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Abstract—Modern embedded systems’ increasing complexity
and varied safety levels make it hard to coordinate all func-
tionalities within a single run-time environment. Access to more
advanced and capacious hardware changes the trend from
utilising many separated platforms into one managing the whole
compounded airborne system. Providing an appropriate isolation
and synchronisation level is achievable only by adapting an
operating system with separation mechanisms into UAV systems.
This paper introduces Phoenix-RTOS, the microkernel struc-
tured real-time operating system designed to be consistent with
aerospace standards DO-178C and ARINC 653. The current
market offers many counterparts like VxWorks, Integrity 178,
PikeOS and many others. These products are well known and
used in leading-edge avionics and space projects. However, it is
not possible to use them in many low-budget projects due to
the high price. The Phoenix-RTOS differs from others and is an
open-source project becoming a standard solution for energy, gas
meters and UAV systems.
In this paper, we focus on the currently designed mechanisms of
microkernel architecture for providing a mixed-criticality system,
particularly for compliance with ARINC 653. Engineers have
been identifying time and space partitioning issues to cope with
tight worst-case execution bounds of critical tasks.

I. INTRODUCTION

T
HE Unmanned Air Vehicles (UAV) market increased

significantly in recent years. However, plans about fly-

ing machines carrying out missions of particular importance

(e.g. transport of hazardous substances and medical supplies)

above our heads in inhabited areas cannot become a reality

without ensuring the high safety standards of airborne systems.

According to European Union regulations introduced in 2019

[1], the UAV can be allowed to conduct a mission in the urban

environment only after a positive certification process con-

ducted by the civil aviation agencies such as European Union

Aviation Safety Agency (EASA) or Federal Aviation Agency

(FAA). To reduce the time of the certification process, the

manufacturers choose certified Real-Time Operating Systems

(RTOS) to run their critical and non-critical applications. The

current market offers several operating systems compliant with

aviation standards, but only large companies can afford them

due to high license costs. To overcome this obstacle Phoenix

Systems has started working on Phoenix-RTOS 178 version

compliant with aviation standards [1]. Making a system as

an open source product allows manufacturers with a limited

budget to enter the market. The new version of the Phoenix-

RTOS is designed to comply with DO-178C and ARINC 653

standards described in the next paragraph.

A. Aviation Standards

Standards play a crucial role in the aerospace industry.

One of the most important is DO-178C, the fulfilment of

which allows usage software in airborne devices. DO-178C

defines five levels of failure caused by software: catastrophic,

hazardous, major, minor, and no effect. Moreover, it defines

five corresponding Design Assurance Levels (DAL) from

the most rigorous level A to level E. Depending on the

DAL level, tenants’ appropriate process management has to

be fulfilled. Another one, Aeronautical Radio Incorporated

(ARINC) standard focuses on technical aspects that define a

series of detailed rules for a dedicated area, like data trans-

mission protocols, cockpit user interfaces, and many others.

The aerospace projects are always compliant with DO-178C,

however meeting the ARINC standards depends on project’s

requirements. The best policy for operating system develop-

ment for critical applications is described in standard ARINC

653. Running different critically level software on the same

hardware platform is the primary domain of Integrated Mod-

ular Avionics (IMA). To realize an IMA approach in RTOS,

the Partitioning Operating System (POS) concept should be

introduced to support spatial and time partitioning [10]. In the

avionics industry, the Avionics Application Standard Software

Interface, called APEX provided by ARINC 653, has been

introduced as a set of guidelines to provide a standardized

interface between POS and avionics applications [10]. The

leading role of the ARINC 653 is to improve the safety and

certification process of safety-critical systems and outline the

architectures approach for POS’s engineers [10]. More details

about APEX are presented in the fourth section.

