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Abstract—This paper introduces the Team Orienteering Prob-
lem with Time Windows and Variable Profits (TOPWPVP), which
is a variant of the classical Orienteering Problem (OP) and an
NP-hard optimization problem. It consists in determining the
optimal route for a vehicle to traverse to deliver to a given set
of nodes (customers), where each node has a predefined time
window in which the service must start (in case this node is
visited), and the vehicle may spend an amount of time given
by a predefined interval so that the profit collected at this node
depends on the time spent. We first propose a mathematical
model for the TOPTWVP, then propose an algorithm based on
Iterated Local Search to solve modified benchmark instances.
The results show that our approach can solve difficult instances
with good quality.

I. INTRODUCTION

T
HE Orienteering Problem (OP) [1] is a combinatorial

optimization and integer programming problem whose

goal is to obtain the optimal route for a vehicle to traverse

to deliver to a given set of customers. The objective is to

maximize the total score collected from visited (selected)

nodes. The Team OP (TOP) [2] is one of the most studied

variants of the OP, where the route for several vehicles must

be computed. When a time window is established for each

node so that the service at a particular node has to start

within a predefined time window, a new variant, called (Team)

Orienteering Problem with Time Windows ((T)OPTW) [3],

is defined. Another variant is the orienteering problem with

variable profit (OPVP) [4] and its generalization, the team

orienteering problem with variable profit (TOPVP) [5]. In this

case, the profit collected at each node depends on the number

of times a node is visited or on the continuous amount of time

spent at a given node.

In this paper, we combine the TOPTW and the TOPVP to

come up with the Team Orienteering Problem with Time

Windows and Variable Profit (TOPTWVP). Specifically,

each node has a predefined time window in which the service

must start (in case this node is visited) and the vehicle may

spend an amount of time given by a predefined interval so that

the profit collected at this node depends on the time spent.

This extension of the TOPTW and the TOPVP is especially

interesting to applications of the vehicle routing problems
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such as the routing of a reconnaissance vehicle [6], which

has the option of staying longer at a location to gather more

information and the route planning may depend on time

windows when it is safer to perform this reconnaissance task;

or the the Tourist Trip Design Problems [7], where a longer

stay at a location may provide a higher satisfaction (profit) to

the visitor and the visits must be scheduled taking into account

the opening times of attractions. For example, the work in [8],

[9] and [10] use a modified version of the TOPTWVP which

allow the tourist to define some travel-style preferences, such

as if they prefer to visit a few or many places or if they prefer

to enjoy some free time during the trip. In order to consider

these travel-style preferences, each visit is assigned a duration

interval so that each visit finally takes the most appropriate

time to fit into the tourist preferences.

In general, TOPTWVP tries to model a more realistic

situation, where locations can only be visited within specific

time windows and where staying longer (also within a given

interval) may report a higher profit.

The main contributions of this paper are the following:

" We introduce a mathematical model for the TOPTWVP.

" Due to the limitation of solving large instances, we then

propose a heuristic based on Iterated Local Search (ILS).

" We perform experiments with the ILS algorithm on

instances for the Solomon benchmark.

" We compare the solutions with respect to several Key

Performance Indicators (KPIs): score, number of visits,

waiting time (idle time in the route), and execution time.

The remainder of this paper is as follows. The problem

description and the mathematical model is detailed in Section

II. Section III describes the proposed algorithm based on

ILS. Section IV reports numerical experiments performed on

benchmark instances. Finally, in Section V, we summarize the

main achievements and future works.

II. TOP WITH TIME WINDOWS AND VARIABLE PROFIT

The input values in the TOPTWVP are the following:

" a set of nodes N = {1, . . . , |N |}, where nodes 1 and |N |
represent the start and end nodes

" a number of routes M and total time budget per route

Tmax

" For each node i ∈ N :
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– a travel time tij from node i to j, known for all

vertices

– a non-negative profit Pi, i.e. the maximum profit

collected when visiting a node; P1 and P|N | are 0

– a time window [Oi, Ci], which indicates that a visit

to a node can only start during this time window

– a service time interval [minDi,maxDi], i.e. the

minimum and maximum amount of time that can

be spent at a node

The goal of the TOPTWVP is to determine M routes, each

limited by Tmax, that visit a subset of N within the respective

time windows, during a service time in the interval duration

and that maximize the total collected profit. The TOPTWVP

can be formulated as an integer programming model with the

following decision variables:

" xijm = 1, if in route m, a visit to node i is followed by

a visit to node j; 0, otherwise

" yim=1, if node i is visited in route m; 0, otherwise.

