.

The independent source extraction performance was esti-

mated using the average signal-to-interference ratio (SIR) [26],

[27], [28]. Please note that the higher the value of the SIR

is, the better performance we get. The performance indexes

were averaged over 1000 random realizations of the sources

and the mixing matrices, but at each Monte Carlo run, all

methods were operating on the same data. Fig. 3 presents

the source extraction performance of different algorithms for

various percentages of outliers. As can be seen, the proposed

method clearly outperforms existing algorithms on average

by 5dB for Laplacian distributed sources. In this case, the

iterative L1-PCA algorithm provides the worst performance,

as it is designed to only maximize L1-norm, whereas for

distributions with positive kurtosis sign the L1-norm should

be minimized. For Laplacian distributed sources, the L1-BF

algorithm was modified to minimize the L1-norm according

to the suggestion in [10]. In result, the source extraction

performance of this method is slightly better than that of the

iterative L1-PCA algorithm. Though, it is still poor compared

to the ICA approaches. This confirms our earlier remark that

the L1-norm and L2-norm minimization problems are not

related in the same way as the corresponding maximization

problems (10)-(11). Although there is no clear winner for

uniformly distributed sources, the JADE and FastICA-4power

methods provide the best performance in the absence of

outliers. Clearly, the absolute value criterion may not be

the best choice for sub-Gaussian distributed sources. On the

other hand, the approaches, whether based on absolute value

criterion or on differentiable approximations thereof, show

increased robustness to outliers as compared to the kurtosis-

based methods.

C. Convergence and execution time

The total execution time of an iterative algorithm depends

on the convergence rate. Unfortunately, rigorous convergence

analysis of the proposed approach is not an easy task and is out

of the scope of this paper. Though, we measured the average

number of iterations (sweeps) taken by the presented algorithm

until convergence was reached for various data sizes. The

results averaged over 1000 independent runs are depicted in

Fig. 4a. As can be seen that the number of iterations increases

with the number of sources, but this dependency is weaker

than linear, for sufficiently large M . It is rather not surprising,

because as the sample size increases, an objective function

usually becomes smoother and thus a faster convergence can

be achieved. In this case, the algorithm converges to the

stationary solution in a relatively small number of sweeps.

However, please note that each sweep consists of N(N21)/2
data rotations. In order to better illustrate the convergence

properties of the algorithm, in Fig. 4b, we also show the

global cost function measured after each data rotation for

10 independent Monte Carlo runs. It is rather clear that the

algorithm converged quickly in all cases.

In order to compare the computational complexity of the

proposed algorithm with the existing methods, we measured

their execution times. The experiments were carried out in

the Matlab environment, running on AMD Ryzen 5 3550H

processor. Tab. II presents the minimum, maximum, and
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Fig. 4: Evaluation of the convergence properties of the proposed method. (a) Average number of sweeps. (b) Global contrast

functions measured after each data rotation in 10 independent Monte Carlo runs. It was computed as a sum of the approximations

(3) with g(y) = |y| for all rows of the data matrix. The first data rotation in each sweep is denoted by cross mark.

TABLE II: Execution times (in milliseconds) and percentage of runs where the maximum number of iterations is reached in

the experiments of Fig. 3 without outliers.

Laplacian uniform

algorithm tmin tmax tavg failures (%) tmin tmax tavg failures (%)

JICA-abs 3.99 17.04 8.47 0 5.43 26.15 9.02 0

JADE 0.69 9.94 1.09 0 0.78 10.73 1.20 0

FastICA-4power 0.30 18.41 0.53 0.4 0.30 3.52 0.44 0

FastICA-logcosh 0.46 34.00 0.84 0.3 0.45 1.82 0.69 0

FastICA-abs 0.60 120.26 38.98 62.3 0.53 86.90 6.66 9.5

iter. L1-PCA 0.21 2.94 0.42 0 0.19 2.84 0.37 0

L1-BF 23.36 37.23 28.62 0 27.82 72.35 42.94 0

TABLE III: Execution times (in milliseconds) and percentage of runs where the maximum number of iterations is reached in

the experiments of Fig. 3 with 5 percent of outliers.