B. History of Phoenix-RTOS

The idea for writing a new RTOS originates from the

Warsaw University of Technology where the prototype of

Phoenix-RTOS was developed from scratch as a master thesis

[1] in 1998. The rapidly growing Internet of Things (IoT)

market resulted in an industry need where a new operating

system with efficient implementation and rich functionalities

to be required.
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Due to this fact, the second version of Phoenix-RTOS was

developed by Phoenix Systems and widely implemented in

data concentrators for the smart grid, smart energy meters and

smart gas meters. Phoenix-RTOS 2 is recognized on the market

as a real-time system for the smart grid and software-defined

solutions.

The third version of the system based on a microker-

nel architecture has been developed to be easily used in

microcontroller-based low power devices and more advanced

processors. The new approach provided in version three allows

the use of Phoenix-RTOS on a broad range of processors

architecture from the smallest ones like ARM Cortex-M, to

more those complex like ARM Cortex-A, ia32 or RISC-

V [1]. Employing the Phoenix-RTOS in version three to

the energy meters sector has proven its applicability for

high complexity systems which work in harsh environments.

The experience obtained in the industry moved the company

forward in achieving the next milestone to make Phoenix-

RTOS consistent with DO-178C standard in a design assurance

level A.

Phoenix-RTOS compliant with DO-178C is developed as

an open-source project under the BSD license. From the time

of writing this paper, only several open-source competitors

supporting ARINC 653 have been found, which are described

in the third chapter. The rest of the systems for critical pur-

poses are commercial. It is strongly believed that by providing

the system as an open-source product, the gap in the market

is filled for projects with a limited budget, and the topic of

critical systems will be covered.

This paper presents our consideration for partitioned based

microkernel development in Phoenix-RTOS. A current trends

analysis in the industry has been conducted and there are

visible alternatives that can be offered by the open-source

product. The research focuses on implementing microkernel

mechanisms to support spatial and time partitioning to fill

ARINC 653 requirements.

II. MIXED CRITICALITY SYSTEM

Operating systems for critical purposes should be highly

reliable. As is considered in Tanenbaum et al. [5] they should

not be interrupted entirely or halted to recover from a failure

that occurs in a module that is not in the critical execution

path of a service or an internal operation [4]. To achieve this

goal, operating systems should provide safety and security

functionalities not to allow the non-critical zone’s fault to

propagate to a critical one. Safety and security functions

seem to be similar, and although these terms have common

elements, they differ. This chapter presents the concept of

safety-critical and security-critical systems in more detail. The

next one presents examples of systems divided into appropriate

categories.

A. Safety-critical

The main challenge tackled by a safety-critical system is to

provide a clear border between different critical zones called

partitions. Due to this fact, these kinds of operating systems

are often called partitions kernels. Partitioning mechanisms

should provide spatial and temporal separation [2]. Moreover,

the partition kernel is in charge of resources management such

as I/O devices to permit access to only assigned parts of the

system. To enforce spatial separation, each individual partition

runs in a hardware-protected address space. For this purpose,

the Memory Management Unit (MMU) performs mapping of

virtual to physical addresses. To enforce time separation, each

partition and thread have a dedicated time slot of the CPU in

which the actions have to be completed. The static analysis is

obligatory to define the Worst-Case Execution Time (WCET)

of each running partition and process. Based on the WCET

the best scheduling algorithm is selected to take control of the

CPU when attempts of time overrun occur. The central concept

of a safety system requires static resource allocation for

partitions and static analysis of system performance. Safety-

critical systems are compliant with DO-178C and ARINC 653.

However, standards do not impose requirements describing

how spatial and time separation should be performed. The

chosen solutions can differ between individual systems.

