
Increasing data availability and fault tolerance for

decentralized collaborative data-sharing systems

Kamil Jarosz∗, Łukasz Opioła†, Łukasz Dutka†, Renata G. Słota∗, and Jacek Kitowski∗†

∗ AGH University of Science and Technology,

Faculty of Computer Science, Electronics and Telecommunications,

Institute of Computer Science, Krakow, Poland

Emails: {kamil.jarosz, renata.slota, jacek.kitowski}@agh.edu.pl
† Academic Computer Centre CYFRONET AGH, Krakow, Poland

Emails: lopiola@agh.edu.pl, lukasz.dutka@cyfronet.pl

Abstract—In order to realize collaboration on a global scale,
academic research requires often large quantities of data to
be shared between geographically dispersed organizations. The
requirement to protect and govern data in a network of loosely
coupled, autonomous institutions is an incentive for decentralized
solutions, where the participants are in full control of their data
without trusting a third-party provider to store and process the
data. In order to increase data availability and fault tolerance in
decentralized collaborative systems, we propose a layer, which is
based on replication and decentralized authority over the data.
The solution consists of an idea of peer-sets, which are groups
of peers implementing collective data management, a consensus
protocol which synchronizes a distributed ledger between peers,
and an atomic commitment protocol used to implement optional
two-way references between documents. This architecture may
be utilized in various decentralized collaborative data-sharing
systems, such as Onedata.

I. INTRODUCTION

D
EMAND for global data access and data availability is

growing due to increasing globalization and scale. It is

especially evident in research, where often large quantities of

data need to be shared upon request easily between geograph-

ically dispersed groups of people. High data availability and

safety is usually a requisite in order to perform large scale

computations. For instance, the eXtreme-DataCloud project [1]

developed smart orchestration tools and building blocks of

software, which provide storage federation with transparent

or quasi-transparent data access for large and geographically

distributed datasets. This project was dedicated to prominent

research communities from various domains: LifeScience,

Biodiversity, Clinical Research, Astrophysics, High Energy

Physics, and Photon Science.

Collaboration between researchers may be backed by sci-

entific organizations, which are autonomous and often do not

have any written agreements between them. Each organization

manages its own data, which may reside on various storage

systems in different clouds. The requirement to protect and

govern their data in a network of loosely coupled, autonomous

institutions makes it difficult to constrain data sharing software

to be centralized. Instead, decentralized solutions are more

suitable in such cases, because the participants are in full

control of their data and they may decide what is shared to

whom, without trusting a third-party provider to store and

process the data. Examples include ScienceMesh [2], which

tries to connect existing storage systems and services using

a common API, or Onedata [3], which delivers a service

allowing to create a global network of independent storage

providers.

High data availability in collaborative systems is crucial,

but is also more difficult to accomplish in decentralized

environments. When a party experiences a failure, all of

its data becomes unavailable to others, whom parts of the

data have been shared with. The problem is more complex,

because not only may collaborators want to access the shared

data, but also modify it—all of it during the outage of the

original organization’s infrastructure. These scenarios show a

demand not only for decentralized architecture of data sharing

systems, but also for decentralized authority over shared data,

i.e. a possibility to modify it collectively by each one of its

owners—collaboration between organizations often results in

a joint work, and it is not uncommon for people to be parts of

multiple organizations at once. In this paper, we propose an

architecture of a layer of data-sharing systems, which ensures

high availability and fault tolerance, and is based on a global,

decentralized network of peers. The novelty of our proposal

lies in dividing the global network into smaller peer-sets,

which allow unrestricted global collaboration, at the same time

limiting the flow of information between peers to the required

minimum.

II. RELATED WORK

The concept of decentralized collaboration and data-sharing

has been studied for years. Onedata is an important exam-

ple, the goal of which is to achieve collaboration in global

networks of autonomous organizations. It provides a service

called Onezone, which implements a common layer between

different storage providers and enables universal user authenti-

cation [4]. Other notable work include ScienceMesh [5], which

provides an ecosystem—common interfaces and tools in order

to connect existing heterogeneous services. Its goal is to allow

collaboration using, for instance, share-with flows or data

synchronization. It is relatively simple and does not implement

more advanced solutions, such as complex organizational

structures.

