
A Comparative Study of Short Text Classification

with Spiking Neural Networks

Piotr S. Maciąg, Wojciech Sitek, Łukasz Skonieczny, Henryk Rybiński
Warsaw University of Technology

Institute of Computer Science

Nowowiejska 15/19, 00-665, Warsaw, Poland

piotr.maciag@pw.edu.pl, wojciech.sitek@pw.edu.pl, lukasz.skonieczny@pw.edu.pl, hrb@ii.pw.edu.pl

Abstract—Short text classification is an important task widely
used in many applications. However, few works investigated ap-
plying Spiking Neural Networks (SNNs) for text classification. To
the best of our knowledge, there were no attempts to apply SNNs
as classifiers of short texts. In this paper, we offer a comparative
study of short text classification using SNNs. To this end, we
selected and evaluated three popular implementations of SNNs:
evolving Spiking Neural Networks (eSNN), the NeuCube imple-
mentation of SNNs, as well as the SNNTorch implementation that
is available as the Python language package. In order to test the
selected classifiers, we selected and preprocessed three publicly
available datasets: 20-newsgroup dataset as well as imbalanced
and balanced PubMed datasets of medical publications. The
preprocessed 20-newsgroup dataset consists of first 100 words
of each text, while for the classification of PubMed datasets we
use only a title of each publication. As a text representation of
documents, we applied the TF-IDF encoding. In this work, we
also offered a new encoding method for eSNN networks, that can
effectively encode values of input features having non-uniform
distributions. The designed method works especially effectively
with the TF-IDF encoding. The results of our study suggest that
SNN networks may provide the classification quality is some cases
matching or outperforming other types of classifiers.

Index Terms—short text classification, spiking neural net-
works, evolving spiking neural networks, NeuCube, SNNTorch,
medical documents, PubMed documents

I. INTRODUCTION

E
FFECTIVE text classification is a difficult task that

often requires adaptation of special types of learning and

encoding methods. Classification of short texts is often even

more difficult due to the very limited length of documents that

can be used as training input data. The already offered methods

for short text classification include, for example, Support

Vector Machines (SVM), naive Bayes classifier, decision trees

[1] or the classifiers that include clustering of input data as a

preprocessing step [2].

Spiking Neural Networks (SNNs) are a type of neural

networks that are highly inspired by biological mechanisms of

learning and cognition of a human brain. Surprisingly, there

are no publications applying SNNs to short text classification.

Thus, in this work we evaluate three selected implementations

of SNNs applied by us to the short text classification task,

namely: our prepared classifier that uses evolving Spiking

Neural Networks, eSNNs, the NeuCube implementation of

SNNs as well as the SNNTorch implementation.

Evolving Spiking Neural Network (eSNN) is a recently

introduced classifier that was successfully applied in various

domains: transportation prediction [3], air pollution prediction

[4]–[6], recognition of moving objects [7], or anomaly detec-

tion [8], [9]. To the characteristic of eSNNs belongs: ability

to process large amounts of data efficiently and insignificant

memory requirements. As it was proven in the enumerated

examples of eSNNs usage cases, they can effectively use the

biologically inspired learning and prediction mechanisms in

typical engineering applications.

The other implementation selected for this study is the

NeuCube implementation of SNNs [10], [11]. Contrary to the

eSNNs implementation, NeuCube consists of three layers of

spiking neurons: input, whose aim is to encode input values

into firing times, internal, which consists of a reservoir (cube)

of hidden neurons, whose weights are trained in an unsuper-

vised manner using synaptic-plasticity rules, and output, which

contains neurons responsible for assigning decision classes to

testing examples.

Finally, as the third implementation of SNNs we selected

recently developed SNNTorch implementation available as a

package of the Pyhton language [12]. To the advantages of

SNNTorch belong its flexibility to construct SNNs that can

consists of many layers of neurons which combine not only

neuronal models that are typically present in SNNs, such as

the Leaky-Integrate-and-Fire (LIF) model, but also sigmoid

neuronal models. In addition, SNNTorch can take advantage

of a GPU-based processing in order to speed up training and

classification procedures.

This paper provides the following contribution:

• To the best of our knowledge, for the first time in the

literature we apply SNNs for classification of short texts

and, especially, large sets of medical publications based

on their metadata (such as a title or an abstract of a

publication). To this end, we selected three types of

SNNs: eSNN networks, the NeuCube implementation of

SNNs as well as the SNNTorch implementation.

• As a part of our implementation of eSNN networks

we propose a new input data encoding method. The

proposed method first creates a histogram of input values

of each feature F in the training dataset. The number

of bins (subranges) of histogram is specified by a user-

given parameter called B. Subsequently, the NIsize input

Proceedings of the of the 17th Conference on Computer

Science and Intelligence Systems pp. 79–88

DOI: 10.15439/2022F184

ISSN 2300-5963 ACSIS, Vol. 30

IEEE Catalog Number: CFP2285N-ART ©2022, PTI 79

neurons of an eSNN are redistributed to encode the values

of each bin of the histogram according to the cardinality

of values in bins. As we present in the experiments, the

offered encoding method provides much better classifi-

cation accuracy than the other two encoding methods

offered in the literature: a method that directly calculates

the firing order of input neurons proposed in [5] and

Gaussian Receptive Fields (GRFs) [13].

• We conduct experiments using the frequently-used 20-

newsgroup dataset1 as well as two real PubMed datasets

of medical publications selected from the website of the

BioASQ competition2. Since we focus on classifying

short texts, from each document of the 20-newsgroup we

selected only 100 first words. In the case of two selected

PubMed datasets, only a title of a publication is used as

input data for each tested classifier.

• The obtained results of experiments suggest that

SNNTorch implementation is more effective in short text

classification than the other selected SNNs implemen-

tations. Additionally, for the selected PubMed datasets,

SNNTorch gives results of classification slightly superior

to the other classifiers tested in the experiments.

The paper is structured as follows. Section II presents the

related work. Section III describes the SNNs implementations

selected for this study. This section also describes the proposed

encoding method for the eSNN networks. In Section IV,

we give the description of the obtained datasets and applied

preprocessing. Section V provides the results of experiments.

