
Formal verification of security properties of the
Lightweight Authentication and Key Exchange

Protocol for Federated IoT devices

Michał Jarosz
Cybernetics Faculty

Military University of Technology

Warsaw, Poland

michal.jarosz@wat.edu.pl

Konrad Wrona
NATO Cyber Security Centre /

Military University of Technology

The Hague, Netherlands / Warsaw, Poland

konrad.wrona@[ncia.nato.int,wat.edu.pl]

Zbigniew Zieliński
Cybernetics Faculty

Military University of Technology

Warsaw, Poland

zbigniew.zielinski@wat.edu.pl

Abstract—The federated nature of many crucial Internet of
Things (IoT) applications introduces several challenges from a
security perspective. To address critical challenges related to
the authentication and secure communication of IoT devices
operating in federated environments, we propose a new authenti-
cation and key exchange protocol based on a distributed ledger.
Our protocol uses the unique configuration fingerprint of an
IoT device and does not require secure storage in participating
IoT devices. To validate the correctness of our design, we have
performed formal modeling and verification of the security
properties, using two different verification tools: Verifpal and
the Tamarin prover.

I. INTRODUCTION

T
HE APPLICATIONS of Internet of Things (IoT) expand

rapidly to many mission-critical areas, such as smart

health care and Humanitarian Assistance and Disaster Relief

(HADR) [1]. Many of these applications are based on the

concept of federation in which IoT devices operated by

different federated partners must communicate with each other

securely.

Many protocols are used for authentication and key ex-

change between devices described in the literature. An

overview of such protocols is presented in [2]. The proposed

solutions are based on a variety of approaches, including

Public Key Infrastructure (PKI) [3], blockchain [4, 5, 6], and

shared keys [7, 8]. An advantage of our proposal is its focus

on the federated environment, where devices belonging to

one organization (and regulated by its security policy) can

be accessed and used by other organizations belonging to the

federation.

Federating separate IoT administrative domains introduces

several challenges from a security perspective. One of the

fundamental challenges is establishing an effective identity

and access management (IAM) framework, which is necessary

to ensure trust and secure communication between federated

IoT devices [9]. The particularly critical IAM challenge is the

authentication and authorization of federated IoT devices.

To address these challenges, we propose in Section II a

Lightweight Authentication and Key Exchange Protocol for

Federated IoT (LAKEPFI) that supports flexible authenticated

key exchange based on Hyperledger Fabric (HLF) [10]. The

solution uses the unique configuration fingerprint of an IoT

device and does not require secure storage space in partici-

pating devices. Our protocol enables secure communication

of heterogeneous federated IoT devices, including devices

equipped with additional security hardware, such as Physical

Unclonable Functions (PUF) [11], and devices characterized

by very limited computing resources such as Arduino.

Constructing a new security protocol is an error-prone pro-

cess. Therefore, it is essential to verify its security properties

using various techniques. The process of verifying the security

properties of protocols is a common operation. Any protocol

used to communicate with devices must undergo this process.

In this article, we will focus on describing the verification

of the security properties of the developed protocol. For this

purpose, we used two tools: Verifpal and Tamarin. These

tools have previously been used for the verification of some

commonly used IoT communication protocols [12].

In Section III we briefly introduce formal modeling and

verification approaches that can be used to validate the security

properties of LAKEPFI. In Sections IV and V, we present

and discuss formal modeling and verification of the security

properties of LAKEPFI using Verifpal and the Tamarin prover.

In particular, our aim is to prove formally that the designed

protocol provides: 1) message secrecy; 2) message authenti-

cation; 3) freshness.

II. LIGHTWEIGHT AUTHENTICATION AND KEY EXCHANGE

FOR FEDERATED IOT DEVICES

A. Federated IoT architecture

The main goal of the proposed protocol is to establish

efficient and secure communication between devices belonging

to different organizations. The main participants in this pro-

tocol are IoT devices that belong to other organizations and

services on the organization’s side: the application gateway

and distributed ledger.

Fig. 1 shows the general architecture of the components that

are used in the LAKEPFI.

The IoT device consists of two components:

Proceedings of the of the 17th Conference on Computer

Science and Intelligence Systems pp. 617–625

DOI: 10.15439/2022F169

ISSN 2300-5963 ACSIS, Vol. 30

IEEE Catalog Number: CFP2285N-ART ©2022, PTI 617

Fig. 1. Component architecture and interconnection scheme.

1) AA Service (Authentication and Authorization Service),

responsible for communicating with the application gate-

way using the solution we describe;

2) User App, the user application that connects to the

AA service is agnostic to our framework. Each user

application uses a unified interface provided by the AA

service.

Our protocol is an application layer protocol, and although it

can be used in combination with existing lower-level security

protocols to provide increased defense-in-depth, it is agnostic

to these lower-layer protocols. In our proof of concept, for effi-

ciency reasons, Constrained Application Protocol (CoAP) [13]

with Concise Binary Object Representation (CBOR) [14] is

used for communication between the device and the applica-

tion gateway (AG). Communication between the application

gateway and distributed ledger nodes uses Transport Layer

Security (TLS). The application gateway is responsible for the

following:

1) Conversion from CoAP to TLS and vice versa, due

to the fact that Hyperledger Fabric requires TLS with

certificates, while IoT devices must use lightweight

protocols;

2) Filtering out of invalid and malicious messages;

3) Load balancing, therefore, ensuring that the IoT device

does not need to know the whole distributed ledger

architecture, which can change.