B. Security-critical

The security-critical systems originate from the concept of

Multiple Independent Levels of Security (MILS) specification,

which is a high-assurance architecture based on separation and

information flow security [3]. The foundation of MILS is a

Separation Kernel (SK), which is responsible for adherence of

data isolation, damage limitation and resource partitioning. SK

extends partitioning kernels of sets of specific functionalities

to enforce security separation, and information flow [2]. The

security requirements are known as Common Criteria (CC) [3]

establishing seven Evaluation Assurance Levels (EAL) from 1

to 7, which is the most rigorous. Moreover, CC defines robust

requirements dedicated to an operating system called Sepa-

ration Kernel Protection Profile (SKPP). To obtain satisfying

certification for EAL7, the partitioning mechanisms have to

be rigorously verified using formal methods [3]. Compared to

partitioning kernels, SK provides a more dynamic environment

that does not have to be known ahead of time. The typical

approach to realizing separation kernel is based on embedded

hypervisor and software virtualization mechanisms. The hyper-

visor layer manages the system resources and virtual partitions,

which are capable of running guest operating systems with

different levels of critically [2].

III. BACKGROUND AND RELATED WORK

Operating systems for critical applications is a complex

topic that demands a considerable workloads and financial

resources. Due to this fact, only several companies can deliver

reliable products. The most known and widely used systems

on the market are presented in the following subsections. The

last paragraph is devoted to open source projects.

A. Lynx Software Technologies

The Lynx Software Technologies has on offer two operating

systems for critical application: LynxOS-178 and LynxSecure.
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The first version of the system, LynxOS-178, is a safety-

critical system. It meets the DO-178C DAL A regulations

and supports POSIX, and APEX standards [6]. However, this

version of OS would not meet the highest EAL7 criteria,

which require formal mathematical methods to prove the

security of SK. For this reason, LynxSecure is introduced to

provide a separation kernel based on hypervisor virtualization.

The second version OS design includes safety and security

domain isolation, trusted execution environments and refer-

ence monitor plugins such as firewalls and encryption [6]. A

popular solution for complex systems is to use LynxSecure to

provide secure partitioning and LynxOS-178 to launch critical

applications compliant with APEX.

B. GreenHills

INTEGRITY 178 is a world-leading RTOS for safety and

security applications certified both to the highest level of DO-

178C DAL A and SKPP/EAL6+ [7]. The producer claims

tasks protection in the guaranteed time window domain. The

space domain is arranged by static memory allocation and

hardware enforcement of MMU for each partition. The system

isolates applications and data into different security domains

to ensure the MILS environment. As a separation kernel, IN-

TEGRITY 178 provides a virtualization layer in the userspace

instead of in the kernel [7].

The GreenHills also offers a version for multicore ar-

chitectures - INTEGRITY 178 tuMP. As one of the few

systems that provide full flexibility in choosing the software

multi-processing architecture, ranging from simple Asymmet-

ric Multi-Processing (AMP) to modern Symmetric Multi-

Processing (SMP) to Bound Multi-Processing (BMP) for the

highest combination of determinism and utilization [7].

C. WindRiver

The WindRiver company takes a similar approach as Lynx

Software Technologies. In the offer can be found two versions

of software for critical purposes. The first one VxWorks

653 is compliant with DO-178B/C DAL A and ARINC 653

[8]. The second one VxWorks MILS provides compliance to

SKPP using a hypervisor. To combine safety and security

mechanisms, two versions of WindRiver products are used side

by side.

D. SYSGO

The flag product of SYSGO company is a PikeOS com-

pliant with DO-178C DAL B and ARINC 653 [2]. Although

the system provides safety and security-critical mechanism,

it is not compliant with SKPP. PikeOS offers a separation

kernel-based hypervisor with multiple partitions for many

other operating systems and applications [9]. The engineers

from SYSGO developed a similar concept as the GreenHills

company for INTEGRITY-178. The PikeOS does not need an

external hypervisor, its internal layer provides security and

virtualization between partitions.

E. Open Source Systems

According to a survey presented by researchers in [2],

the majority of open-source projects are academic implemen-

tations. Special consideration should be given to POK and

XtratuM operating systems due to compliance with ARINC

653. However, none of them is compliant with DO-178C.

Furthermore, there are other systems worth mentioning like

Quest-V or Muen. Although they provide some mechanism

of spatial and temporal partitioning of resources, they do not

comply with any of the considered standards.

