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Abstract—In this article we study the theoretical properties
of Three-way Decision (TWD) based Machine Learning, from
the perspective of Computational Learning Theory, as a first
attempt to bridge the gap between Machine Learning theory
and Uncertainty Representation theory. Drawing on the math-
ematical theory of orthopairs, we provide a generalization of
the PAC learning framework to the TWD setting, and we use
this framework to prove a generalization of the Fundamental
Theorem of Statistical Learning. We then show, by means of our
main result, a connection between TWD and selective prediction.

I. INTRODUCTION

IN the recent years, there has been an increasing interest

toward exploring the connections between learning theory

and different uncertainty representation theories: This trend

includes both the generalization of standard learning-theoretic

tools and techniques to settings that involve representation

formalisms that are more general than probability theory [1],

[2], as well as the theoretical study of algorithms inspired by

uncertainty representation [3], [4].

Among other uncertainty representation theories, Three-way

decision (TWD) is an emerging computational paradigm, first

proposed by Yao in Rough Set Theory [5], based on the

simple idea of thinking in three “dimensions” (rather than in

binary terms) when representing and managing computational

objects [6]: in the Machine Learning (ML) [7] setting, this

notion is usually declined in terms of allowing ML models to

abstain. This approach attracted a large interest, also justified

by promising empirical results in different ML tasks such

as active learning [8], [9], cost-sensitive classification [10],

clustering [11], [12], [9]. Despite these promising empirical

results, the theoretical foundations of TWD-based ML re-

ceived so far little attention [13], [14]. Indeed, even though, in

the recent years, there has been an increasing interest toward

generalizing computation learning theory (CLT) to cautious

inference methods such as selective prediction [15] or the

KWIK (Knows what it Knows) framework [16], such results

cannot be easily applied to the TWD setting: While in the

TWD setting abstention is a property of single classifiers; in

the latter two frameworks abstention is usually achieved by

consensus voting.

In this article, we study the generalization of a standard

CLT mathematical framework, the so-called Probably Ap-

proximately Correct (PAC) learning framework, to the TWD

setting: In particular, we will provide a generalization of the

Fundamental Theorem of Learning to the TWD setting, and we

show that our result generalizes previous results in the selective

prediction setting. More in detail, the rest of this article is

structured as follows: In Section II we provide the necessary

mathematical background on TWD (in Section II-A) and CLT

(in Section II-B); in Section III we describe the generalization

of the PAC learning framework to the TWD setting and we

prove our main result; finally, in Section IV, we summarise

our contribution and describe possible research directions.

II. BACKGROUND

A. Three-way Decision and Orthopairs

In this work we will refer to the formalization of TWD-

based ML models (in the following, TW Classifiers) as or-

thopairs:

Definition 1. An orthopair [17] over the universe X (which

represents the instance space) is a pair of sets O = (P,N)
such that P,N ⊆ X and P ∩N = ∅, with P and N standing,

respectively, for positive and negative. The boundary is defined

as Bnd = (P ∪N)c.

An orthopair represents an uncertain concept: Specifically,

the status of the elements in the boundary is uncertain (i.e.,

it is not known whether they belong to the concept). Thus, a

given orthopair stands as an approximation for a collection of

consistent concepts:

Definition 2. We say that an orthopair O = (P,N) is

consistent with a concept C ⊂ X if x ∈ P =⇒ x ∈ C
and x ∈ N =⇒ x /∈ C.

Finally, we remark that it is possible to define different

orderings between orthopairs: In particular, O2 is less infor-

mative than O1, denoted O2 ≤I O1 if P2 ⊆ P1 and N2 ⊆ N1.

B. Computational Learning Theory

Computational Learning Theory [18] (CLT) refers to the

branch of Machine Learning and Theoretical Computer Sci-

ence focusing on the theoretical study of learning algorithms.

Various mathematical formalisms have been proposed toward

this goal, in this article we will refer to the PAC (probably

approximately correct) learning framework, first proposed

in [19]. Formally, let X be the instance space and Y be

the target space, in this article we will focus on the binary

classification setting, that is Y = {0, 1}. We assume that the

observable data is generated i.i.d. according to an unknown

probability distribution D over X×Y . Let H be a hypothesis
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class, that is a collection of functions h : X 7→ Y , we define

the true risk of h w.r.t. D as:

LD(h) = ED [l(h(x), y)] =

∫

X×y

l(h(x), y)dD(x, y) (1)

where l : Y 2 7→ R+ is a loss function. Since D is unknown,

the true risk cannot be computed: It is usually approximated

through the so-called empirical risk based on a sample, called

training set, S = (〈x1, y1〉, . . . , 〈xm, ym〉):

LS(h) =
1

m

m
∑

i=1

l(h(xi), yi) (2)

Given a training set S, we denote by SX the tuple SX =
(x1, ..., xm), and by SY the tuple SY = (y1, ..., ym). The

Empirical Risk Minimization w.r.t. the hypothesis class H
is the family of algorithms ERMH,m : (X × Y )m 7→
H s.t. ERMH,m(S) ∈ argminh∈HLS(h), where S =
(〈x1, y1〉, . . . , 〈xm, ym〉) is the training set.