The last component is the distributed ledger node, which

stores all smart contracts and has access to all channels. In our

implementation, we used Hyperledger Fabric as a distributed

ledger implementation. The Hyperledger Fabric Node consists

of two services:

1) Peer, responsible for the verification and recording of

transactions in the distributed ledger;

2) Orderer, responsible for the creation of a block.

B. Description of the protocol

The proposed protocol is based on the use of unique

parameters of the IoT device for its authentication. Within

this protocol, three main methods are described:

1) Registration of an IoT device in a distributed ledger;

2) Communication of an IoT device with a distributed

ledger node;

3) Communication between IoT devices, especially those

belonging to different organizations within the federa-

tion.

C. Registration phase

The first operation is device registration. This is required for

the device to communicate with other devices and services.

The registration process can be performed in two different

ways: 1) connect directly to the application gateway; or 2) put

the device at the destination and secure the communication

for the duration of the registration with a one-time login

and password. During the registration phase, the device sends

values to the application gateway for the parameters that define

the device. Each parameter should have an appropriate entropy.

This is a kind of fingerprint from the IoT device. Depending

on the capabilities of the IoT device, the parameters recorded

in the array may include the following:

1) Unique configuration data - in this case, the unique

data of the device is used. It can be hardware data,

e.g., device serial number, memory card serial number,

etc., and it can be software data, e.g., partition IDs, file

system IDs, keys stored on the device,

2) PUF data - data from the PUFs embedded in the IoT

device,

3) Random strings (for example, keys) - in this case, the

device generates random strings with required entropy

and needs to store them securely. This method is used

only if neither 1) nor 2) can be used.

In the first and second cases, the device does not store

the key in its storage; it is enough to hold a program to

obtain values of specific parameters. The device performs

an appropriate operation to obtain parameters, e.g., a system

command to obtain a particular parameter. The second and

third cases are prepared for devices with a minimum of 50 kB

RAM and 250 kB flash memory, that is, the so-called class

C2 [15]. However, in case 2, the device must support PUF.

In the registration process, a set of parameters PA consisting

of its parameters {p1, p2, ..., pn} is written in the distributed

ledger DL. The communication diagram is shown in Fig. 2. As

written in the beginning of this section, there are two options

for securely sending PA from the IoT device A to the applica-

tion gateway AG. After receiving the array PA, the application

gateway AG generates a new identifier IDA for the device A.

The IDA along with the parameter array PA is stored in the

618 PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022

A AG/DL

A AG/DL

PA

IDA, PN, nonce,EA

Fig. 2. Communication between the IoT device and a ledger node during the
registration phase

distributed ledger DL. After the success of storing these data

in the ledger DL, a response is generated to the IoT device A.

In the response, the identifier IDA and the current timestamp

t are sent to the device IDA in encrypted form EA. The

encryption key K is generated by the distributed ledger node

DLi. This key K is the result of a hash function from the con-

catenation of a subset {1, ..., n}: PNDL³A = {n1, n2, ..., nk}
of the parameters K = H(pn1

|pn2
|...|pnk

) sent by the device.

The parameters used for encryption are chosen at random. In

addition to ciphertext EA = E[K;nonce; (IDA, t)], where

E[] is the encryption function to encrypt (IDA, t) using K
and nonce, AG also sends the identifier in plaintext IDA ,

the nonce value nonce, and the identifiers of the parameters

PN = {pn1
, pn2

, ..., pnk
}, whose values were used to create

the key K, are also sent.

Based on the number of parameters PN =
{pn1

, pn2
, ..., pnk

} that are sent in the response, the device

knows which parameters were used to generate the key K so

it can recreate the key K and thus decrypt the message. After

decryption, it checks if the timestamp t sent in reply differs

more than 5 seconds from the current one. Then it checks if

the identifier IDA sent in plaintext and the ciphertext E are

the same. If all these operations were successful, the device

is registered and then uses the received identifier IDA and

the generated set of parameters PA.

D. Communication procedure between IoT device and dis-

tributed ledger node

When a device A communicates with an application gate-

way AG that will perform a task, the device A encrypts the

data data it wants to send to the gateway AG in the same

way as described for the process of generating a response from

the ledger DL during device registration. The communication

diagram is shown in Fig. 3. The device A selects a subset

of parameters {1, ..., n}: PNA³DL = {n1, n2, ..., nk} and

generates a key KA³DL = H(H(pn1
)|H(pn2

)|...|H(pnk
))

from them. The key KA³DL together with the random

generated nonce value nonceA³DL is used to encrypt the

data data and the current timestamp tA³DL: EA³DL =
E[KA³DL; nonceA³DL; (data, tA³DL)]. To the application

gateway AG, device AA sends: an identifier IDA, a nonce

nonceA³DL, parameter numbers PNA³DL that define the

parameters used to generate the key KA³DL and a ciphertext

EA³DL. The application gateway AG sends these data to the

distributed ledger node DLi to decrypt the ciphertext EA³DL.