Finally, in Section VI we conclude the work and discuss the

results.

II. RELATED WORK

A. Short Text Classification

Effective classification of short texts is a topic intensively

studied nowadays. The already offered methods offered for

text classification include: various types of classifiers, such

as Support Vector Machines (SVM), naive Bayes classifiers,

decision trees or different types of neural networks [1]. [14]

distinguishes two types of approaches that can be applied for

text classification: the first one, in which the set of text is

first represented using Document-Term Matrix (DTM), which

can be obtained using feature extraction method, such as Bag

of Words (BoW) or Term Frequency - Inverse Document

Frequency (TF-IDF). Subsequently, DTM is used to train a

selected classifier, such as SVM. The second approach skips

the process of generating DTM matrix and directly provides

the set of texts as training data for a deep neural network.

Majority of recent approaches to short text classification

with neural network models focused on applying Recurrent

Neural Networks (RNNs) and Convolutional Neural Networks

(CNNs). [15] presented a classification model that is based

on CNNs and incremental learning. In order to increase the

classification accuracy, [15] applied an approach in which a

1http://qwone.com/ jason/20Newsgroups
2http://participants-area.bioasq.org/datasets

current short document of a pipeline of documents is classified

not only based on its textual content but also based on obtained

classification results of preceding documents.

[16] presented the results of experiments on the classifica-

tion of one-sentence questions using CNNs. The dataset ap-

plied in [16] was obtained from the WikiAnswer and contained

608 650 questions grouped into several hundred categories. As

the results of experiments of [16] suggest, CNN networks can

classify questions with accuracy comparable or better than

SVM classifier.

In [17], a model that combines CNNs networks with SVM

classifier was applied to the classification of simple sentences

expressing either positive and negative feelings. In the ap-

proach presented in [17], first, a word embedding method

(such as Word2Wec) is used to obtain the vector representation

of each word in the text corpus. Subsequently, each text

in the corpus is represented as a sequence of vectors, each

corresponding to one of the text’s words. Such a representation

of texts is next used as input data for CNN network that

consists of convolutional, max-pooling and fully-connected

layers. The results obtained from the fully-connected layer are

used as training data for the SVM classifier. The results of

experiments presented in [17] suggest that this approach can

provide better classification results than separate CNNs and

SVM classifiers.

The review of the other types of classifiers applied for

(short) text classification (and in particular MESH dataset) can

be found, for example, in [14], [18], [19].

B. Spiking Neural Networks for Text Classification

We are aware of only two other works adapting spiking

neural networks for text classification. However, contrary to

this work, both of them applied SNNs for long text clas-

sification. In order to classify longer texts, [20] offered a

method consisting of two phases, The first phase consists of

transforming a text into a vector of numbers using TF-IDF

encoding and, subsequently, into a sequence of spikes. In the

second phase, an SNN network is taught in an unsupervised

way using the spikes generated in the first phase in order to

generate spike-based low-dimensional representation of a text.

Subsequently, the generated representation is used as input

data for the training of logistic regression, which is responsible

for the final classification of documents. Thus, in the approach

of [20], an SNN network can be perceived as a dimensionality

reduction technique of a TF-IDF text representation. While

the approach of [20] was shown to provide superior text

classification results to the other classifiers tested there, it used

only logistic regression, which (as presented, for example, in

our experiments) itself can be an effective text classifier.

[21] presents a comparison of classification results for

different types of word embeddings (such as Word2Vec and

GloVe [22]) and neuron types that were applied in SNN (such

as the LIF neuronal model). The results obtained in [20]

suggest that SNNs can be effectively applied to classify longer

texts.

80 PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022

III. THE SELECTED IMPLEMENTATIONS OF SPIKING

NEURAL NETWORKS

A. The Evolving Spiking Neural Networks Implementation

In Fig. 1, we present the architecture of our implementation

of eSNNs. The designed eSNN network consists of groups

of input neurons NI
(F1), . . . ,NI

(Fm) encoding values of m
features F = {F1, . . . , Fm}3. The number of input neurons

in each group NI
(F) is the same and is specified by the user-

given parameter NIsize. The output neurons in the repository

NO are assigned decision classes present in the training

dataset of texts Dtr (we assume that each text in T ∈ Dtr

has one and only one decision class). Thus, given L decision

classes, the output neurons NO are organized into L groups.

In the learning process of an eSNN network, a new candidate

output neuron nc is created for each training text T ∈ Dtr

and either added to the repository NO or merged with the

neurons already existing there.

Input neurons NI

Output neurons

(repository) NO

1

L

2

1.23

2

Output

neurons of

decision

classes

1 & L

Values of

input features

F & F
of a

representation

of a single text

1 m

A

candidate

output

neuron

1

Decision class

assigned to a

single text in

training dataset

Fig. 1. The architecture of an eSNN network adopted in this study.

1) Input Layer: For the encoding of input values of features

F into spikes we develop a new encoding method. Our

motivation to develop the presented method lies in the fact

that the previously introduced methods dedicated for eSNNs4

(such as the GRFs method [24] or the method of [5]) do not

work well with some text representations (such as the TF-

IDF representation)5. Specifically, both the GRF method and

the method of [5] are not able to effectively encode input

values of features having non-uniform distributions. This can

3The number of features F depends on the used text representation: for
example, Word2Vec and Doc2Vec representations allow the user to specify
the number of features [23].

4Unlike the other implementations of SNN networks, eSNN does not
require exact firing times of input neurons to be propagated into the network.
Rather than, it is enough to calculate the firing order of input neurons NI

(F)

encoding a value of each feature F ∈ F .
5In fact, in Section V we present experiments comparing the mentioned

encoding methods for eSNNs.

be explained by the fact that both of these methods divide

the range of input values of a feature F into a number of

equal subranges, the number of which is equal to the user-

given number of input neurons NIsize. A center value of

each of such subranges is associated with one input neuron.