Proceedings of the of the 17th Conference on Computer

Science and Intelligence Systems pp. 563–566

DOI: 10.15439/2022F183

ISSN 2300-5963 ACSIS, Vol. 30

IEEE Catalog Number: CFP2285N-ART ©2022, PTI 563

Peer-set α

Peer-set β

asset E

group D

user A

user B

user C

Fig. 1. Exemplary organizational structure spanned across two peer-sets.

It is possible to create a global network of independent

peers using various DHT implementations, but they have

inherent problems with security in trustless environments.

Blockchain [6], on the other hand, ensures Byzantine Fault

Tolerance and can be used both for decentralized storage [7],

and for decentralized collaboration [8]. Blockchain is prob-

lematic due to its publicness—in situations where data is

to be kept private its use is limited. In order to constrain

possible participants and limit public access, permissioned

blockchains may be used. However, they require a central

authority responsible for authorization which undermines their

decentralization. Irrespectively of the type of blockchain used,

the primary issue is related to the commitment of organiza-

tions to handle a global chain and store data accessible to

other blockchain participants regardless of their willingness to

collaborate.

III. OUR PROPOSAL

We propose a decentralized architecture of a layer of data-

sharing systems with goals of increasing data availability

and fault tolerance. It is achieved by utilizing decentralized

authority over the data and replicating it over several peers.

This section also includes a discussion on protocols and

structures of the data used. We target the metadata used to

describe organizational structures, users, groups, etc., but the

architecture overall may be used for more generic document-

like data with optional two-way references between them.

A. Architecture

We assume that the system stores and allows access to “ob-

jects”, which represent arbitrary metadata. Objects may have

relations between them, which are represented as two-way

references. For instance, in case of organizational structures,

an object may represent a user, a group, or an asset. Relations

may represent memberships, in case of users and groups, or

access grants, in case of assets (cf. Fig. 1).

Objects are decentralized by nature—each object is owned

by some organization—a peer. For instance, an object repre-

senting a user may be owned by its university (an organiza-

tion), along with his groups. Collaboration between different

organizations happens when users belonging to each have

common relations, e.g. they are both members of the same

group.

Peer

α1

Peer

α2

Peer

α3

Ledger α
...

Peer

β1

Peer

β2

Peer

β3

Peer

β4

Ledger β
...

Peer-set α Peer-set β

Peer-set Identity

Management Service (PIMS#1)

PI
M

S#
1

:
pe

er
-s

et
α

PIM
S#1

:
peer-set

β

Fig. 2. Exemplary logical structure of peer-sets: each peer-set stores its own
ledger, whereas PIMSes resolve peers inside peer-sets.

Peer

Peer-set

PIMS

Fig. 3. Exemplary network consisting of PIMSes and peers divided into peer-
sets; one peer may belong to an arbitrary number of peer-sets, peer-sets may
consist of arbitrary numbers of peers.

We propose an idea of a “peer-set”—a group of peers which

collectively manages a set of objects (cf. Fig. 2 and 3). This

concept increases data availability and fault-tolerance, because

objects are not managed in a centralized manner, but rather

are managed collectively by multiple peers. This way, users

with multiple affiliations may be naturally managed by a peer-

set consisting of organizations they are part of. Groups and

assets may be spanned across organizations which support the

work they are used for, or they may be backed up to other

peers provided by the organization. Every peer-set is a closed

group, which may be created by a user, given permissions

from each peer. We assume that every member of a peer-set

is not malicious, and the peer-set creator trusts each peer to

store and manage the data, thus we do not consider Byzantine

faults.

In order to increase flexibility, our proposal also includes

mutability of peer-sets. This allows users to dynamically add

or remove a peer from the peer-set, which improves data

availability.