" sim is the start of the service at node i in route m
" dim is the service time (duration) at node i in route m

And the following constraints:

M�

m=1

|N |�

j=2

x1jm =
M�

m=1

|N |21�

i=1

xi|N |m = M (1)

M�

m=1

ykm ≤ 1; ∀k = 2, . . . , (|N | − 1) (2)

|N |21�

i=1

xikm =

|N |�

j=2

xkjm = ykm;

∀k = 2, . . . , (|N | − 1); ∀m = 1, . . . ,M (3)

Oi ≤ sim ≤ Ci; ∀i = 1, . . . , |N |; ∀m = 1, . . . ,M (4)

sim + dim + tij − sjm ≤ L(1− xijm);

∀i, j = 1, . . . , |N |; ∀m = 1, . . . ,M (5)

minDi ≤ dim ≤ maxDi; ∀m = 1, . . . ,M (6)

Constraints 1 establish that each route starts from node 1

and ends in |N |. Constraints 2 ensure that each node can only

be visited at most once in all routes. Constraints 3 ensure the

connectivity of each route. Constraints 4 force that the service

starts within the time window for each route. Constraints 5

ensure the timeline of the route (L is a large constant, that can

be equal to Tmax), explicitly considering the variable duration

of the service. Constraint 6 guarantees that the service time is

within the corresponding interval of duration.

Maximize
M�

m=1

|N |21�

i=2

Pidimyim (7)

The maximization function 7 establishes that the profit of

the final plan not only depends on whether a node is visited

or not but also it depends on how long a node is visited.

Without loss of generality, in this definition of the TOPTWVP,

we assume that each time unit spent at the node collects Pi.

Therefore, the total score of a visited node i results from the

product of the profit Pi and the time spent at a node dim (in

a route m).

Since the TOPTW and TOPVP are NP-hard, the TOPTWVP

is also NP-hard. Both dealing with time windows and with

an interval of possible service times makes this problem

harder to solve. We have performed some experiments (not

shown in this paper due to space restrictions) that prove that

our implementation of this mathematical model is able to

solve only small instances. Moreover, as some works referred

to in this paper also state, in general, variations of TOP

problems with a significant number of nodes are solved with

heuristic approaches, and exact algorithms are only feasible

for problems with a small number of nodes. For this reason,

the following section introduces a heuristic approach to solve

the TOPTWVP.

III. HEURISTIC APPROACH TO TOPTWVP

The more successful heuristic approaches for both the

TOPTW and TOPVP are based on the ILS algorithm

([11],[12],[5]). Specifically, in this work, we take the ILS

implementation for solving the TOPTW given in [11] and [12]

and adapt some steps in order to consider the variable profit.

The general scheme of the ILS is shown in Algorithm

1. In a nutshell, this algorithm constructs an initial feasi-

ble solution (Construction), which is further improved by

Iterated Local Search (ILS). ILS comprises the components

LocalSearch,Perturbation and AcceptanceCriterion. We refer

the reader to [11] and [12] for further details in the ILS imple-

mentation. In this section, we only focus on the modifications

introduced to solve the specific TOPTWVP.

Apart from the input data and decision variables detailed in

the previous section, we also keep the following data for each

node, to reduce the time devoted to checking the feasibility of

a route, thus making the algorithm more efficient [11]:

" arriveim: arriving time to a node. If arriveim ∈
[Oi, Ci], then the arriving time and the start time sim
take the same value.

" waitim: waiting time to visit a node because the arriving

time arriveim is previous to the opening time Oi.

" MaxShiftim: maximum time that a visit can be delayed

so that the route is still feasible, i.e. it keeps track of

how much a certain visit can be shifted in time, without

violating any time window in the route.

Regarding the Construction process, the first solution only

contains the start node or depot, as initial and final nodes.