Laplacian uniform

algorithm tmin tmax tavg failures (%) tmin tmax tavg failures (%)

JICA-abs 3.72 18.44 8.88 0 5.37 25.12 9.07 0

JADE 0.70 10.88 1.24 0 0.68 10.54 0.99 0

FastICA-4power 0.30 16.22 0.55 0.1 0.30 18.32 1.52 5.7

FastICA-logcosh 0.47 33.86 1.16 0.3 0.51 63.12 4.51 9.4

FastICA-abs 0.52 111.34 26.01 59.8 0.62 109.39 39.93 82.1

iter. L1-PCA 0.23 3.38 0.36 0 0.24 3.59 0.36 0

L1-BF 24.80 39.64 30.34 0 26.64 81.41 46.48 0

average execution times collected in the experiment of Fig.

3 for data without outliers. The columns denoted as “failures”

show the percentage of the Monte Carlo runs where the

maximum iteration number was reached. The same statistics

are presented in Tab. III, but for data with 5 percent of outliers.

Although the JICA-abs method has relatively long average

execution time, it is much faster than L1-BF algorithm. The

proposed method also provides better convergence properties

than those of the FastICA-based algorithms. Similarly to the

JADE method and approximate L1-PCA algorithms, the JICA-

abs approach always converged to a stationary solution within

the iteration limit. The FastICA-4power and FastICA-logcosh

methods sometimes reach the iteration limit, which results in

the increased maximum execution time. It is especially evident

for uniformly distributed sources with outliers, where these

methods reach the iteration limit in around 6-9 percent of runs.

Unfortunately, the FastICA-abs method present even more

serious convergence difficulties when dealing with outliers.

In this case, the iteration limit is reached in around 82 and

60 percent of runs, for uniform and Laplacian distributions,
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respectively. Obviously, the upper bound of the execution time

can be reduced by decreasing the iteration limit, but it can

also deteriorate the accuracy of the optimization. Therefore, a

method with a smaller upper bound of the execution time may

be a better choice when the timeliness of the system becomes

a prominent problem.

V. CONCLUSION

A novel ICA algorithm has been proposed that directly

utilizes non-differentiable absolute value criterion as a contrast

function for the ICA problem. The algorithm is based on

Jacobi iterative framework and exhaustive search method.

Experimental studies show that the proposed approach pro-

vides better accuracy and robustness to outliers than existing

methods for Laplacian distributed sources. Unlike the FastICA

approaches, it does not show any convergence issues. Though,

it has on average relatively high execution time as compared

to the state-of-art ICA methods. On the other hand, it is faster

than currently most accurate suboptimal L1-PCA algorithm

that also works in an exhaustive manner.

A rigorous convergence analysis of the proposed method is

of great theoretical importance, thus it should be the subject

of further research. We also believe that the computational

complexity can potentially be reduced. In addition, future

works may include developing practical applications in speech,

audio and image denoising.

REFERENCES

[1] P. Comon, “Independent component analysis, a new concept?” Sig-

nal Process., vol. 36, no. 3, pp. 287–314, 1994. doi: 10.1016/0165-
1684(94)90029-9

[2] P. Comon and C. Jutten, Eds., Handbook of Blind Source Separation.

Independent Component Analysis and Applications, 1st ed. Oxford,
USA: Academic Press, inc., 2010.

[3] A. Hyvärinen, “New approximations of differential entropy for indepen-
dent component analysis and projection pursuit,” in Proceedings of the

1997 Conference on Advances in Neural Information Processing Systems

10, 1997, pp. 273–279.
[4] ——, “Fast and robust fixed-point algorithms for independent compo-

nent analysis,” IEEE Trans. Neural Netw., vol. 10, no. 3, pp. 626–634,
1999. doi: 10.1109/72.761722

[5] ——, “Survey on independent component analysis,” Neural Computing

Surveys, vol. 2, 07 1999.
[6] I. T. Jolliffe, Principal Component Analysis. New York: Springer

Verlag, 2002.
[7] N. Kwak, “Principal component analysis based on L1-norm maximiza-

tion,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 30, no. 9, pp. 1672–1680, 2008. doi: 10.1109/TPAMI.2008.114

[8] P. P. Markopoulos, G. N. Karystinos, and D. A. Pados, “Optimal
algorithms for L1-subspace signal processing,” IEEE Transactions

on Signal Processing, vol. 62, no. 19, pp. 5046–5058, 2014. doi:
10.1109/TSP.2014.2338077