B. Peer-set ledger structure and consensus protocol

A fundamental problem in distributed systems is coor-

dinating multiple peers to agree on some common value,

i.e. reach consensus. Consensus protocols—created to solve

this problem—have to be fault tolerant, as an arbitrary set of

participating peers may fail at any moment. The conventional

consensus protocols include Paxos [9] along with its modifica-

564 PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022

TABLE I
PEER-SET α LEDGER CONTENTS

Peer-set α

4 Add relation “group D from β”→“asset E”

3 Add relation “user A”→“asset E”

2 Add object “asset E”

1 Add object “user A”

TABLE II
PEER-SET β LEDGER CONTENTS

Peer-set β

6 Add relation “group D”→“asset E from α”

5 Add relation “user C”→“group D”

4 Add relation “user B”→“group D”

3 Add object “group D”

2 Add object “user C”

1 Add object “user B”

tions, such as Multi-Paxos [10] or EPaxos [11]. There are also

alternatives, such as Raft [12] or Zab [13]. Some consensus

protocols may also be categorized as Byzantine fault-tolerant,

which imposes a weaker condition on the type of faults that

may happen—instead of only assuming crashes, they allow

an arbitrary failure, including malicious misbehaving, such

as forging counterfeited messages. Such consensus protocols

include proof-of-work or proof-of-stake [14], both of which

are used mainly in public blockchain networks [6]. There

are also BFT versions of consensus protocols used outside

of blockchain, such as PBFT [15].

In case of peer-sets, all peers inside them need to synchro-

nize and decide on common state of the managed objects.

Thus, we propose a peer-set history structure based on a dis-

tributed ledger, which consists of a list of incremental changes

to the objects. The ledger is synchronized between peers using

a consensus protocol based on examples mentioned above.

Every peer may propose a change which extends the ledger by

a new entry. Tables I and II depict exemplary ledger contents

of respectively peer-set α and peer-set β, which are consistent

with the state shown in figure 1. Solutions such as QLDB [16]

may be used as an implementation for the ledger.

Our approach assumes not only data replication, but also

a mechanism of data validation, where peers decide whether

the common state is valid. This mechanism prevents one peer

from suggesting a change that others may disagree with, and

ensures that more than half of the peers accepted the change.

The proposed peer-set ledger structure is akin to a classic

permissioned blockchain, however the global ledger is divided

into multiple, separate ledgers maintained by a large number

of peer-sets, which together participate in a global network.

C. Object and peer-set identification

One of the challenges in decentralized systems is object

identification. A popular way of identifying objects in such

environments is content addressing. This method is usually

based on attaching a cryptographic hash function’s digest

of an object to its identifier. It addresses objects by their

content instead of their location—it implies increasing data

availability, but at the same time it restricts its modifications

as every change generates a new identifier, and the old one

becomes outdated. A well-known example is the BitTorrent

protocol [17] which stores hashes inside torrent files or magnet

links. Other uses include IPFS with CIDs [7], or Git with

commit/tree/blob hashes [18].

When data is subject to change, content addressing becomes

difficult to apply and other solutions are required. Standard

identification methods, such as URLs, persistent identifiers,

or handles [19], are content-agnostic, but in turn have fixed

location, which undermines the decentralized nature of object

storage and limits possibilities to migrate the data. Alterna-

tives include decentralized identifiers (DIDs) [20], which are

designed to identify and verify digital entities in decentralized

web applications, and to provide a way of interacting with

them. Blockchain also provides a possibility to store a pubic

collection of peer-set identification records in a decentralized

manner. However, all parties would have to agree to participate

in a public network and to process the chain, which may

discourage potential users.

Our architecture assumes both decentralized nature and

possibility to modify data along with its owners. We propose

a hybrid object identification system, which is based on a de-

centralized network of peer-set identity management services

(PIMS), which are responsible for providing and managing

information about peer-sets. An identifier to an object consists

of three parts: 1) PIMS identification, 2) peer-set identification,

and 3) object identification. The first part unambiguously

identifies the service, which shares information about the peer-

set upon request, using the second part of the identifier. This

way, the user of the identifier may learn about the current

state of the peer-set, without the need to change the identifier

or waive the decentralized nature of the system (cf. f2).

PIMSes are meant to be provided by organizations and create

a decentralized network themselves.

Peer-set identity management services also have to im-

plement specific identity management policies. Peer-sets are

designed to be self-governing, so actions which modify a peer-

set (such as adding a new peer, or removing an existing one)

need to be established by the peer-set itself. Such requirement

makes managing the data dependent on the data itself, which

additionally justifies creating a dedicated service. For instance,

adding a new peer D to a peer-set consisting of peers A, B,

and C, may require approvals of D and majority of {A,B,C}.