The distributed ledger node DLi is capable of generating a key

KA³DL based on the number of parameters PNA³DL and

A AG/DL

A AG/DL

IDA, PNA³DL, nonceA³DL, EA³DL

IDA, PNDL³A, nonceDL³A, EDL³A

Fig. 3. Communication between an IoT device and the distributed ledger

the identifier IDA. Using this key KA³DL and the nonce

value nonceA³DL it performs decryption of the ciphertext

EA³DL. The timestamp tA³DL stored in the ciphertext

EA³DL and the current one are verified. If the cipher-

text EA³DL was successfully decrypted and the timestamp

tA³DL is correct, the application gateway AG receives the

encrypted data. Based on data, it determines what should be

executed and performs the requested operation. The response

response is generated in the same way. The device A receives

the identifier IDA, the new nonce value nonceDL³A used

in the response response encryption process, the parameter

numbers PNDL³A that define the parameters used to generate

the key KDL³A and the ciphertext EDL³A = E[KDL³A;

nonceDL³A; (response, tDL³A)]. The device A after receiv-

ing the message is capable of generating the key KDL³A

and thus decrypting the ciphertext EDL³A and getting the

response response.

E. Communication procedure between IoT devices

To communicate with each other, it is necessary to au-

thenticate the devices that want to communicate with each

other and verify that such communication is authorized. The

communication diagram is shown in Fig. 4. The device that

wants to establish communication is the device A with IDA.

This device sends the IDB of the device B to the application

gateway AG. The device A can get the IDB of device B

in many ways, e.g., it can receive the IDB of device B from

another device, it can have a record that needs to communicate

with that device, or device B can announce that it has a

certain type of information. The identifier IDB is secured in a

way that is identical to the data in the device communication

process with the distributed ledger DL described in the

previous subsection. The application gateway AG sends the

request to decrypt to the distributed ledger node DL. The

node DL returns the decrypted identifier IDB . The application

gateway AG then sends a request to create a key KA´B

for communication between devices A and B. DL verifies

based on the rules stored in the DL authorization channel

whether A and B can communicate. If so, then it generates

the key KA´B . To create a key KA´B , DL selects a subset

of k-elements of pn1
, pn2

, ..., pnk
from the parameter array

PB of the device B, which is stored in the ledger. The key

KA´B is constructed similarly to the previous processes; only

in this case is the current timestamp tA´B is also included:

KA´B = H(pn1
|pn2

|...|pnk
|tA´B). The response to device

A must send the key KA´B , timestamp tA´B , and parameter

numbers PNA´B that were created to create the key KA´B .

The response is secured in the same way as in the previous

MICHAŁ JAROSZ ET AL.: FORMAL VERIFICATION OF SECURITY PROPERTIES OF THE LIGHTWEIGHT AUTHENTICATION 619

A AG/DL

A AG/DL

A B

A B

IDA, PNA³DL, nonceA³DL, EA³DL

IDA, PNDL³A, nonceDL³A, EDL³A

IDA, PNA´B , nonceA³B , tA´B , EA³B

IDB , PNA´B , nonceA±B , tA´B , EA±B

Fig. 4. The procedure of communication between IoT devices

cases. The device A decrypts the message in the same way as

in the previous case. If everything is correct, the device A can

now send data to the device B. To do this, it has to generate a

new nonce nonceA³B . Using the key KA´B received in the

response and the nonce value nonceA³B , it can encrypt data
and the timestamp tA´B that will be sent to the device B:

EA³B = E[KA´B ;nonceA³B ; (data, tA³B)]. Then device

A sends to device B: IDA, PNA´B , tA´B ,nonceA³B ,

EA³B .

The device B after receiving the message can decrypt the

ciphertext EA³B because the key KA´B was created by

the distributed ledger node DL based on the parameters PB

of the device B and the timestamp tA´B . Using the key

KA´B and the nonce nonceA³B , the device B decrypts

the ciphertext EA³B . If device B successfully decrypts the

ciphertext EA³B , this means that the key KA´B has been

created by the distributed ledger node DL and, therefore,

has been issued to the authorized entity A. To secure the

response, the device B uses the same key KA´B but with a

new nonce value nonceA±B . Furthermore, the new timestamp

tA±B is generated in ciphertext. The new ciphertext is built:

EA±B = E[KA´B ;nonceA±B ; (result, tA±B)]. Therefore,

the answer contains: IDB , PNA´B , nonceA±B ,
tA´B , EA±B .

III. MODELING AND VERIFICATION

Building a secure communication protocol requires veri-

fication of its security properties. Such properties include,

for example, authentication of the communicating parties, the

confidentiality and integrity of the transmitted data, and the

equivalence property; that is, an attacker cannot distinguish

between any two stages of the protocol.

Formal verification can confirm (or deny) that the protocol is

secure. A protocol can be mathematically formalized by [16]:

1) Symbolic (Dolev-Yao [17]) model, in which crypto-

graphic primitives are represented as black boxes, mes-

sages are terms in these primitives, and the attacker is

restricted to using these primitives. This model makes

the execution of automatic proofs relatively easy. The

symbolic model is robust to attacks if no attack can

occur for each trace. By trace, we mean one run of

the protocol. Research progress on this type of model

is considered highly advanced.

2) Computational model, in which messages are strings of

bits, cryptographic primitives are functions that operate

on these strings, and the attacker is any probabilistic

Turing machine. This mode is generally used by cryp-

tographers. A computational model is robust to attacks

if no attack can occur for every trace except those with

a negligibly small probability. The computational model

is more realistic, but still, since it is only a model, it

will not give us an answer to whether the developed

protocol is resilient to some attacks, such as side-channel

or physical attacks. In the case of computational models,

most of the time, cryptographic properties have to be

proven manually. The proofs in this model are more

difficult to perform and analyze. This type of modeling

is much less mature. Therefore, we did not use this type

of modeling.