[9] P. P. Markopoulos, S. Kundu, S. Chamadia, and D. A. Pados, “Efficient
L1-norm principal-component analysis via bit flipping,” IEEE Transac-

tions on Signal Processing, vol. 65, no. 16, pp. 4252–4264, 2017. doi:
10.1109/TSP.2017.2708023

[10] R. Martın-Clemente and V. Zarzoso, “On the link between L1-PCA and
ICA,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 39, no. 3, pp. 515–528, 2017. doi: 10.1109/TPAMI.2016.2557797

[11] J. Cardoso and A. Souloumiac, “Blind beamforming for non-Gaussian
signals,” IEE Proceedings F - Radar and Signal Processing, vol. 140,
no. 6, pp. 362–370, 1993. doi: 10.1049/ip-f-2.1993.0054

[12] J. Cardoso, “High-order contrasts for independent component analy-
sis,” Neural Computation, vol. 11, no. 1, pp. 157–192, 1999. doi:
10.1162/089976699300016863

[13] E. Learned-Miller and J. Fisher, “ICA using spacings estimates of
entropy,” Journal of Machine Learning Research, vol. 4, pp. 1271–1295,
Dec. 2003.

[14] T. M. Cover and J. A. Thomas, Elements of Information Theory (Wiley

Series in Telecommunications and Signal Processing). USA: Wiley-
Interscience, 2006.

[15] A. Dermoune and T. Wei, “FastICA algorithm: Five criteria for
the optimal choice of the nonlinearity function,” IEEE Transac-

tions on Signal Processing, vol. 61, pp. 2078–2087, 04 2013. doi:
10.1109/TSP.2013.2243440

[16] V. Zarzoso and P. Comon, “Robust independent component analysis by
iterative maximization of the kurtosis contrast with algebraic optimal
step size,” IEEE Transactions on Neural Networks, vol. 21, no. 2, pp.
248–261, 2010. doi: 10.1109/TNN.2009.2035920

[17] A. Bell and T. Sejnowski, “An information-maximization approach to
blind separation and blind deconvolution,” Neural Computation, vol. 7,
no. 6, pp. 1129–1159, 1995. doi: 10.1162/neco.1995.7.6.1129

[18] G. Golub and C. Van Loan, Matrix Computations. USA: Johns Hopkins
University Press, 2013.

[19] W. Ouedraogo, A. Souloumiac, and C. Jutten, “Non-negative inde-
pendent component analysis algorithm based on 2D Givens rotations
and a Newton optimization,” in Latent Variable Analysis and Signal

Separation. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. doi:
10.1007/978-3-642-15995-4 pp. 522–529.

[20] M. Parfieniuk, “A parallel factorization for generating orthogonal ma-
trices,” in International Conference on Parallel Processing and Applied

Mathematics (PPAM) 2019. Bialystok, Poland: Springer, 2019. doi:
10.1007/978-3-030-43229 pp. 567–578.

[21] M. Tsagris, C. Beneki, and H. Hassani, “On the folded normal dis-
tribution,” Mathematics, vol. 2, no. 1, pp. 12–28, feb 2014. doi:
10.3390/math2010012

[22] C. Samuelsson, “Comparative evaluation of the stochastic simplex
bisection algorithm and the scipy.optimize module,” in Proceedings of

the 2015 Federated Conference on Computer Science and Information

Systems, ser. Annals of Computer Science and Information Systems,
vol. 5, 2015. doi: 10.15439/2015F47 pp. 573–578.

[23] T. Krzeszowski and K. Wiktorowicz, “Evaluation of selected fuzzy
particle swarm optimization algorithms,” in Proceedings of the 2016

Federated Conference on Computer Science and Information Systems,
ser. Annals of Computer Science and Information Systems, vol. 8, 2016.
doi: 10.15439/2016F206 pp. 571–575.

[24] K. Pytel, “Hybrid multievolutionary system to solve function optimiza-
tion problems,” in Proceedings of the 2017 Federated Conference on

Computer Science and Information Systems, ser. Annals of Computer
Science and Information Systems, vol. 11, 2017. doi: 10.15439/2017F85
pp. 87–90.
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