D. Atomic commitment between peer-sets

Our proposal also takes into account atomic commitment

between peer-sets. It may be used for instance to implement

two-way relations between objects originating from different

peer-sets. The atomic commitment ensures that two different

peer-sets either both commit a change, or both ignore it (cf.

entry 4 in table I and entry 6 in table II). We take into

KAMIL JAROSZ ET AL.: INCREASING DATA AVAILABILITY AND FAULT TOLERANCE FOR DECENTRALIZED COLLABORATIVE DATA-SHARING 565

consideration two ways of ensuring atomic commitment in

our proposal.

Let us assume an atomic commitment between peer-sets

A, B, and C, each one consisting of an arbitrary number

of peers denoted A0, A1, etc. The first approach is to treat

{A,B,C} as one single database divided into three shards A,

B, and C. Each shard contains a number of replicas, which

are represented by peers. Using this interpretation we can

use existing atomic commitment protocols which are designed

for shards of replicas [21], but requires cooperation with the

consensus protocol.

The second approach is to treat each peer-set as an en-

tity and synchronize commitment between two representative

peers. A special entry is added to the ledger, which represents

an ongoing atomic commitment between peer-sets. This entry

is used as a way of synchronizing state between all peers

inside each of the peer-sets, and is used to implement a

higher-level commitment protocol, which does not have to

assume multiple replicas. Examples of such protocols include

two-phase commit protocol (2PC), along with variations and

improved versions such as 2PC* [22].

IV. FUTURE WORK

The problem of increasing data availability and fault tol-

erance in decentralized collaborative systems is very broad

and complex. This publication aims to designate a vision of

our solution, which is based on replication and decentralized

authority over data, and outline directions of its development.

We propose an architecture of a layer of data-sharing systems,

consisting of

• peer-sets, which implement a decentralized mechanism of

collaboration between peers,

• peer-set identity management services, which allow dis-

covery and identification of peer-sets, and

• atomic commitment protocol, which enables performing

atomic changes between peer-sets in order to implement

e.g. two-way relations between objects.

Discussions in section III are entry points to more detailed

research in each subject. We plan to evaluate several consensus

protocols in terms of usability and integrate them with the

idea of voting and validating changes by peers. In case of

atomic commitment, we want to implement and compare the

two proposed solutions. Finally, we plan to create a proof-of-

concept of the whole system along with detailed description

and evaluation. We also intend to integrate our solution with

Onedata by providing an integration layer with GraphSync—

the metadata synchronization protocol.

V. ACKNOWLEDGEMENTS

This scientific work was published in part by an interna-

tional project co-financed by the program of the Minister of

Science and Higher Education entitled “PMW” in the years

2021–2023; contract No. 5193/H2020/2021/22. KJ, RGS and

JK are grateful for support from the subvention of Polish Min-

istry of Education and Science assigned to AGH University of

Science and Technology.

REFERENCES

[1] D. Cesini et al., “The eXtreme-DataCloud project solutions for
data management services in distributed e-infrastructures,” EPJ Web

of Conferences, vol. 245, p. 04010, 01 2020. doi: 10.1051/epj-
conf/202024504010

[2] ScienceMesh. [Online]. Available: https://sciencemesh.io/
[3] M. Wrzeszcz, Ł. Dutka, R. G. Słota, and J. Kitowski, “New ap-

proach to global data access in computational infrastructures,” Future

Generation Computer Systems, vol. 125, pp. 575–589, 2021. doi:
10.1016/j.future.2021.06.054

[4] L. Opioła, L. Dutka, R. G. Słota, and J. Kitowski, “Trust-driven,
decentralized data access control for open network of autonomous data
providers,” in 2018 16th Annual Conference on Privacy, Security and

Trust (PST), 2018. doi: 10.1109/PST.2018.8514209 pp. 1–10.
[5] Arora, Ishank, Alfageme Sainz, Samuel, Ferreira, Pedro, Gonzalez

Labrador, Hugo, and Moscicki, Jakub, “Enabling interoperable data and
application services in a federated sciencemesh,” EPJ Web Conf., vol.
251, p. 02041, 2021. doi: 10.1051/epjconf/202125102041