Given an input value to be encoded and the obtained center

values of input neurons, the GRFs method and the method of

[5] calculate Euclidean distances between the input value and

the center values of input neurons. The non-decreasing order

of such Euclidean distances between the input value and the

center values of input neurons identifies the firing order of

input neurons. In the case of non-uniform distributions of input

values (such as a normal distribution or skewed distributions),

it can often happen that a relatively high number of input

values will be encoded using the same firing order of input

neurons, while the values of other ranges will be associated

with more distinguishing firing order of input neurons. To

alleviate this problem, we offer the method presented below.

The proposed encoding method requires two user-given

input parameters, which are the number of input neurons

NIsize encoding values of each feature F ∈ F as well as the

number of bins (subranges) B (where B < NIsize) used to

create a histogram of values of each feature F . The proposed

method first creates a histogram of input values of a feature

F using solely the training dataset. Subsequently, the NIsize
input neurons are allocated to encode the values of each bin of

the histogram in the following way. First, each bin is assigned

at least one input neuron of NIsize neurons. The rest of

NIsize −B input neurons is allocated as follows.

Let Min(F) and Max(F) be minimal and maximal values

of feature F in training dataset Dtr, respectively. The width of

range of each bin equals Binswidth = Max(F)
−Min(F)

B
. The

range of each bin is calculated as follows:

•

�

Min(F) + (i − 1) · Binswidth,Min(F) + i · Binswidth

�

,

for Bini, i = {1, . . . , B − 1}.

•

�

Min(F) + (B − 1) ·Binswidth

�

, for BinB .

Subsequently, the number of values of a feature F in

each bin is calculated and remembered as Bini.V alues. The

number of neurons allocated to each bin is obtained using

Proposition 1.

Proposition 1. Let Bini.Neurons represents a number of

input neurons allocated to encode values of Bini and Dtr be

a number of training examples (texts):

• Bini.Neurons =
�

Bini.V alues

Dtr

· (NIsize −B)
�

+ 1,

for i ∈ {1, . . . , B − 1},

• Bini.Neurons =
�

Bini.V alues

Dtr

· (NIsize −B)
�

+ 1,

for i = B.

Given the number of input neurons allocated to each bin, we

can obtain the center value µj of each input neuron nj ∈ NI.

The center values µj of input neurons are directly used to

calculate firing order of input neurons. The center values are

calculated according to Proposition 2. For each Bini, let

Bini.∆ = Binswidth/Bini.Neurons

PIOTR S. MACIĄG ET AL.: A COMPARATIVE STUDY OF SHORT TEXT CLASSIFICATION WITH SPIKING NEURAL NETWORKS 81

denote the width between center values of input neurons

allocated to Bini.

Proposition 2. For each bin i ∈ {1, . . . , B}, the center

value of each input neuron nj ∈ Bini.Neurons, j ∈

{1, . . . , Bini.Neurons} is calculated as follows

µj = Min(F) + (i− 1) ·Binswidth + (j − 0.5) ·Bini.∆

Finally, given the center values of input neurons (please

note, that it is enough to calculate the center values µj one

time after Dtr is load by an eSNN), we can calculate firing

order ordernj
of spikes that are propagated into the network.

Let assume that x(F) is the value of a feature F to be encoded

by the proposed method. Proposition 3, shows how to obtain

the center value closest to an input value x(F).

Proposition 3. Let µk be the center value closest to input

value x(F). Index k is calculated as follows:

k =

ù

ü

ü

ú

ü

ü

û

j
ø

ø

ø
|x(F) − µj | is smallest, if x(F) ∈ [Min(F),Max(F)]

1, if x(F) < Min(F),

NIsize, if x(F) > Max(F).

Given the k index, the firing order of all input neurons nj ∈
NI is obtained as given in Algorithm 1. We illustrated the

example coding using the proposed method in Fig. 2.

Algorithm 1 Calculate firing order of input neurons

Input: x(F) - input value to be encoded, NIsize - number of input
neurons.
Ensure precalculated: Bini - the structure
containing parameters of i-th bin of a feature F (i.e.

Bini.Neurons,Bini.∆, Bini.V alues), µj - center values of
input neurons nj ∈ {1, . . . , NIsize}, k - index of a center value

µ closest to x(F).
Output: Firing order of input neurons nj ∈ {1, . . . , NIsize}.

1: ordernk
← 0, ord← 0

2: l← k − 1; r ← k + 1.
3: while l ≥ 1 OR r ≤ NIsize do
4: if l ≥ 1 then distl ← |µl − x(F)| end if

5: if r ≤ NIsize then distr ← |µr − x(F)| end if
6: if l < 1 AND r ≤ NIsize then
7: ordernr ← ord, ord← ord+ 1, r ← r + 1
8: else if l ≥ 1 AND r > NIsize then
9: ordernl

← ord, ord← ord+ 1, l← l − 1
10: else if l ≥ 1 AND r ≤ NIsize then
11: if distl < distr then
12: ordernl

← ord, ord← ord+ 1, l← l − 1
13: else
14: ordernr ← ord, ord← ord+ 1, r ← r + 1
15: end if
16: end if
17: end while

Algorithm 1 calculates firing order of input neurons as

follows. As a first fires the input neuron nk, whose center value

µk is closest to the input value x(F) (the firing order function

ordernk
of the input neuron nk is set to 0). Subsequently,

Algorithm 1 calculates firing order of the rest input neurons,

whose center values are located to the left and to the right

of the center value of the first firing input neuron nk. The

firing order of these neurons is calculated in a single scan

using the distances between their center values and the input

value x(F). To this end, the algorithm uses three counters:

l and r which point to the neurons whose center values are

located to the left and to the right of the center value µk,

respectively, as well as ord counter which stores the current

firing counter (initially set to 0). Initially, l and r are set

to k − 1 and k + 1, respectively. In each iteration of the

main while loop, the algorithm calculates firing order of one

input neuron pointed either by l or r counters. If the distance

between center value of an input neuron nl and x(F) is smaller

than the distance between center value of an input neuron nr

and x(F), then ordernl
is set to the current value of the ord

counter, ord is incremented and l is decremented. Otherwise,

ordernr
is set to ord, ord is incremented and r is incremented.