Then, a set F with all feasible candidate nodes that can be

visited is generated. All possibilities of inserting an unsched-

uled node in position p of route m are examined. To check

the feasibility of inserting node j between nodes i and k, we
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Algorithm 1 ILS(N,M)

1: S0 ← Construction(N,M)
2: S0 ← LocalSearch(S0, N

7, N 2,M)
3: S7 ← S0

4: NoImprovement← 0
5: while TimeLimit has not been reached do

6: S0 ← Perturbation(S0, N
7, N 2,M)

7: S0 ← LocalSearch(S0, N
7, N 2,M)

8: if S0 better than S7 then

9: S7 ← S0

10: NoImprovement← 0
11: else

12: NoImprovement← NoImprovement+ 1
13: end if

14: if (NoImprovement + 1) MOD ThresholdImpr = 0
then

15: S0 ← S7

16: end if

17: end while

18: return S7

compute Shiftjm, which is time added or reduced when a

new node is inserted or removed in a route:

Shiftjm = tij + waitjm + djm + tjk − tik

where: waitjm = max(0, Oj−arrivejm) and arrivejm =
sim + dim + tij . Therefore, it is feasible to insert a node j
between nodes i and k in route m if Shiftjm <= waitkm +
MaxShiftkm. In the TOPTWVP, the service time djm is not

a value known a priori. Therefore, to perform the calculations

above, it is necessary to compute an estimate of the service

time, which is based on using all the available time without

causing infeasibility in the route:

djm = max(minDj ,min(maxDj ,MS2)), where :

MS2 = waitkm +MaxShiftkm − tij − waitjm − tjk + tik

The set F contains all the feasible candidate nodes; one of

these nodes i is selected according to the attractiveness of the

insertion, which is computed as P 2

i /Shifti. Once a node i is

selected, it is inserted in the corresponding route and position,

and S0, N 2, and N7 are updated accordingly. The service time

dim for the selected node is set to the estimate computed

above. Consequently, the value of arrivejm, waitjm, sjm,

Shiftjm and MaxShiftjm of the subsequent nodes is also

updated. Additionally, MaxShiftjm of the previous nodes

is also recomputed. The construction process of the first

solution is terminated when F = ∅, that is, when no more

feasible candidate nodes are found. This solution will be

further improved by the ILS.

Our LocalSearch procedure is composed by the same six

local search moves described in [12], and we add a new move

that modifies the service time of some nodes. These seven

local search moves are applied in three stages. The first stage

contains the moves Swap1, Swap2, 2-Opt and Move which

Algorithm 2 IncreaseServiceTime(S0,M)

1: for each route m ∈M do

2: while ∃i : MaxShiftim > 0 do

3: G = {i : MaxShiftim > 0}
4: for i ∈ G do

5: ∆im ← min(MaxShiftim,maxDi − dim)
6: end for

7: n7 = argmax"i*G(Pi ∗∆im)
8: dn∗m ← dn∗m +∆n∗m

9: for each node j in route m: sjm > sn∗m do

10: Update(arrivejm, sjm, Shiftjm,MaxShiftjm)
11: end for

12: for each node k in route m: skm <= sn∗m do

13: Update(MaxShiftkm)
14: end for

15: end while

16: end for

17: return S0

restructure the current solution trying to decrease the travel

total cost, thus increasing the unused time budget.

The second stage, named IncreaseServiceTime, con-

sists of a new move aiming to enlarge some nodes’ service

time, thus increasing the total score. Specifically, Algorithm

2 is applied. Once the first stage has been executed, and at

least one move has been applied, a restructured solution with

an increased unused time budget is obtained; that is, some

idle time can be used to increase the service time of specific

nodes. Therefore, our aim at this moment is to find a node

whose service time can be enlarged and, consequently, the

solution profit improves. Algorithm 2 describes this process.

For each route, we build the set G with the nodes whose

service time can be increased (line 3) because they have a

positive MaxShift. Then, this increment in the service time is

computed for each node in G (lines 4-6), and the node n7

with the highest increment in the score is selected (line 7).

The new service time dn∗m is computed and, hence, the value

of arrivejm, waitjm, sjm, Shiftjm and MaxShiftjm of

the subsequent nodes and the value of MaxShiftjm of the

previous nodes are also recomputed.

The third stage in the LocalSearch procedure contains

the moves Insert and Replace, focused on increas-

ing the profit. Finally, for both the Perturbation and

AcceptanceCriterion components of ILS, in our implemen-

tation, we follow the same scheme as [12].