[6] T. T. A. Dinh, R. Liu, M. Zhang, G. Chen, B. C. Ooi, and J. Wang,
“Untangling blockchain: A data processing view of blockchain systems,”
IEEE Transactions on Knowledge and Data Engineering, vol. 30, no. 7,
pp. 1366–1385, 2018. doi: 10.1109/TKDE.2017.2781227

[7] J. Benet, “IPFS - content addressed, versioned, P2P file system,” arXiv

preprint arXiv:1407.3561, 2014. doi: 10.48550/arXiv.1407.3561
[8] D. Ulybyshev, M. Villarreal-Vasquez, B. Bhargava, G. Mani, S. Seaberg,

P. Conoval, R. Pike, and J. Kobes, “(WIP) Blockhub: Blockchain-based
software development system for untrusted environments,” in 2018 IEEE

11th International Conference on Cloud Computing (CLOUD), 2018.
doi: 10.1109/CLOUD.2018.00081 pp. 582–585.

[9] M. Pease, R. Shostak, and L. Lamport, “Reaching agreement in the
presence of faults,” J. ACM, vol. 27, no. 2, p. 228–234, apr 1980. doi:
10.1145/322186.322188

[10] L. Lamport, “Paxos made simple,” ACM SIGACT News (Distributed

Computing Column) 32, 4 (Whole Number 121, December 2001), pp.
51–58, 2001.

[11] I. Moraru, D. G. Andersen, and M. Kaminsky, “There is more consensus
in egalitarian parliaments,” in Proceedings of the Twenty-Fourth ACM

Symposium on Operating Systems Principles, ser. SOSP ’13. New
York, NY, USA: Association for Computing Machinery, 2013. doi:
10.1145/2517349.2517350. ISBN 9781450323888 p. 358–372.

[12] D. Ongaro and J. Ousterhout, “In search of an understandable consensus
algorithm,” in Proceedings of the 2014 USENIX Conference on USENIX

Annual Technical Conference, ser. USENIX ATC’14. USA: USENIX
Association, 2014. ISBN 9781931971102 p. 305–320.

[13] F. P. Junqueira, B. C. Reed, and M. Serafini, “Zab: High-performance
broadcast for primary-backup systems,” in 2011 IEEE/IFIP 41st Interna-

tional Conference on Dependable Systems Networks (DSN), 2011. doi:
10.1109/DSN.2011.5958223 pp. 245–256.

[14] P. R. Nair and D. R. Dorai, “Evaluation of performance and security
of proof of work and proof of stake using blockchain,” in 2021

Third International Conference on Intelligent Communication Tech-

nologies and Virtual Mobile Networks (ICICV), 2021. doi: 10.1109/I-
CICV50876.2021.9388487 pp. 279–283.

[15] M. Castro and B. Liskov, “Practical byzantine fault tolerance,” in
Proceedings of the Third Symposium on Operating Systems Design and

Implementation, ser. OSDI ’99. USA: USENIX Association, 1999.
ISBN 1880446391 p. 173–186.

[16] Amazon Quantum Ledger Database (QLDB). [Online]. Available:
https://aws.amazon.com/qldb/

[17] The BitTorrent protocol specification. [Online]. Available: https:
//www.bittorrent.org/beps/bep_0003.html

[18] Git. [Online]. Available: https://git-scm.com/
[19] Handle.Net Registry. [Online]. Available: https://www.handle.net/
[20] World Wide Web Consortium. Decentralized identifiers (DIDs) v1.0.

[Online]. Available: https://www.w3.org/TR/did-core/
[21] S. Maiyya, F. Nawab, D. Agrawal, and A. E. Abbadi, “Unifying

consensus and atomic commitment for effective cloud data manage-
ment,” Proc. VLDB Endow., vol. 12, no. 5, p. 611–623, jan 2019. doi:
10.14778/3303753.3303765

[22] P. Fan, J. Liu, W. Yin, H. Wang, X. Chen, and H. Sun, “2PC*: A dis-
tributed transaction concurrency control protocol of multi-microservice
based on cloud computing platform,” J. Cloud Comput., vol. 9, no. 1,
jul 2020. doi: 10.1186/s13677-020-00183-w

566 PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022