The computational complexity of Algorithm 1 is linear in the

number of input neurons NIsize, similarly to the encoding

algorithms presented in [5] or [13].

8
Input

neurons

Min value =0 Max value =20

2

4

6

8

10

12

4 8 12

A histogram of input values of a feature F, Bins = 4, NIsize = 10

1 2 3 4 5 6 7 9 10

�ÿýþÿ ÿ1 = 2 �ÿýþÿ ÿ2 = 0 �ÿýþÿ ÿ3 = 1 �ÿýþÿ ÿ4 = 3

�ÿýþÿ ÿ5 = 4 �ÿýþÿ ÿ6 = 5 �ÿýþÿ ÿ7 = 6

�ÿýþÿ ÿ8 = 7

�ÿýþÿ ÿ9 = 8 �ÿýþÿ ÿ10 = 9

Encoding

for value

1.75

ÿ1 ÿ2 ÿ3 ÿ4 ÿ5 ÿ6 ÿ7 ÿ8 ÿ9 ÿ10

1
.7

5

Fig. 2. The proposed encoding method - the NIsize input neurons are
redistributed to code the values of each bin of a histogram; the encoded value
is 1.75.

2) Network’s Learning and Classification: The firing orders

of input neurons are calculated separately for each text in

either training or testing dataset. The firing orders obtained for

texts of the training dataset are used in the network’s learning

phase, while the firing orders calculated for texts of the testing

dataset are used to classify these texts.

In the eSNN learning process, for each training text T in

dataset Dtr, there is created a candidate output neuron nc

82 PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022

which is assigned a single decision class of text T . We denote

a decision class assigned to nc as: Class(nc).
The candidate output neuron is connected through

synapses to all input neurons NI. The vector of

weights of such synapses is denoted as wnc
=

[w
(A1)
n1,nc , . . . , w

(F1)
n
|NI(F1)|

,nc , . . . , w
(Fm)
n1,nc , . . . , w

(Fm)
n
|NI(Fm)|

,nc],

where m is the number of features F . To initialize the

weights of synapses we apply the rank-order rule [24]. Each

weight of a vector wnc
is initialized according to Eq. (1).

w(A)
njnc

= modordernj , nj ∈ NI, (1)

where mod is a modulation factor whose value is specified by

the user and should be in the range (0, 1).
Each output neuron (either candidate nc or the output

neuron ni already present in NO) has also an update counter

M . The value of such update counter is first set to 1 when

a candidate is created, and subsequently is incremented when

an output neuron present in NO is updated using a candidate

output neuron.

After the candidate neuron nc is created and its synapses’

weights are initialized, it is either added to the repository

of output neurons NO or merged with one of the output

neurons already existing in NO(Class(nc)), that is in the

group of output neurons of class Class(nc) in NO. To this

end, Euclidean distances Distnc,ni
between the vector of

synapses’ weights wnc
and the vectors of synapses weights

wni
of each output neuron ni ∈ NO(classnc

) are calculated.

If there exists such an output neuron ns for which Distnc,ns

is minimal and below the value simTr · Dist, then the

vector wns
and counter Mns

are updated according to Eq. (2)

and nc is discarded. Otherwise, nc is simply inserted into

NO(classnc
). simTr is a user-specified similarity threshold,

whose value is in the range [0, 1]6.

wns
=

wns
·Mns

+wnc

Mns
+ 1

,Mns
= Mns

+ 1. (2)

Dist is the tight upper bound on the Euclidean distances

between any possible candidate output neuron and any output

neuron in NO and, as presented in [5], can be calculated using

Eq. (3).

Dist =

�

�

F∈F

NIsize
�

j=1

�

modj−1 −modNIsize−j−1

�2� 1
2

(3)

After eSNN is taught using the training dataset Dtr, each

testing text T ∈ Dts is assigned one decision classes of

all decision classes of output neurons in NO. To this end,

the value of Post-Synaptic Potential PSPni
of a membrane

of each output neuron ni in NO is calculated according to

Eq. (4).

PSPni
=

�

F∈F

�

nj∈NI(F)

w(F)
njni

·modordernj . (4)

6Please note, that the greater values of simTr increase the chance that
a candidate output neuron will be merged with one of the neurons already
existing in the repository NO

In Eq. (4), wnjni
is weight of a synapse connecting the

input neuron nj to the output neuron ni that is calculated in

the network’s learning phase. ordernj
is a firing order value

of input neuron nj ∈ NI
(A) given the encoding of a value

of feature F in a testing text T . Finally, the testing text T is

assigned a decision class of an output neuron nmax ∈ NO,

whose membrane PSP value PSPnmax
is maximal. One can

find the pseudocode of described learning and classification

procedures of eSNNs, for example, in [5], [9], [24]. We posted

our implementation that was used in the experiments along

with the used dataset at the GitHub repository7.

B. The NeuCube Implementation of Spiking Neural Networks

As the second implementation of SNNs that is selected by

us for the experiments we used the NeuCube implementation

[10]8. Unlike the eSNNs implementation presented in subsec-

tion III-A, NeuCube implements an SNN network that consists

of three layers of neurons: input, internal and output. The

aim of the input layer of NeuCube is to convert values of

features of a text representation into a sequence of spikes that

is propagated into the network.

Since NeuCube implements four temporal coding algo-

rithms, it requires each text (either from the training Dtr

or testing Dtr datasets) to be represented as a time series.

In our approach, each text is represented as a single time

series TS containing all values of features (F1, . . . , Fm).
Thus, given a text representation having m features F , the

time series of each text consists of a series of m values. The

temporal encoding algorithms implemented in NeuCube are:

Threshold-based Representation (TR), Moving Window (MV),

Step Forward (SF), and Bens Spiker Algorithm. The results

presented in [25] suggests that the most effective is the TR

algorithm, which was used by us in the experiments. Given

time series representation TS of a text, the TR algorithm

generates spikes by first calculating ATB = µSR · σ value

(where µ and σ are mean and standard deviation of values of

TS, respectively). Next, a positive spike is generated if the

difference between two consecutive values of TS is positive

and greater than ATB. If the difference is negative and smaller

than ATB, then a negative spike is generated. The generated

example of TR encoding of the time series values of the first

document of the 20-newsgroup dataset is given in Fig. 3.