IV. ARINC 653

The primary objective of ARINC 653 is to fulfil the IMA

requirements to provide an environment for the independent

execution of avionics applications utilizing different critical

levels. The majority scope of the regulation defines the Ap-

plication Programing Interface (API) between the operating

systems and avionics applications. One of the benefits of

standard usage is to provide high portability of avionics

software to run on different operating systems.

The standard consists of five parts [11]. Part 0 describes

a general overview about ARINC 653. Part 1 summarises

the required services to be supported by APEX and part

2 reports extended services. Section B in chapter fourth,

precisely presents the services concepts. Part 3 of ARINC

653 is divided into two parts: 3A and 3B, and provides a

guideline for conformity tests for both required and extended

services. Part 4 defines a subset of API specified by part 1.

Finally, part 5 describes recommended capabilities for multi-

core applications. The conformance of the APEX API to the

ARINC 653 standard is validated by passing all of test suites

defined by part 3 of the standard.

A. General architecture

Fig. 1 shows the example architecture of a system compliant

with ARINC 653. The integrated module represents a complete

RTOS which consists of a core module and applications. The

Core Software (CSW), referred to as the operating system and

hardware layer applying many processors, each consisting of

one or more processor cores [11]. CSW should provide the

ARINC 653 interface, health monitoring system, two level

scheduler and suitable time and space separation based on

configuration data. The highest layer of the IMA architecture

presents either application software partitions and system

partitions. The first ones are restricted to using only ARINC

653 calls to interface to the system [11]. The second ones are

partitions specific for the operating system requiring interfaces

outside of the APEX scope. They manages system specific

task such as device drivers or fault management schemes [11]

which are not defined by ARINC 653. Both of them are subject

to robust space and time partitioning.

B. Static System Configuration

According to the specification, a partition is a program in

an application environment that consists of text, data section,

stack, own context, and configuration attributes [11]. In this
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Fig. 1. Example of Integrated Module Architecture [11].

case, a process is a programming unit contained within a

partition that executes concurrently with other processes within

the same partition [11]. In other words, the process in ARINC

653 glossary corresponds to a thread running inside a process,

and the partition refers to a process in UNIX like systems.

Each of the partitions and processes are described by system

configuration files. They contain detailed information about the

demand for system resources, communication ports, execution

windows and scenarios for health monitor systems. The most

popular approach for APEX environment description is an

Extensible Markup Language (XML) or AADL language.

V. PHOENIX-RTOS 178

Phoenix-RTOS 178 is a new version of the system compliant

with DO-178C and ARINC 653, based on the Phoenix-RTOS

version three. The new approach follows the rules for mixed

safety-critical systems to provide a reliable and robust run-time

environment for the avionics industry.

This chapter focuses on the system architecture to explain

how spatial and time separation is resolved in Phoenix-

RTOS 178. The presented solutions have been developed and

deployed on the Zedboard platform, equipped with a Xilinx

Zynq-7000 dual-core ARM Cortex-A9 processor family.

A. System Architecture

The system architecture consists of a bootloader and a ker-

nel. The first one, Phoenix-RTOS loader (PLO) can be treated

as a first-stage and a second-stage bootloader. Acting as the

first-stage bootloader, PLO configures the memory controllers

and various supported devices on a dedicated platform. It is

also responsible for preparing the board for the kernel and

performing built-in tests (BITs) to check correctness of the op-

eration of the critical peripherals. The second-stage bootloader

loads the operating system and selected partitions from storage

devices to the memory. The fig. 2 shows PLO Command-Line

Interface (CLI). Configuration data about the system setup

is passed to the kernel by a structure called syspage. The

syspage contains all information about board configuration and

partition descriptions compliant with ARINC 653 standard.

The second system’s component is a kernel responsible for

providing spatial and time separation by memory and threads

Fig. 2. Phoenix-RTOS loader running on Zynq-7000.