The Fundamental Theorem of Learning [20] establishes a

relation between the true risk and empirical risk for the ERM
algorithm w.r.t. a hypothesis class H which depends only on

the so-called VC dimension, a combinatorial dimension of the

complexity of H.

Theorem 1. Let H be a hypothesis class with VC dimension

d. For each ε, δ ∈ (0, 1) and distribution D, then if ERMH

is given a dataset S of size m ≥ n0, with

n0 = O(
d+ ln( 1

δ
)

ε2
) (3)

with probability greater than 1 − δ, it holds that

|LD(ERMH(S)) − LS(ERMH(S))| ≤ ε. If, further, the

realizability1 assumption holds, then, if S is a dataset of size

m ≥ n1, with

n1 = O(
d+ ln( 1

δ
)

ε
) (4)

with probability greater than 1 − δ, it holds that

LD(ERMH(S)) ≤ ε.

Few works have studied the generalization of CLT results to

hypothesis that can be described as orthopairs (that is, classi-

fiers that can abstain on selected instances), mainly under the

framework of selective prediction [21]: In this setting, the goal

is to design learning algorithms AH,m : (X × Y )m 7→ OH,

where OH ⊆ TW (H) (see Eq. (15)), s.t. LD(A(S)) = 0
but A(S) is allowed to abstain on certain instances. This

abstention is usually achieved either by the combination of

a standard hypothesis h : X → Y with a rejection function

r : X → {⊥,>}, or, equivalently, by consensus voting

based on a version space V ⊆ H [21]. As we show in

the following sections (specifically, in Section III-A) the

setting we consider is a proper generalization of selective

prediction. More recently, the application of orthopairs in

CLT has been studied in the setting of adversarial machine

learning [22], as well as to characterize the generalization

1Here realizability means that ∃h ∈ H s.t. LD(h) = 0.

capacity of hypothesis classes under generative assumptions

[23]. We note, however, that even though the above mentioned

work and the framework we study in this article rely on the

representation formalism of orthopairs, the aims of these three

frameworks are essentially orthogonal, also in terms of the

mathematical techniques adopted: Indeed, while the three-way

learning framework we study relies on a generalization of the

ERM paradigm, the frameworks studied in [23], [22] rely on

a transductive learning approach.

III. THREE-WAY LEARNING

In this Section, we provide a first study of a generalization

of standard Computational Learning Theory to the setting of

TW Classifiers. As hinted in Section II-A, we will represent

a TW Classifier as an orthopair O; then, a hypothesis space

of TW Classifier will be represented as a collection O of or-

thopairs over X . In the TWD literature, the risk of a TW Clas-

sifier is usually evaluated by means of a cost-sensitive gener-

alization of the 0-1 loss: lTW (O(x), y) =











1 O(x)⊥y

λa x ∈ BndO

0 otherwise

,

where λa ∈ [0, 0.5) is the cost of abstention, and O(x)⊥y is

the error case, that is (x ∈ PO ∧ y = 0) ∨ (x ∈ NO ∧ y = 1).
Compared to the standard definition of risk adopted in the

TWD literature we assume that the cost of error is always 1.

Based on the loss function lTW we can define both the true

risk LTW
D and the empirical risk LTW

S . Evidently, the risk of

O can be decomposed as the sum of two functions:

LTW
D (O) = ED [lTW (O(x), y)]

= ED

[

1O(x)⊥y

]

+ λaED [1x∈BndO
]

= Prx∼D(O(x)⊥y)

+ λa · Prx∼D(x ∈ BndO)

(5)

The same decomposition can be similarly applied for the

empirical risk. Let ED(O) = Prx∼D(O(x)⊥y) and AD(O) =
λa · Prx∼D(x ∈ BndO). We denote with OOPT = {O ∈
O : ED(O) = minO′∈OED(O

′)}. We say that D is weakly

realizable w.r.t. O if ∀O∗ ∈ OOPT it holds that ED(O
∗) = 0.

If, furthermore, ∃O∗ ∈ OOPT s.t. AD(O
∗) = 0, then we

say that D is strongly realizable. Through this article, we

will assume only weak realizability. Compared to the real-

izability assumption, weak realizability assumption is indeed

much weaker. As an example if the vacuous TW classifier

O⊥ = (∅, ∅) ∈ O, then every distribution D is trivially weakly

realizable w.r.t O, while it is clearly not strongly realizable.