The internal layer of NeuCube consists of a cube of Leaky-

Integrate-and-Fire (LIF) neurons [26]–[28] that are intercon-

nected using both excitatory and inhibitory synapses. The

number of such neurons in the cube and their topological

locations can be defined by the user. The initial synapses and

their weights are generated using the small-world principle

(according to which the neurons located in a topological

proximity have a grater chance to be connected). In the

cube’s learning process, the weights of synapses are calculated

according to the Spike-Time Dependent Plasticity (STDP)

7https://github.com/piotrMaciag32/eSNN-short-text-classifier
8NeuCube is a an application with a graphical user interface imple-

mented in Matlab and is free for download form https://kedri.aut.ac.nz/
R-and-D-Systems/neucube

PIOTR S. MACIĄG ET AL.: A COMPARATIVE STUDY OF SHORT TEXT CLASSIFICATION WITH SPIKING NEURAL NETWORKS 83

Fig. 3. The NeuCube TR encoding of the time series values of the first
document of the 20-newsgroup dataset (the upper plot presents an input time
series of TF-IDF values, the lower plot shows the obtained encoding).

rules. Let us consider two neurons: nj and ni presented in

the internal layer of NeuCube and let us assume that there

is a synapse from neuron nj to neuron ni. Given emission of

spikes from neurons nj and ni at times tj and ti, respectively,

the change of the weight value of the synapse from nj to ni

is calculated according to Eq. (5).

wj,i(t) =

ù

ü

ü

ú

ü

ü

û

wj,i(t− 1) + η/∆t, if ti > tj ,

wj,i(t− 1), if ti = tj ,

wj,i(t− 1)− η/∆t, otherwise,

(5)

where η is the STDP rate learning parameter specified by the

user.

Finally, the third layer of NeuCube consists of output

neurons whose aim is to represent decision classes present

in the training dataset Dtr. Each output neuron in the output

layer of NeuCube is connected to all neurons in the internal

layer. The output neurons in NeuCube are grouped according

to decision classes similarly to the output neurons NO of

eSNNs. As in eSNNs, for each training text there is created

one candidate output neuron that is always added to the set

of output neurons of NeuCube (unlike in eSNNs, in which

candidate output neurons can be merged with the output

neurons already existing in the output layer).

The membrane Post-Synaptic Potentials (PSP) values of

both internal and output neurons are calculated according to

Eq. (4). Both internal and output neurons emit a spike when

their PSP values exceed a certain firing threshold C, which is

specified by the user. Specifically, a neuron ni emits a spike

according to Eq. 6.

Emit a spike by ni at time t =

�

True if PSPni
≥ C,

False if PSPni
< C,

(6)

In Fig. 4, we present the architecture of NeuCube along

with the selected representation of each text. In Table I, we

show the learning parameters of NeuCube along with their

description.

A single input

neuron

encoding time

series values

Output neurons

(repository)

1

L

Output

neurons of

decision

classes

1 & L

Values of input features

F & F
of a representation of a single

text

1 m

T
im

e
 s

e
ri

e
s

v
a

lu
e

s

0

1

2

3

4

3 2 2.5 2 4 1.5 2 2.5 1.5 2 1 3

&

&

NeuCube9s implementation

of SNNs

Cube of LIF

neurons

Fig. 4. The NeuCube’s architecture and the applied representation of a text
as a series of TF-IDF values.

C. The SNNTorch Implementation

The third implementation of SNNs selected for the exper-

iments is the SNNTorch implementation, recently developed

as the Python language package [12]. To the advantages of

the SNNTroch implementation belongs the fact that it is

built on the basis of the well known deep-learning Python

framework Pytorch. SNNTorch allows us to combine SNNs

with such types of neural networks as Multilayer Perceptron

neural network or CNN network. Currently, SNNTorch offers

eight types of spiking models of neurons: Alpha, Lapique,

Leaky (LIF), RLeaky, RSynaptic, SConv2dLSTM, SLSTM

and Synaptic. In our experiments, we applied the LIF neuronal

model. Our applied architecture of neurons in SNNTorch

consists of four layers as presented in Fig. 5. The number

of input neurons equals the number of features in the input

data, while the number of output neurons is the same as the

number of decision classes present in the training parto of the

dataset.

IV. CHARACTERISTIC OF SELECTED DATASETS AND

THEIR PREPROCESSING

In the experiments, we used three publicly available datasets

that are widely used as benchmarks in the evaluation of

text classifiers. In the experiments, we applied the TF-IDF

representation of all texts. As previous experiments with text

84 PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022

TABLE I
THE MAIN PARAMETERS OF SNN USED IN NEUCUBE.

Parameter Description

SR TR algorithm threshold.

η (STDP Rate) STDP rate for weights modification in the internal layer.

Refractory time A period in which an input is inactive to incoming spikes after emission of a spike by itself.

Mod Modulation parameter as given in Eq. 5.

Training iters. Number of its. of the unsupervised learning stage.

Firing treshold Firing threshold for spike emission by neurons.

Input

 neurons

Output

 neurons

1

L

2

1.23

2

Output

neurons of

decision

classes

1 & L

Values of

input features

F & F
of a

representation

of a single text

1 m

1

Decision class

assigned to a

single text in

training dataset

Hidden

neurons for

linear

transformation

LIF

 neurons

Implemented SNNTorch architecture

Fig. 5. The SNN architecture that was constructed using SNNTorch package
for the purpose of experiments.

data and SNN networks suggest (see, for example, [20]),

TF-IDF is a suitable representation for these type of neural

networks. In order to obtain the TF-IDF representation, first,

for each dataset we calculated the Document-Term Matrices

(DTMs). DTM is a matrix that contains as many rows as the

number of documents in either training or testing part of the

dataset, and as many columns as the size of vocabulary (the set

of all terms present in the entire dataset). Each cell of a DTM

matrix can contain, for example, a number of occurrences of

a given word of vocabulary (defined by a column of DTM) in

a document (defined by a row of DTM)9.