It is worth mentioning that, regardless of the modeling

approach used, even minor changes to the protocol require

a revision of the model used for the analysis. Examples of

tools that use the symbolic model include:

1) AVISPA [18] uses a modular and expressive High-Level

Protocol Specification Language (HLPSL). It supports

many back-end tools to verify a model, and the result

of the model verification is easy to interpret. The im-

plemented techniques offer protocol analysis, such as

protocol falsification (by finding an attack on the input

protocol) and abstraction methods for finite and infinite

sessions, among others. AVISPA is currently not widely

used in papers.

2) Verifpal [19] uses an intuitive language to describe the

model and the result is easy to interpret. Verifpal can val-

idate forward secrecy, key compromise, impersonation,

and other advanced queries. It also supports unbounded

sessions, fresh and random values, and other valuable

features of the symbolic model. However, users cannot

define their primitives. It is one of the youngest tools

and is still being actively developed.

3) ProVerif [20], like the previous tools, provided pre-

defined and reusable primitives. However, contrary to

AVISPA and Verifpal, new primitives can also be de-

fined. The way of modeling in ProVerif is similar to

the approach used in Verifpal and AVISPA, but ProVerif

uses a different verification method. If ProVerif checks

that a security property is fulfilled, then it is indeed so,

but ProVerif cannot always prove the properties of the

tested protocol.

4) Tamarin prover [21] in its capabilities and popularity is

similar to ProVerif; Tamarin prover has a different way

of modeling protocols than the other tools. In the case

of the Tamarin prover, we model the rules of transition

between states in the protocol, while every operation

within the protocol is modeled in other protocols. Each

rule in Tamarin prover has an input (describes what it

takes in), an output (what the result is), and facts. The

proof in the case of Tamarin is to verify whether the

620 PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022

lemma we describe is true or not. Similarly to ProVerif,

the Tamarin prover is not always able to prove the

properties of the tested protocol.

For the analysis of our protocol, we have selected Verifpal

and Tamarin. These formal verification tools are described in

more detail in the next section. Both Verifpal and Tamarin

are widely accepted and are currently used by researchers and

practitioners to analyze security protocols. Verifpal supports

fast modeling of a protocol and verification of its basic

properties (message secrecy and authentication). On the other

hand, the Tamarin prover is a more powerful tool that can

allow us to verify a protocol in more detail. Both tools also

verify the model automatically. Note that these tools work

with an unbounded number of sessions, making the problem

undecidable [16].

When modeling a security protocol, several issues need to

be taken into account [22]:

1) One should assume the correctness of low-level cryptog-

raphy mechanisms; for example, when using encryption

or random value generation, one should assume that

these functions work correctly.

2) Appropriate assumptions should be made about external

services, e.g., network services such as time servers and

trusted third parties.

3) Since protocol messages often need to pass through

various middle boxes, such as firewalls and guards, and

the protocol participants may be mobile or connected via

unreliable communication channels, it has to be assumed

that the messages may have different forms or may not

reach the other participant.

4) Some protocols require early negotiation to determine

the cryptographic primitives to be used, which affect

the level of security and performance.

5) The reaction of participants to the occurrence of an

error should be appropriately modeled, as proper error

handling affects the security of the protocol.

Verifpal offers a more native way of writing the protocol,

making it more readable and easier to learn. Verifpal defines

two types of an attacker. The first type is active attacker, which

can intercept all protocol messages, modify them, and inject

his messages. The second type is passive attacker, which can

only intercept messages sent between protocol participants. An

attacker is free to use any combination of actions available

to him. Verifpal has defined cryptographic primitives such as

(a)symmetric encryption, authenticated encryption [23], Diffie-

Hellman key exchange, digital signature, and a secure hash

function. Verifpal does not allow for the definition of addi-

tional cryptographic primitives. The verification result is easy

to interpret; precise information about what has been changed

and what property is not met. Verifpal is one of the few tools

that examines the unlinkability property. Unlinkability is a

situation where for two observed values, the adversary cannot

distinguish between a protocol execution in which they belong

to the same user and a protocol execution in which they belong

to two different users [19].

Tamarin prover offers automatic and interactive theorem

proving models [21]. Although the Tamarin prover automati-

cally generates proofs, user interaction is sometimes required.

The result of the proof itself also brings inconclusiveness to the

problem. The analysis is based on labeled multiset rewriting

rules to specify protocols and adversary capabilities, a guarded

fragment of first-order logic to determine security properties

and functions, and equational theories to model the algebraic

properties of cryptographic protocols. Furthermore, all events

related to security properties are annotated with a time point

t ∈ Q, and a basic comparison of time points can be used.

Tamarin prover applies a constraint-solving algorithm based

on backward search and heuristics that attempts to validate or

falsify security properties. This approach requires significant

knowledge and experience in formal modeling [24]. Therefore,

modeling the protocol using the Tamarin prover is complex,

and the result of model verification is also rather difficult to

interpret.

IV. VERIFPAL

Modeling in the Verifpal tool first involves specifying the

participants (parties) who will use the protocol. In the model

itself, we define what operations a participant will perform

and what data are transmitted between them. Finally, there are

questions about the security properties of the data transmitted

between participants. The role of Verifpal is to confirm the

secrecy of transmitted data, confirm its authentication, and

verify its freshness. Using Verifpal, three LAKEPFI operations

were modeled:

1) Device registration,

2) Communication IoT device with Hyperledger Fabric,

3) Communication IoT device with other IoT device.

In this article, we will only describe in detail the operation

of communicating an IoT device with a Hyperledger Fabric

node because the other operations are very similar to this

one. However, we will discuss model verification results for

all three operations at the end of this subsection. During

modeling, we followed the rules described in the III section.