Let ε ∈ (0, 1), α ∈ (0, λa), then O ∈ O makes an (ε, α)-
failure if one of the following holds:

ED(O) > ε, AD(O) > minO∈OOPTAD(O) + α (6)

Thus, O (ε, α)-fails if either its error is greater than ε, or if its

abstention rate is greater, by a margin of at least α, than the

lowest abstention rate among those TW Classifiers that make

no error. We thus define the notion of Three-way learnability:

Definition 3. O is Three-way learnable if exists an algorithm

Cm : (X × Y )m 7→ O and mO : (0, 1)2 × (0, λa) 7→ N such
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that, for each distribution D, ε ∈ (0, 1), δ ∈ (0, 1), α ∈ (0, λa)
∀m ≥ mO(ε, δ, α) , and given S ∼ Dm, C returns O ∈ O,

s.t. O (ε, α)-fails with probability lower than δ

We then want to provide a characterization for TW learn-

ability, similar to Theorem 1. For this purpose, we first define

a generalization of the ERM algorithm to the TWD setting,

that we call Three-way Risk Minimization (TW-RM):

Definition 4. Let S ∈ (X × Y )m. Then,

TWRM(S) = argmaxO∈OAX\SX
(O) s.t.

ES(O) = minO′∈OES(O
′)

AS(O) = minO′∈OOPTAS(O
′)

(7)

Thus, the TWRM algorithm selects, among those TW clas-

sifiers with minimal empirical risk, the TW classifier with

maximal abstention rate on the non-observed instances (that is,

the instances in X\SX ). This has the goal of minimizing errors

on non-observed instances, and is analogous to the maximum

margin principle, and the disagreement coefficient in version

space learning, active learning and selective prediction [15].

In order to characterize TW learnability, given hypothesis

class O (i.e. a collection of orthopairs), we define two derived

hypothesis classes. Given any orthopair O ∈ O we can define

a classifier hO : X 7→ {0, 1}, as: hO(x) =

{

1 x ∈ BndO

0 otherwise
.

We denote the collection of such binary classifiers as HO =
{hO : O ∈ O}. Thus, given O, the derived hypothesis class

HO describes the abstention capacity of O: In the classical

setting HO = {h0}, where ∀x ∈ X , h0(x) = 0, as no

classifier in O is able to abstain: For all O ∈ O, BndO = ∅.

In regard to the second derived hypothesis class, we observe

that the order ≤I defined in Section II-A defines a meet semi-

lattice [17] on O with minimal element O⊥ = (∅, ∅). Then,

we denote with O> = {O ∈ O : @O′ ∈ O s.t O ≤I O′}, i.e.

O> is the anti-chain of maximally informative elements of O.

We now prove a generalization of Theorem 1 to the TWD

setting, through which we show that the TW learnability of

a hypothesis class O, using the TWRM algorithm, can be

characterized in terms of the derived hypothesis classes HO

and O>. In order to do so, we consider the VC dimension of

the two derived hypothesis classes HO and O> as follows:

AV C(O) = V C(HO) (8)

EV C(O) = sup{|S| : S ⊆ X ∧ ∀C ⊆ S.∃O ∈ O (9)

s.t. C = (PO ∩ S) ∧ (BndO ∩ S) = ∅}

Then, the following result holds:

Theorem 2. Let O be s.t. AV C(O) = da and EV C(O) =
de. Then, for any distribution D weakly realizable w.r.t O,

ε, δ ∈ (0, 1), α ∈ (0, λa), if TWRMO is given a dataset of

size m larger than :

O

(

max

{

1

ε

(

de + ln
1

δ

)

,

(

λa

α

)2(

da + ln
1

δ

)

})

(10)

then, TWRMO(S) (ε, α)-fails with probability lower than δ.

Proof. We want to guarantee that the following bound holds:

Prfail = P (S : ∃O ∈ O ∧

|ED(O)− ES(O)| > ε ∨

|AD(O)−AS(O)| > α) < δ (11)

Then, the results would follow by uniform convergence. By

the union bound, it holds that:

Prfail ≤ Pr(S : ∃O ∈ O, |ED(O)− ES(O)| > ε)

+ Pr(S : ∃O ∈ O, |AD(O)−AS(O)| > α),
(12)

thus, it is sufficient to jointly upper bound the two summands

by δ
2 . As regards the error rate (i.e E) bound, we note that:

Pr(S : ∃O ∈ O, |ED(O)− ES(O)| > ε)

Pr(S : ∃O ∈ O>, ED(O) > ε)
(13)

Since O> is a binary hypothesis class, then, by Theorem 1, the

above bound holds with probability greater than 1− δ as long

as |S| ≥ 1
ε

(

de + ln 1
δ

)

. Furthermore, by uniform convergence

this holds, in particular, for TWRMO(S).
For the abstention part, the same line of reasoning can be

applied, however, as we only assume weak realizability, only

the result in Theorem 1 that applies to agnostic learning can

be used. Then, as long as |S| ≥
(

λa

α

)2 (
da + ln 1

δ

)

it holds

that |AD(O) − AS(O)| < α with probability greater than

1−δ. This holds, in particular for TWRMO(S), and thus the

theorem follows by uniform convergence and Eq. (12).