For all selected datasets, the DTM matrices are obtained

as follows. First, the vocabulary is calculated. In order to

obtain the vocabulary of each dataset, we applied the text-

mining package of the R language [29] (for the 20-newsgroup

dataset) and Gensim package of the Python language [30] (for

the PubMed Mesh dataset). The vocabulary is obtained by

applying the following steps to the set of texts of each dataset:

1) Removing all numbers from a text.

2) Removing punctuation.

9Obviously, such a representation usually leads to a significant size of a
DTM, whose cells mostly contain 0 (which indicates the situation when a
word is not present in a document).

3) Removing English stopwords and articles.

4) Transforming all upper-case letters to lower-case letters.

5) Applying texts’ stemming.

After the execution of the above steps, we calculated the

DTM matrices for the training and testing parts of datasets

separately as follows.

A. The Preprocessed 20-newsgroup Dataset

The 20-newsgroup dataset contains 18 846 texts that are

grouped into 20 news categories. To the distinguishing char-

acteristic of the 20-newsgroup dataset belongs the fact that

20 categories often belong to very different domains. For

example: politics, sociology, religion or computer devices. The

texts are split into training and testing parts in the proportion

6:4 by the author of the dataset. Thus, the training part consists

of 11 307 training texts and 7538 testing texts. Most of the

texts in the datasets consists of several hundreds of words.

Thus, we have shorten each text by selecting only its 100 first

words as text used for classification. The vocabulary calculated

using such preprocessed shorten texts contains 132 370 terms.

The short texts are used to obtain the Document Term Matrices

(DTMs) for training and testing parts separately. Since the

obtained vocabulary contains 132 370 terms, each DTM matrix

would also contain 132 370 columns - far too many for most

of classifiers. Thus, we decided to remove sparse words from

DTMs as follows:

• For the NeuCube implementation we remove from the

vocabulary these terms which are not present in at least

95% of text (this reduces the number of columns of DTM

to 341) - such a reduction was forced by the memory

constraint of NeuCube, which prevents loading too large

datasets.

• For all other tested classifiers we remove from the vocab-

ulary these terms which are not present in at least 99%

of text (this reduces the number of columns of DTM to

751).

B. The Preprocessed Imbalanced and Balanced PubMed

Dataset

The PubMed dataset contains several millions of medical

publications that are categorized according to the Medical

Subject Headings (MeSH). MeSH is a set of classes organized

into a hierarchical structure with 16 main branches (in overall,

MeSH consists of nearly 30 000 categories). Each PubMed

PIOTR S. MACIĄG ET AL.: A COMPARATIVE STUDY OF SHORT TEXT CLASSIFICATION WITH SPIKING NEURAL NETWORKS 85

document is usually indexed (either by the authors of a

document/publication or by a publisher) using several MeSH

categories. The obtained by us metadata of PubMed documents

is posted as a part of the BioASQ competition [31].

For the purpose of our experiments, we randomly selected

metadata of 10 000 PubMed documents, each of which is

assigned one of the 16 main categories of the MeSH clas-

sification. Since the documents in these main categories are

unevenly distributed, the resultant dataset is imbalanced (for

example, majority of publications belong to the category

Chemicals and Drugs, while there are few publications be-

longing to the category Information Sciences). Since we are

focused on classification of short texts, we decided that input

data provided to classifiers will contain only a title of a

publication. The selected 10 000 publications are split into a

training and testing parts in the ratio 9:1.

We applied the TF-IDF encoding to obtain the DTM ma-

trices of the training and testing parts according to the steps

given at the beginning of this section. The vocabulary consists

of 14553 terms from which we selected 1670 terms that occur

in at least 99.9% of texts to represent input features of datasets.

In a similar way, we obtained the balanced PubMed dataset,

which differs from the imbalanced in that it contains the

10 000 documents that are evenly distributed in the 16 main

categories.

V. EXPERIMENTS

In this section, we first describe the applied input parameters

of the selected classifiers. Next, we present the results of

experiments on the selected datasets. The results were obtained

for the three above-described implementations of SNNs as well

as for the other four classification methods: Binomial logistic

regression, a single Decision tree, the MLP neural network as

well as Support Vector Classifier (SVC). In the second part

of the experiments, we focus specifically on the presentation

of the classification accuracy for the eSNN encoding method

that is offered by us in Section III.

A. Parameters of Selected Classifiers

The parameters of the selected SNNs implementations that

were ran on the datasets are given in Table II. The parameters

were selected using the grid search procedure on a suitable set

of parameters of each implementation.

The parameters of the other classifiers selected for experi-

ments were as follows:

• Decision tree - spilt criterion = Gini index, maximal depth

= none.

• Logistic regression - maximal no. of training iterations =

100.

• Multilayer Perceptron neural network (MLP) - no. of hid-

den neurons = 1000, sigmoid activation function, learning

rate for weights modification in thw error backpropaga-

tion phase 0.0001, training iterations = 8, the ADAM

optimization method for error backpropagation.

• Support Vector Classifier - radial kernel, misclassification

cost coefficient = 1.

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

NIsize

A
c
c
u
ra

c
y

Method GRFs IJCNN2020 Proposed Method

Fig. 6. Comparison of the classification accuracy for the selected input
methods. IJCNN2020 referes to the method offered in [5]. The method given
in this work was ran with Bins = 3.

B. Results of Short Text Classification

The results of classification accuracy for the classifiers are

given in Table III. As it can be noted, in the case of short

texts of the 20-newsgroup dataset, the most effective classifier

is SVC. For both balanced and imbalanced PubMed datasets,

two best performing classifiers are SNNTorch and logistic

regression. Among the selected SNNs implementations, the

eSNN implementation provides slightly better results than

NeuCube for 20-newsgroup dataset, while NeuCube is slightly

superior to eSNNs in the cases of PubMed datsets. The best

performing implementation of SNNs is SNNTorch. This can

be explained by the fact that it contains not only spiking

LIF neurons, but also incorporates learning mechanisms of

traditional feedforward neural networks, such as the error

backpropagation phase that applies ADAM optimizer.