First, we configure the mode in which the attacker should

operate. In our case, an active attacker can influence the

messages sent. Then, we define what the device knows. The

device DeviceA knows its ID, which is public, so it also

knows HLF (Hyperledger Fabric node) and the attacker.

Additionally, the device knows the secret data dataA it wants

to send. In the real-life protocol flow, the device generates

the parameter numbers paramnumbersAS that are used to

create the key. However, in the case of the protocol model,

these values are not generated, but are sent and therefore must

be included in the message.

The device generates timestamp timestamp and nonce

nonceAS. In a real-life protocol flow, the device would

now generate the keyAS key based on the set of specific

parameter values. However, Verifpal does not allow this oper-

ation. Therefore, keyAS is generated as a random value. The

device concatenates dataA and timestamp. The result of this

MICHAŁ JAROSZ ET AL.: FORMAL VERIFICATION OF SECURITY PROPERTIES OF THE LIGHTWEIGHT AUTHENTICATION 621

concatenation is then encrypted using keyAS and nonceAS.

The result of encryption is the ciphertext EdataAS.

a t t a c k e r [a c t i v e]
p r i n c i p a l DeviceA [
knows p u b l i c ID
knows p r i v a t e dataA
g e n e r a t e s paramnumbersAS
g e n e r a t e s t imes t amp
g e n e r a t e s nonceAS
knows p r i v a t e keyAS
dataToEncryptAS = CONCAT(dataA , t imes t amp)
EdataAS =

AEAD_ENC(keyAS , dataToEncryptAS , nonceAS)
]

The DeviceA sends to HLF the paramnumbersAS,

nonceAS and the ciphertext EdataAS. This information is

learned by the attacker at this point.

DeviceA −> HLF : paramnumbersAS , nonceAS , EdataAS

HLF also knows the key keyAS, which should normally be

generated using paramnumbersAS and a set of parameters.

Then using keyAS and nonceAS it decrypts EdataAS. The

result is split, leading to the data DataAS and the times-

tamp timestampFromA. In real implementation, the current

timestamp is compared with timestampFromA, while in

Verifpal, the ASSERT function does not affect anything.

HLF generates a response reply, which will be sent to

DeviceA. It also generates a new timestamp timestampToA
and paramnumbersSA that, like paramnumbersAS, are

not used but are sent. The reply is concatenated with

timestampToA. The result is encrypted using a new key

keySA and a new value nonceSA. A ciphertext EdataSA
is created. As before, the new key is generated as if it were

a random value, rather than derived from paramnumbersSA
and the parameter array. Of course, the key keySA is marked

as private, so it is not known to the attacker.

p r i n c i p a l HLF[
knows p r i v a t e keyAS
DdataAS = AEAD_DEC(keyAS , EdataAS , nonceAS)
DataAS , timestampFromA = S p l i t (DdataAS)
g e n e r a t e s timestampNow
_ = ASSERT(timestampFromA , timestampNow)
g e n e r a t e s r e p l y
g e n e r a t e s timestampToA
g e n e r a t e s paramnumbersSA
dataToEncryptSA = CONCAT(r e p l y , t imestampToA)
g e n e r a t e s nonceSA
knows p r i v a t e keySA
EdataSA =

AEAD_ENC(keySA , dataToEncryptSA , nonceSA)
]

HLF sends paramnumbersSA, nonceSA, and EdataSA
to DeviceA. At this point, the attacker learns these values.

HLF −> DeviceA : paramnumbersSA , nonceSA , EdataSA

The final step is for DeviceA to decrypt the response.

For this, DeviceA knows the key keySA, which, as in the

previous steps, is not created from paramnumbersSA and

the parameter array. The ciphertext EdataSA is decrypted

using keySA and nonceSA. Finally, the timestamp contained

in the ciphertext is compared with the current one.

p r i n c i p a l DeviceA [
knows p r i v a t e keySA
DdataSA = AEAD_DEC(keySA , EdataSA , nonceSA)
DataSA , timestampFromHLF = S p l i t (DdataSA)
g e n e r a t e s t imestampNowReply
_ = ASSERT(timestampNowReply , timestampFromHLF)
]

The very end of the above listing defines queries concerning

the properties that Verifpal has to check. For each operation,

there are three properties: confidentiality of transmitted data,

authentication of transmitted data, and freshness.

q u e r i e s [
c o n f i d e n t i a l i t y ? da taToEncryptSA
c o n f i d e n t i a l i t y ? da taToEncryptAS
a u t h e n t i c a t i o n ? DeviceA −> HLF : EdataAS
a u t h e n t i c a t i o n ? HLF −> DeviceA : EdataSA
f r e s h n e s s ? EdataAS
f r e s h n e s s ? EdataSA
]

When verifying the registration operation and communication

of the IoT device with the Hyperledger Fabric node, Verif-

pal found no errors and therefore confirmed confidentiality,

authentication, and freshness.

On the other hand, for the third operation, communication

between IoT devices, Verifpal found two errors: failure to

authenticate HLF and lack of freshness when sending data

from HLF to DeviceA. However, both errors are false

positives. In both cases, Verifpal sets the value of nonceSA
to nil (null), and this situation in a real run will return an

error and DeviceA will reject the message. As we mentioned

in Section III, modeling does not assume error handling, and

here we have a good example.

In Verifpal, we had to apply some simplifications:

1) The key is a generated value, not a value generated from

the parameters of device;

2) The parameters themselves are also a generated value

and not a list with numbers;

3) There is no way to compare timestamps (although there

is an ASSERT function, which is not used in Verifpal).