IV. EXPERIMENTS

This section shows the experiments performed in order

to validate our algorithm to solve the TOPTWVP prob-

lem for m = 1 and m = 2. A set of 56 TOPTW

Solomon (set c) instances of vehicle routing problems with

time windows were selected (https://unicen.smu.edu.sg/oplib-

orienteering-problem-library) and adapted to the TOPTWVP

by adding the interval of service time; in particular, minD

was set to the service time indicated in the original problems,
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whereas maxD is set to minD + 30. For comparison, we

have executed a TOPTW implementation with the original

Solomon instances (where the service time coincides with

minD), denoted as Min and with these same instances where

the service time is set to maxD, denoted as Max. Table I show

the results for score, number of visited nodes, waiting time and

execution time for one and two routes, when executing the two

baselines Min and Max and our implementation Var; columns

under AVG show the average value among the ten runs of our

ILS solving the TOPTWVP for each instance and columns

under MAX show the maximum value of these ten runs.

For the score, in the case of the AVG results, Max obtains

a higher score in 21 instances for one route and 25 for two

routes. On average, Var obtains a higher score than Max with

one route, whereas Max gets a better score than Var with two

routes (although the difference is smaller). Regarding MAX

results, the solution with Var is the one that provides the

highest score in many problems, except in 16 instances out

of 56 for one route and 24 for two routes, where Max obtains

a higher score. Min is always quite far from the other two

approaches, as expected.

Regarding the number of visits, the Var approach (almost)

always include few more visits in the routes for instances

solved with one and two routes. In the case of Max, fewer

nodes tend to be incorporated as they have a longer duration.

The waiting time is defined as the sum of the waiting time

of all visits, that is, the idle time in the routes. Var obtains

routes with less waiting time than Max for one route: for

AVG results, Var obtains routes with less waiting time in

26 instances versus 14 instances where Max obtains routes

with less waiting time. However, for two routes, the results

are more similar (26 versus 24 instances). Looking into the

individual solutions, we have observed that, in many cases,

this worsening of the waiting time is due to an improvement

in the score, because the maximization function only considers

the score and not the waiting time. That is, it is prioritized to

include shorter visits that provide a higher score, although it

may imply having idle time in the route waiting for the start

time of the time window.

The execution time corresponds to the time required to find

the best solution, although each execution takes all the given

time. It can be observed that Var always needs longer to obtain

a solution since an additional dimension is being introduced

by having to work with an interval for the duration of the

service time. This makes the problem more complicated, and

it is reflected in the time needed to find a solution.

V. CONCLUSIONS

This paper has introduced the Team OP with Time Windows

and Variable Profits where each node has a predefined time

window in which the service must start (if visited), and the

vehicle may spend an amount of time given by a predefined

interval so that the profit collected at this node depends on

the time spent. We have proposed a mathematical model

for solving the TOPTWVP, and an ILS algorithm to solve

modified benchmark instances. The results show that our

Score Num. Visits Wating Time Exec. Time

AVG m=1 m=2 m=1 m=2 m=1 m=2 m=1 m=2

Min 21039,39 34748,93 24,34 47,81 6,77 9,04 485,39 615,44
Max 26523,71 46150,14 11,69 23,29 5,97 6,75 269,83 513,86
Var 26813,11 46031,54 12,63 25,44 3,60 7,43 701,07 792,21

MAX m=1 m=2 m=1 m=2 m=1 m=2 m=1 m=2

Min 21316,07 35104,82 24,34 48,58 4,31 6,88 562,30 679,10
Max 26907,86 46726,43 11,69 23,80 4,64 5,20 339,02 547,01
Var 27330,80 46948,29 12,71 25,75 2,94 7,26 715,62 760,83

TABLE I: Summary of score, number of visits, waiting time

and execution time of the ILS algorithm with Min, Max and

Var for m = 1 and m = 2

approach can solve difficult instances with good quality. When

compared with two baselines Min and Max, our approach is,

in general, obtaining better scores and also better values in

other KPIs, such as the number of visits and the waiting time.

As future work, we are developing new procedures to

handle the variable profit with the aim of improving the

execution time. Moreover, we are working on a new variant

of TOPTWVP that allows defining a custom waiting time so

that it can also be considered in the optimization function.
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