C. Comparison of the Classification Accuracy for the Pro-

posed Encoding Method of eSNNs

Our method is compared with the encoding method offered

in [5] that directly calculates firing order of input neurons as

well as with the widely-used GRFs method used with spiking

neural networks [13]. Both the method of [5] as well as the

GRFs uniformly allocate the NIsize input neurons to encode

input values of each feature F ∈ F . In this experiments we use

20-newsgroup dataset, however to better illustrate the results

of encoding we selected full texts of this dataset.

In Fig. 6, we present the obtained classification accuracy

of the selected methods for varying number of input neurons

NIsize. For the proposed method, we used the B = 3 bins

parameter to create the histogram of values of each feature in

our encoding method. As it can be noticed from the figure,

the offered method can significantly improve the classification

accuracy comparing to the other two tested methods. For

example, for NIsize = 20 the proposed method gives accuracy

0.52, while the method of [5] and GRFs method give 0.2 and

0.21 accuracy values, respectively.

86 PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022

TABLE II
THE APPLIED PARAMETERS OF THE SELECTED SNN CLASSIFIERS.

Classifier 20 newsgroup dataset Imbalanced PubMed dataset Balanced PubMed dataset

eSNN
NIsize = 25, Bins = 3,
mod = 0.95, simTr = 0.05,

NIsize = 15, Bins = 3,
mod = 0.95, simTr = 0.05

NIsize = 15, Bins = 3,
mod = 0.95, simTr = 0.05

NeuCube
η = 0.01, Firing thr. = 0.5,
mod = 0.95, Refractory time = 3,
Training its. = 1

η = 0.01, Firing thr. = 0.5,
mod = 0.4, Refractory time = 8,
Training its. = 1

η = 0.01, Firing thr. = 0.5,
mod = 0.4, Refractory time = 8,
Training its. = 1

SNNTorch
Hidden neu. = 1000, Firing thr. = 1,
Decay rate = 0.92,
Learn. rate = 0.0001, Training its. = 8

Hidden neu. = 1000, Firing thr. = 1,
Decay rate = 0.92,
Learn. rate = 0.0001, Training its. = 8

Hidden neu. = 1000, Firing thr. = 1,
Decay rate = 0.92,
Learn. rate = 0.0001, Training its. = 8

TABLE III
THE OBTAINED CLASSIFICATION ACCURACY RESULTS.

Classifier 2
0

n
ew

sg
ro

u
p

Im
b

a
la

n
ce

d
P

u
b

M
ed

B
a
la

n
ce

d
P

u
b

M
ed

eSNN 0.19 0.15 0.16

NeuCube 0.10 0.17 0.29

SNNTorch 0.24 0.39 0.39

Decision tree 0.43 0.25 0.26

Logistic regression 0.55 0.36 0.32

MLP network 0.01 0.32 0.31

SVC 0.61 0.37 0.37

VI. DISCUSSION AND CONCLUSIONS

In this work, we presented the results of short text classifica-

tion using three different implementations of SNNs networks,

namely: evolving Spiking Neural Networks, the NeuCube

implementation of SNNs and the SNNTorch implementation.

In order to test the selected classifiers, we selected and prepro-

cessed three publicly available datasets: 20-newsgroup dataset

as well as imbalanced and balanced PubMed datasets of

medical publications. The preprocessed 20-newsgroup dataset

consists of the first 100 words of each text, while for the

classification of PubMed datasets we used only a title of

each publication. As a text representation of documents, we

applied the TF-IDF encoding. In this work, we also offered a

new encoding method for eSNN networks, that can effectively

encode unevenly distributed values of each input feature. The

designed method works especially effectively with the TF-IDF

encoding.

The presented results of experiments indicate, that SNNs

implementations that solely use the neuronal models tradi-

tionally applied in SNNs, such as the LIF model, as well as

apply unsupervised learning rules like STDP, may not perform

as effective as the implementations that combine SNNs with

the learning methods present in traditional neural networks,

such as the MLP networks. Specifically, in the conducted

experiments, the SNNTorch implementation performed better

than the eSNN and NeuCube implementations. Furthermore,

the computational and memory complexity of SNN networks

(as in the case of NeuCube) can be a bottleneck in processing

large sets of texts. In the experiments, SNNTorch was able

to slightly outperform the results obtained by other selected

classifiers in the case of two PubMed datasets.

REFERENCES

[1] J. Weissbock, A. A. Esmin, and D. Inkpen, “Using external information
for classifying tweets,” in 2013 Brazilian Conference on Intelligent

Systems, 2013, pp. 1–5.
[2] M. Kozlowski and H. Rybinski, “Clustering of semantically enriched

short texts,” Journal of Intelligent Information Systems, vol. 53, no. 1,
pp. 69–92, 2019.

[3] I. Laña, J. L. Lobo, E. Capecci, J. Del Ser, and N. Kasabov, “Adaptive
long-term traffic state estimation with evolving spiking neural networks,”
Transportation Research Part C: Emerging Technologies, vol. 101, pp.
126 – 144, 2019.

[4] P. S. Maciąg, N. Kasabov, M. Kryszkiewicz, and R. Bembenik, “Air
pollution prediction with clustering-based ensemble of evolving spiking
neural networks and a case study for london area,” Environmental

Modelling & Software, vol. 118, pp. 262 – 280, 2019.
[5] P. S. Maciąg, M. Kryszkiewicz, and R. Bembenik, “Online evolving

spiking neural networks for incremental air pollution prediction,” in 2020

International Joint Conference on Neural Networks (IJCNN), 2020, pp.
1–8.

[6] H. Liu, G. Lu, Y. Wang, and N. Kasabov, “Evolving spiking neural
network model for PM2.5 hourly concentration prediction based on
seasonal differences: A case study on data from beijing and shanghai,”
Areosol and Air Quality Research, vol. 21, no. 2, p. 200247, 2021.

[7] L. Paulun, A. Wendt, and N. Kasabov, “A retinotopic spiking neural net-
work system for accurate recognition of moving objects using neucube
and dynamic vision sensors,” Frontiers in Computational Neuroscience,
vol. 12, p. 42, 2018.