V. TAMARIN PROVER

The approach to modeling in Tamarin prover is quite

different from that in Verifpal. For the Tamarin prover, think

of a protocol as a set of states where information not passed

to another state is forgotten. The conditions themselves are

written as lemmas, which the Tamarin prover verifies. As

with Verifpal, Tamarin prover allowed us to confirm secrecy,

authenticity, and freshness. In the case of the Tamarin prover,

three operations have been modeled:

1) Device registration,

2) Communication IoT device with Hyperledger Fabric,

3) Communication IoT device with other IoT device.

As in Section IV, we will describe in detail the operation

of communicating an IoT device with a Hyperledger Fabric

node. At the end of this section, we present the results for

both operations.

First, we need to define the operations that we will use.

The value after / indicates the number of arguments that the

622 PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022

operation will take. In addition, two functions are defined:

decrypt and verify.

t h e o r y Device2Ledger
b e g i n
f u n c t i o n s :
aead / 3 , d e c r y p t / 2 , v e r i f y / 3 , t r u e / 0
e q u a t i o n s : d e c r y p t (aead (k , p , a) , a , k)= p
e q u a t i o n s : v e r i f y (aead (k , p , a) , a , k)= t r u e

In the first rule, we generate a key that is shared between

two parties. The function Fr means that key is random. Like

Verifpal, here there is no possibility of generating the key as

described in the actual implementation. In the set of facts, we

specify that Client and HLF know our key. We send the

associated client Client with the key key and the HLF node

HLF with the same key to the next state.

r u l e Se tup :
[Fr (~ key)]

−−[I D _ C l i e n t ($ C l i e n t , ~ key) ,
ID_Se rve r ($HLF , ~ key)] − >

[! I d e n t i t y ($ C l i e n t , ~key) ,
! I d e n t i t y ($HLF , ~key)]

The next state takes in a new nonce value nonce that is

generated on input to this state, and two bindings, Client and

HLF with the key key. In the set of facts, we have written

that there is communication between the client and the server

using the key key and the value nonce. The output is a state in

which we send a message from Client to HLF with nonce
and the ciphertext aead(key,2Data2, nonce).

r u l e C l i e n t _ 1 :
[Fr (~ nonce) , ! I d e n t i t y ($ C l i e n t , key) ,
! I d e n t i t y ($HLF , key)]

−−[Cl ient2HLF ($ C l i e n t , $HLF ,
<key , ~ nonce >)] − >

[Out (< $ C l i e n t , $HLF , ~ nonce , aead (key ,
’ Dane ’ , ~ nonce) >)]

The next rule defines a state that takes as input the newly

generated nonce value nonce2, the binding of HLF to key,

and the message from the previous state. In the set of facts, we

define that there is communication between HLF and Client
using key and nonce2, and we verify the message. When

leaving this state, we send a message from HLF to Client
with nonce2 and a response reply encrypted with key and

nonce2.

r u l e HLF_1 :
l e t EncMessage = aead (key , ’ Dane ’ , nonce)
i n
[Fr (~ nonce2) , ! I d e n t i t y ($HLF , key) ,
In (< $ C l i e n t , $HLF , nonce , EncMessage >)]

−−[HLF2Client ($HLF , $ C l i e n t ,
<key , ~ nonce2 >) ,

Eq (v e r i f y (EncMessage , nonce , key) , t r u e
)]−>

[Out (<$HLF , $ C l i e n t , ~ nonce2 ,
aead (key , ’ Respond ’ , ~ nonce2) >)]

In the last rule, we define that the state receives as input a

binding between Client and key, as well as a message from

HLF to Client. In the set of facts, we verify the message.

This state is the final state.

r u l e C l i e n t _ 2 :

l e t EncMessageFromHLF =
aead (key , ’ Respond ’ , nonce2)

i n
[Fr (~ nonce3) , ! I d e n t i t y ($ C l i e n t , key) ,
In (<$HLF , $ C l i e n t , nonce2 , EncMessageFromHLF >
)]

−−[Eq (v e r i f y (EncMessageFromHLF , nonce2 ,
key) , t r u e)] − >

[]

In addition, we have defined some restrictions. The first

two restrictions specify that Client cannot communicate with

Client and HLF cannot communicate with HLF . In Deny-

Client2Client, we define that when Client sends a message to

HLF , Client cannot create a message and send it to itself.

Similarly, in the DenyServer2Server constraint, we specify that

a HLF node cannot send a message to itself.

r e s t r i c t i o n D e n y C l i e n t 2 C l i e n t :
"
A l l C l i e n t HLF key nonce # i . (

Cl ient2HLF (C l i e n t , HLF, < key , nonce >) @ # i
& n o t (C l i e n t = HLF)

) ==> n o t (Ex # j nonce2 .
Cl ient2HLF (C l i e n t , C l i e n t , < key , nonce2 >) @j)
"
r e s t r i c t i o n D e n y S e r v e r 2 S e r v e r :
"
A l l C l i e n t HLF key nonce # i . (

HLF2Client (HLF , C l i e n t , < key , nonce >) @ # i
& n o t (C l i e n t = HLF)

) ==> n o t (Ex # j nonce2 .
HLF2Client (HLF , HLF, < key , nonce2 >) @j)
"

For the dual_clients restriction, we specify that there do not

exist two Clients with the same key.