Fig. 3. Phoenix-RTOS shell running on Zynq-7000.

management modules. The system is startup by the initial

thread being in charge of launching the health monitor, system

and user partitions with resources assigned to them by the

setup data. After the successful initialization phase, the chosen

scheduler algorithm is launched. The fig. 3 shows Phoenix-

RTOS providing interaction with user via Phoenix-RTOS shell.

The essential kernel’s safety-critical mechanisms are described

in the next two chapters.

B. Spatial Separation

The crucial element of the system for critical purposes is

providing spatial separation for partitions. In Phoenix-RTOS

178, this mechanism is implemented using multi maps and

an MMU controller. The multi maps approach allows the

simultaneous use of different memory devices such as on-chip

RAM (OCRAM) or DDR SDRAM. This solution provides

additional physical separation. User is able to use a specific

memory for dedicated purposes. If there is a requirement to

use the memory with a fast access for critical application,

the OCRAM should be chosen. The memory virtualization is

provided by the MMU controller and configured based on the

information about accessible volatile memory described by the

PLO in the syspage.

Another essential element embedded into the memory man-

agement module is a caching policy. Phoenix-RTOS 178

invalidates and cleans executable pages and allows the user

to define uncacheable memory regions independently.

The memory virtualization provides the same linear memory

map for each partition. Switching between them provides an

additional delay in changing the MMU controller’s translation

table. To avoid an overhead, the Address Space Identifier

(ASID) mechanism is added to the memory management

module to assign a memory map to the partition. Furthermore,

the spatial separation is in charge of controlling of the mapping
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Fig. 4. Example of partition and processes scheduling.

I/O devices’ memory to only one partition to not allowing

sharing resources.

C. Time Separation

A robust and reliable scheduling policy is an essential

element of the operating system to perform critical tasks on

time. In an environment compliant with ARINC 653, a two-

level scheduler should be introduced. The fig. 4 shows an

illustrative scheduling policy for mixed-criticality systems.

The first scheduler supervises the partition work. The most

common algorithm for hard real time embedded systems is

the Rate Monotonic (RM) scheduling with a fixed priority

[12]. In the presented example, each partition has: an assigned

priority, WCET, Average Case Execution Time (ACET) and

period. The critical partitions have the highest priority allowing

to preempt the other ones and to meet deadlines. Making a

static analysis using the integration tool, it is possible to verify

whether the system is feasible and all partitions can meet their

deadlines with the assumed values.

The second scheduler is responsible for scheduling pro-

cesses within a partition. The ARINC 653 allows to choose a

dedicated scheduling policy or the default one is selected.

Keeping WCET bounds of partitions depend on the internal

mechanism of the operating system. The common problem for

RM scheduling policy is a priority inversion, causing deadlock

between partitions or processes. To avoid this situation, the

synchronization mechanisms owning dynamic changing pri-

ority to the highest one sharing amongst other partitions or

threads.

D. APEX Interface

Realization of the APEX services in Phoenix-RTOS 178

is performed using systems calls to the kernel. The interface

is implemented in the form of a static library linked to

the partition executive file. The library interface checks the

correctness of the given arguments and passes them via the

Application Binary Interface (ABI) to the kernel running in a

privileged mode.

The microkernel architecture provides a message passing

interface between servers. The communication services like

inter-partition communication use the exact mechanism. The

other ones use a dedicated system calls to perform the action

defined in ARINC 653.

VI. CONCLUSION

In this paper, we presented the research work on the

mechanisms for integrating critical and noncritical software

management by safety operating systems. The growing UAV

market and its application will need to use reliable RTOS

compliant with DO-178C and ARINC 653. Phoenix-RTOS

178, as an open source project, will be the best choice for

manufacturers entering the market with a limited budget.

The presented work shows working Phoenix-RTOS on the

Zynq-7000 platform commonly used in airborne systems. Our

goal was to highlight the basic concepts of mixed criticality

systems and explain the general architecture of Phoenix-

RTOS 178. Future work includes completing time and space

separation mechanisms as well as the APEX interface in

Phoenix-RTOS 178.
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