As a simple corollary, in the strong realizable setting, it can

be easily verified that:

Corollary 1. Let O be s.t. AV C(O) = da and EV C(O) =
de. Then, for any distribution D strongly realizable w.r.t O,

ε, δ ∈ (0, 1), α ∈ (0, λa), if TWRMO is given a dataset of

size m larger than :

O

(

max

{

1

ε

(

de + ln
1

δ

)

,
λa

α

(

da + ln
1

δ

)})

(14)

then, TWRMO(S) (ε, α)-fails with probability lower than δ.

Note that, if |O| < ∞, then it can be easily shown

that AV C(O) ≤ log2(HO). Furthermore, it also holds that

EV C(O) ≤ log2(O
>), as if O satisfies Eq. (8), then it

obviously holds that BndO = ∅ and hence O ∈ O>.

A. Three-way Learning and Selective Prediction

Finally, we show that the proposed mathematical frame-

work and the obtained results can be used to establish a

connection between TWD and selective prediction. This result

relies on the connection between version space theory and

orthopairs [17], and allows us to derive a generalization

bound, originally proven by El-Yaniv et al. [21], for selective

prediction: This shows that the latter setting can be understood

as a special case of TWD. Let H be a hypothesis class of

binary classifiers, we call the Three-way Closure of H, denoted

as TW (H), the hypothesis space obtained as:

TW (H) =
⋃

{OH : H ⊆ H} (15)
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where, for each H ⊆ H, OH = ({x : ∀h ∈ H.h(x) =
1}, {x : ∀h ∈ H.h(x) = 0}). Basically, we associate with

each possible version space H in H a corresponding orthopair

OH which abstains on every instance for which the hypotheses

in H disagree [17]. Then we can prove the following result:

Corollary 2. Let |H| < ∞, let O = TW (H) the Three-way

Closure of H, and let λa = 1. Then, for any distribution D
strongly realizable w.r.t O, and for any δ ∈ (0, 1), if TWRMO

is given a dataset of size m, then:

1) With probability 1 it holds that ED(TWRMO(S)) = 0;

2) With probability greater than 1− δ it holds that:

AD(TWRMO(S)) ≤ O

(

1

m
ln

(

|HO|

δ

))

(16)

= O

(

1

m

(

|H|+ ln
1

δ

))

(17)

Proof. The first equality easily follows from strong realiz-

ability and by noting that, by definition of TW (H), x /∈
BndTWRMO(S) iff (x ∈ SX ∨ ∃v ∈ {0, 1}.∀h ∈ {h′ ∈
H : ES(h) = 0}, h(x) = v). In regard to the second

statement, the first inequality follows by standard algebraic

manipulations. The equality, on the other hand, follows by

noting that |HO| = 2H (as TW (H) contains a TW classifier

for each possible subset of hypotheses in H).

IV. CONCLUSION

In this article, we aimed at providing an initial study on

the generalization of CLT results to the TWD setting. To

this purpose, we first proposed an extension of the standard

PAC learning framework to the TWD setting, that we called

Three-way Learning and showed that our results generalize the

previously known results in the selective prediction literature.

As our results represent only a first direction in the theoretical

study of TWD as applied to Machine Learning, we believe

that the following questions would be of particular interest:

• Our analysis in Theorem 2 relies on a generalization of

the VC dimension to the TWD setting. Tighter bounds

can usually be obtained by relying on concepts such as

Rademacher complexities or covering numbers [18]. How

can these be generalized to TWD?

• In Corollary 2 we proved that, in the realizable case,

selective prediction can be understood as a special case

of TWD learning. Does this analysis also applies to the

agnostic (i.e. non-realizable) setting [15]?

• PAC-Bayes bounds [24] study generalization bounds that

apply when a probability distribution is defined over the

hypothesis space. How can the PAC-Bayes framework

be generalized to TWD? Interestingly, a very similar

open problem has recently been posed also in Belief

Function Theory (BFT) [25]. Due to the connection with

random sets, a belief function can be seen as a probability

distribution over orthopairs [26]: Then, the generalization

of the PAC-Bayes framework to TWD would also enable

studying the relationships between TWD and BFT.
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