r e s t r i c t i o n d u a l _ c l i e n t s :
"
A l l C l i e n t key # i . (

I D _ C l i e n t (C l i e n t , key) @ # i
) ==> n o t (Ex # j C l i e n t 2 .
I D _ C l i e n t (C l i e n t 2 , key) @j))
"

The first lemma defines the secrecy of the key. For each

Client, HLF , Key, two nonces and two moments i and j
in the situation: when there is a connection of Client to HLF
at moment i and HLF to Client at moment j and moment

j is after i and Client cannot also be HLF then there is no

such moment k that there is a revealed Key at moment k.

lemma Key_Secrecy :
"
A l l C l i e n t HLF Key nonce nonce2 # i # j . (
Cl ient2HLF (C l i e n t , HLF, <Key , nonce >) @ # i &
HLF2Client (HLF , C l i e n t , <Key , nonce2 >) @ # j &
i < # j &
n o t (C l i e n t = HLF)
)==> n o t (Ex #k1 . K(Key) @ #k1)
"

In the second lemma, we check the freshness. For each

client Client and node HLF and key t and two moments i
and j in the situation: when there is a connection from Client
to HLF at moment i and HLF to Client at moment j and

moment j is after i where there are:

MICHAŁ JAROSZ ET AL.: FORMAL VERIFICATION OF SECURITY PROPERTIES OF THE LIGHTWEIGHT AUTHENTICATION 623

1) There is no such user Client2 at moment i1 that there

is communication from Client2 to HLF with the same

key KeyCH at moment i1 when i is equal to i1;

2) There is no user HLF2 at moment j1 that there is

communication from HLF2 to Client with the same

key KeyHC at moment j1 when j is equal to j1.

lemma f r e s h n e s s :
"
A l l C l i e n t HLF KeyCH KeyHC # i # j . (
Cl ient2HLF (C l i e n t , HLF , KeyCH) @ # i &
HLF2Client (HLF , C l i e n t , KeyHC) @ # j &
i < # j &
n o t (C l i e n t = HLF)
)==> (n o t (Ex C l i e n t 2 # i 1 .
Cl ient2HLF (C l i e n t 2 , HLF , KeyCH)

@i1 & n o t (# i 1 = # i)) & n o t (Ex HLF2 # j 1 .
HLF2Client (HLF2 , C l i e n t , KeyHC)

@j1 & n o t (# j 1 = # j)))
"

For Client authentication, you need to prove that Client
has a key that is used to protect the data before sending them.

To do this, we have defined that for any Client, HLF , nonce,

and nonce2, at moments i and j, there is a communication

between Client and HLF where HLF sends a response to

the request of Client and there is always a moment k such that

Client has the key that was used to secure the communication

before starting that communication.

lemma a u t h _ C l i e n t :
"
A l l C l i e n t HLF key nonce nonce2 # i # j . (
Cl ient2HLF (C l i e n t , HLF, < key , nonce >) @ # i &
HLF2Client (HLF , C l i e n t , < key , nonce2 >) @ # j &
i < # j &
n o t (C l i e n t = HLF)
)==> Ex # l . I D _ C l i e n t (C l i e n t , key)

@l & # l < # i
"

The same is true for HLF authentication; it must also have

key before communication can begin where key is used.

lemma auth_HLF :
"
A l l C l i e n t HLF key nonce nonce2 # i # j . (
Cl ient2HLF (C l i e n t , HLF, < key , nonce >) @ # i &
HLF2Client (HLF , C l i e n t , < key , nonce2 >) @ # j &
i < # j &
n o t (C l i e n t = HLF)
)==> Ex #k . ID_Se rve r (HLF , key)@k & #k < # i
"

In the Tamarin prover, we used the same simplifications as

in Verifpal:

1) The key is a generated value, not a value generated from

the parameters of devic;

2) The parameters themselves are also a generated value

and not a list with numbers;

3) There is no way to compare timestamps.

As with Verifpal, Tamarin prover also confirmed key se-

crecy, freshness, and authentication of the Client and the

HLF node during communication of the IoT device with

the Hyperledger Fabric node. We also verified secrecy, au-

thentication, and message freshness for the other operations.

In both cases, the result was positive. Both tools enforced

identical constraints on us. Using the two tools allowed us to

confirm that the protocol we developed is secure and provides

the required security features. Using two tools reduced the

probability that our proposed protocol did not meet our criteria

because both tools use different deduction mechanisms.

VI. CONCLUSIONS AND FUTURE WORK

We have performed a formal modeling of the LAKEPFI

protocol and presented the results of the analysis of its security

properties. For our modeling and analysis, we have used

two complementary formal verification tools, Verifpal and

Tamarin. By choosing tools that use significantly different pro-

tocol models, we tried to minimize the possibility of erroneous

verification. Based on the models developed using these tools,

we verified the security properties of the protocol, such as

message secrecy, authentication, and freshness. The choice of

tools used to verify the protocol was not straightforward. We

did not find a tool that was able to completely model our

protocol. After testing many tools, we chose two that were

closest to meeting our requirements. The difficulty in modeling

our protocol lies mainly in generating the key to authenticate

communication.

In the case of both tools, successful modeling of LAKEPFI

required introducing some specific assumptions and simplifi-

cations. For example, the key is a randomly generated value;

not a value generated explicitly from the device parameters.

We have previously checked the randomness property of the

created keys and, therefore, consider this assumption valid.