[8] P. S. Maciąg, M. Kryszkiewicz, R. Bembenik, J. L. Lobo, and J. Del Ser,
“Unsupervised anomaly detection in stream data with online evolving
spiking neural networks,” Neural Networks, vol. 139, pp. 118–139, 2021.

[9] K. Demertzis and L. Iliadis, “A hybrid network anomaly and intrusion
detection approach based on evolving spiking neural network classifica-
tion,” in E-Democracy, Security, Privacy and Trust in a Digital World,
A. B. Sideridis, Z. Kardasiadou, C. P. Yialouris, and V. Zorkadis, Eds.
Cham: Springer International Publishing, 2014, pp. 11–23.

[10] N. K. Kasabov, “Neucube: A spiking neural network architecture for
mapping, learning and understanding of spatio-temporal brain data,”
Neural Networks, vol. 52, pp. 62–76, Apr. 2014.

PIOTR S. MACIĄG ET AL.: A COMPARATIVE STUDY OF SHORT TEXT CLASSIFICATION WITH SPIKING NEURAL NETWORKS 87

[11] N. Kasabov and E. Capecci, “Spiking neural network methodology for
modelling, classification and understanding of eeg spatio-temporal data
measuring cognitive processes,” Information Sciences, vol. 294, pp. 565
– 575, 2015, innovative Applications of Artificial Neural Networks in
Engineering.

[12] J. K. Eshraghian, M. Ward, E. Neftci, X. Wang, G. Lenz, G. Dwivedi,
M. Bennamoun, D. S. Jeong, and W. D. Lu, “Training spiking
neural networks using lessons from deep learning,” arXiv preprint

arXiv:2109.12894, 2021.
[13] J. L. Lobo, I. Oregi, A. Bifet, and J. Del Ser, “Exploiting the stimuli en-

coding scheme of evolving spiking neural networks for stream learning,”
Neural Networks, vol. 123, pp. 118 – 133, 2020.

[14] Q. Li, H. Peng, J. Li, C. Xia, R. Yang, L. Sun, P. S. Yu, and L. He, “A
survey on text classification: From traditional to deep learning,” vol. 13,
no. 2, apr 2022. [Online]. Available: https://doi.org/10.1145/3495162

[15] J. Y. Lee and F. Dernoncourt, “Sequential short-text classification
with recurrent and convolutional neural networks,” arXiv preprint

arXiv:1603.03827, 2016.
[16] Chen, Yahui, “Convolutional neural network for sentence classification,”

Master’s thesis, 2015. [Online]. Available: http://hdl.handle.net/10012/
9592

[17] Y. Hu, Y. Li, T. Yang, and Q. Pan, “Short text classification with a
convolutional neural networks based method,” in 2018 15th International

Conference on Control, Automation, Robotics and Vision (ICARCV).
IEEE, 2018, pp. 1432–1435.

[18] L. Yao, C. Mao, and Y. Luo, “Graph convolutional networks for
text classification,” Proceedings of the AAAI Conference on Artificial

Intelligence, vol. 33, no. 01, pp. 7370–7377, Jul. 2019.
[19] K. Kowsari, K. Jafari Meimandi, M. Heidarysafa, S. Mendu, L. Barnes,

and D. Brown, “Text classification algorithms: A survey,” Information,
vol. 10, no. 4, p. 150, 2019.

[20] M. Białas, M. M. Mirończuk, and J. Mańdziuk, “Biologically plausible
learning of text representation with spiking neural networks,” in Parallel

Problem Solving from Nature – PPSN XVI, T. Bäck, M. Preuss, A. Deutz,
H. Wang, C. Doerr, M. Emmerich, and H. Trautmann, Eds. Cham:

Springer International Publishing, 2020, pp. 433–447.
[21] Y. Wang, Y. Zeng, J. Tang, and B. Xu, “Biological neuron coding

inspired binary word embeddings,” Cognitive Computation, vol. 11,
no. 5, pp. 676–684, 2019.

[22] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in Proceedings of the 2014 conference on

empirical methods in natural language processing (EMNLP), 2014, pp.
1532–1543.

[23] Q. Le and T. Mikolov, “Distributed representations of sentences and
documents,” in International conference on machine learning, 2014, pp.
1188–1196.

[24] J. L. Lobo, I. Laña, J. Del Ser, M. N. Bilbao, and N. Kasabov, “Evolving
spiking neural networks for online learning over drifting data streams,”
Neural Networks, vol. 108, pp. 1 – 19, 2018.

[25] B. Petro, N. Kasabov, and R. M. Kiss, “Selection and optimization of
temporal spike encoding methods for spiking neural networks,” IEEE

Transactions on Neural Networks and Learning Systems, pp. 1–13, 2019.
[26] E. M. Izhikevich and G. M. Edelman, “Large-scale model of mammalian

thalamocortical systems,” Proceedings of the National Academy of

Sciences, vol. 105, no. 9, pp. 3593–3598, 2008.
[27] F. Ponulak and A. Kasiński, “Supervised learning in spiking neural

networks with resume: sequence learning, classification, and spike
shifting,” Neural computation, vol. 22, no. 2, pp. 467–510, 2010.

[28] F. Ponulak and A. Kasinski, “Introduction to spiking neural networks:
Information processing, learning and applications.” Acta neurobiologiae

experimentalis, vol. 71, no. 4, pp. 409–433, 2011.
[29] I. Feinerer, “Introduction to the tm package text mining in R,” Avail. on

line: http://cran.r-project.org/web/packages/tm/vignettes/tm.pdf, 2013.
[30] R. Řehůřek and P. Sojka, “Software Framework for Topic Modelling

with Large Corpora,” in Proceedings of the LREC 2010 Workshop on

New Challenges for NLP Frameworks. Valletta, Malta: ELRA, May
2010, pp. 45–50, http://is.muni.cz/publication/884893/en.

[31] BioASQ Team. (2021) A challenge in large-scale biomedical
semantic indexing and question answering. [Online]. Available:
http://www.bioasq.org/participate/challenges

88 PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022