Another limitation is that it is impossible to generate an array

and randomly select the values from which the key should

be created. Therefore, the array indexes are sent explicitly,

which may affect the verification results. The final limita-

tion is the inability to compare timestamps. In Verifpal, the

possibility of evaluating values of timestamps is limited to

the (unused) ASSERT function, while in Tamarin, one can

define which events follow each other in time. However,

one cannot compare the variables that store timestamps. The

result of the time comparison influences the result of the

execution of the protocol. If their difference is too significant,

the message is considered invalid. Moreover, both tools that

we used verify symbolic models. A symbolic model abstracts

away the details of cryptographic operations and does not

consider all implementation details, which could be seen as

its limitation.

As part of future work, we plan to verify selected security

properties of the LAKEPFI protocol in the computational

model and validate the correctness and security of our imple-

mentation of the protocol. We also plan to test the performance

of the protocol by experimenting with different use cases and

configurations of the federated IoT environment.

ACKNOWLEDGMENT

This work has been partially funded by the NATO Allied

Command Transformation Innovation Programme of Work

and by the SEMACITI project, sponsored by the Ministry

624 PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022

of Defense of Republic of Poland as part of the Kościuszko

Programme.

REFERENCES

[1] N. Suri et al. “Exploring Smart City IoT for Disaster

Recovery Operations”. In: Internet of Things (WF-IoT),

2018 IEEE 4th World Forum on. IEEE. 2018, pp. 463–

468.

[2] P. K. Panda and S. Chattopadhyay. “A secure mutual au-

thentication protocol for IoT environment”. In: Journal

of Reliable Intelligent Environments 6.2 (June 2020),

pp. 79–94.

[3] Z. Qikun et al. “Multidomain security authentication for

the Internet of things”. In: Concurrency and Computa-

tion: Practice and Experience ().

[4] U. Khalid et al. “A decentralized lightweight

blockchain-based authentication mechanism for

IoT systems”. In: Cluster Computing 23.3 (2020).

[5] G. Shaoyong et al. “Master-slave chain based trusted

cross-domain authentication mechanism in IoT”. In: J

of Network and Computer Applications 172 (2020).

[6] C. Chen et al. “A secure blockchain-based group key

agreement protocol for IoT”. In: The Journal of Super-

computing (Feb. 2021).

[7] M. Santos et al. “FLAT: Federated lightweight authenti-

cation for the Internet of Things”. In: Ad Hoc Networks

107 (2020).

[8] M. Alshahrani and I. Traore. “Secure mutual authentica-

tion and automated access control for IoT smart home

using cumulative Keyed-hash chain”. In: J of Inf Sec

and App 45 (2019), pp. 156–175.

[9] N. Kshetri. “Can Blockchain Strengthen the Internet of

Things?” In: IT Professional 19.4 (2017), pp. 68–72.

[10] N. Haur et al. Building decentralized applications with

Hyperledger Fabric and Composer. Packt Publishing,

2018.

[11] A. Babaei and G. Schiele. “Physical Unclonable Func-

tions in the Internet of Things: State of the Art and

Open Challenges”. In: Sensors 19.14 (2019).

[12] K. Hofer-Schmitz and B. Stojanović. “Towards formal

verification of IoT protocols: A Review”. In: Computer

Networks 174 (2020), p. 107233.

[13] C. B. Z. Shelby K. Hartke. The Constrained Application

Protocol (CoAP). Request for Comments (RFC) 7252.

IETF, 2014.

[14] C. Bormann and P. Hoffman. Concise Binary Object

Representation (CBOR). RFC 7049. IETF, Oct. 2013.

[15] C. Bormann, M. Ersue, and A. Keranen. Terminology

for Constrained-Node Networks. Request for Comments

(RFC) 7228. IETF, May 2014.

[16] B. Blanchet. “Security Protocol Verification: Symbolic

and Computational Models”. In: Principles of Security

and Trust. Berlin, Heidelberg: Springer Berlin Heidel-

berg, 2012, pp. 3–29.
[17] D. Dolev and A. Yao. “On the security of public

key protocols”. In: IEEE Transactions on Information

Theory 29.2 (1983), pp. 198–208.

[18] A. Armando et al. “The AVISPA Tool for the Au-

tomated Validation of Internet Security Protocols and

Applications”. In: Computer Aided Verification. Ed. by

K. Etessami and S. K. Rajamani. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2005, pp. 281–285. ISBN:

978-3-540-31686-2.

[19] N. Kobeissi. Verifpal User Manual. Manual. Symbolic

Software, 2021. URL: https : / / verifpal . com / res / pdf /

manual.pdf.

[20] B. Blanchet et al. ProVerif 2.04: Automatic Crypto-

graphic Protocol Verifier, User Manual and Tutorial.

2021.

[21] D. Basin et al. “Symbolically Analyzing Security Pro-

tocols Using Tamarin”. In: ACM SIGLOG News 4.4

(2017).

[22] M. Abadi. Security Protocols and their Properties.

2001.

[23] H. Krawczyk. “The Order of Encryption and Authenti-

cation for Protecting Communications (or: How Secure

Is SSL?)” In: Proceedings of the 21st Annual Interna-

tional Cryptology Conference on Advances in Cryptol-

ogy. CRYPTO ’01. Berlin, Heidelberg: Springer-Verlag,

2001, pp. 310–331.

[24] A. Zanatta. Comparison of Tools for the Verification of

Cryptographic Protocols. 2021. URL: https : / / github .

com/AlessandroZanatta/Verification-of-Cryptographic-

Protocols.

MICHAŁ JAROSZ ET AL.: FORMAL VERIFICATION OF SECURITY PROPERTIES OF THE LIGHTWEIGHT AUTHENTICATION 625

