
The electric vehicle shortest path problem with time
windows and prize collection

Antonio Cassia, Ola Jabali, Federico Malucelli
Politecnico di Milano, Italy

Email: {antonio.cassia, ola.jabali,
federico.malucelli}@polimi.it

Marta Pascoal
University of Coimbra, CMUC, INESC-Coimbra, Portugal,

Politecnico di Milano, Italy
Email: marta.brazpascoal@polimi.it

Abstract—The Electric Vehicle Shortest Path Problem
(EVSPP) aims at finding the shortest path for an electric vehicle
(EV) from a given origin to a given destination. During long
trips, the limited autonomy of the EV may imply several stops
for recharging its battery. We consider combining such stops
with visiting points of interest near charging stations (CSs).
Specifically, we address a version of the EVSPP in which the
charging decisions are harmonized with the driver’s preferences.
The goal is to maximize the total gained score (assigned by the
driver to the CSs), while respecting the time windows and the
EV autonomy constraints. We define the problem as a MILP and
develop an A* search heuristic to solve it. We evaluate the method
by means of extensive computational experiments on realistic
instances.

I. INTRODUCTION

D
EVISING tools that facilitate the use of Electric Vehicles
(EVs) is key to successfully electrifying transport, e.g.,

[5]. The limited autonomy of EVs coupled with the scarcity
of charging stations (CSs) entails that long trips may involve
several charging stops. Given that such stops are likely to be
time consuming, we explore the idea of matching the charging
stops with user preferences.

Considering an EV that needs to travel between an origin
and a destination, we consider that the user attributes a score
to each CS. Such scores are based on the vicinity to Points of
Interest (POIs) to the CS. For example, a user may prefer to
stop at cultural venues. In this case, a high score is given to
CSs nearby such venues. Using those scores, we consider the
problem of optimizing the shortest path respecting all energy
feasibility constraints, while maximizing the total score that
the user can achieve. To handle this problem we propose the
Maximum Profit Model (MPM). To avoid excessively long
trips, we limit the duration of the route. We establish this
limit by solving the Shortest Path Model (SPM), which is the
shortest EV path in time. We allow the MPM to deviated from
the shortest path length within a given tolerance.

We adapt the Mixed Integer Linear programming (MILP)
model proposed in [6] to handle the MPM and the SPM.
Furthermore, we develop a heuristic algorithm based on the
A* search which handles large instances of MPM. To this end,
we propose the Maximum Discounted Profit Model (MDPM),

This work was partially supported by the Portuguese Foundation for
Science and Technology (FCT) under project grants UID/MAT/00324/2020
and UID/MULTI/00308/2020.

which discounts the scores of the nodes into the arc costs that
connect them. By doing so, we are able to efficiently adapt
the A* search Algorithm to the MPM.

In general, the Electric Vehicle Shortest Path Problem
(EVSPP) is a shortest path problem that accounts for battery
limitation and charging constraints. Due to their limited au-
tonomy, EVs may need to detour to CSs in order to recharge
their battery. This is particularly true in medium and long
range routes, like in [11]. A key decision in this context is
where and how much to charge the EVs. The problem of
minimizing the overall trip time for EVs in road networks was
studied by [1]. A heuristic algorithm for solving large EVSPP
instances was proposed in [14]. Baum et al. [2] introduced a
functional representation of the optimal energy consumption
between two locations, which led to developing an efficient
heuristic algorithm that computes energy optimal paths.

One of the main EVSPP modeling assumption relate to how
the EV batteries are recharged. Some researchers assume that
the EV must completely recharge before leaving a CS, e.g. [4],
[9]. Other works (e.g., [6], [10], [12]) consider the charging
quantity as a decision within the optimization. As in most
studies we assume that the energy consumption is directly and
exclusively related to the traveled distance.

In practice, the EV charging function is nonlinear with
respect to time, and depends on the used charging technology.
The nonlinear charging functions were modeled as piecewise
linear concave functions by [6], [10].

Time window (TW) constraints have been introduced in EV
problems by [12]. TWs oblige EVs to arrive in predetermined
CSs before or during a particular time interval. Contrary to
what is done in the literature, we assume that TW types are
given (e.g., lunch breaks), yet their location is determined
from a set of CSs which accommodate this type of TW.
Furthermore, we consider required and weakly mandatory
TWs.

Considering that CSs have different scores and a given
maximum path length (in time), the aim of the MPM is to
maximize the total score of visited CSs. As such, CSs that
better match the user preferences are prioritized. We consider
a single EV, with partial recharging decisions and nonlinear
charging functions. Furthermore, we consider only public CSs,
having different technologies and scores. We also consider
TWs with a limit on the total travel time.

Proceedings of the of the 17th Conference on Computer
Science and Intelligence Systems pp. 313–322

DOI: 10.15439/2022F186
ISSN 2300-5963 ACSIS, Vol. 30

IEEE Catalog Number: CFP2285N-ART ©2022, PTI 313

The contributions of this paper are threefold: 1) we propose
an EV shortest path model that accounts for user preferences
(MPM); 2) we develop a heuristic based on the A* algorithm
to solve that problem; 3) and we verify the performance of
both the MILP model and the heuristic algorithm on realistic
test instances.

We introduce the MPM in Sec. II and develop an A*
algorithm for it in Sec. III. We present our computational
experiments in Sec. IV, and state our conclusions in Sec. V.

II. PROBLEM DEFINITION

The MPM maximizes the score of the CSs visited by
the EV, such that the resulting path is feasible and within
a tolerance from the shortest EV path. In the literature, the
goal of maximizing scores obtained by visiting nodes is often
called prize collection [13]. To model the MPM we adapt the
arc based MILP model of [6]. Due to space limitations, we do
not present the full formulation. Instead, we give an overview
of that work and then detail the major adaptations made to
handle the MPM.

Froger et al. [6] introduced the Fixed Route Vehicle Charg-
ing Problem (FRVCP). Given a sequence of customer nodes
(i.e., not CSs) to visit, the objective of the FRVCP is to
determine the charging operations (which CSs to visit and how
much to charge), in order to minimize the total route duration
while satisfying the following conditions: The customers in
the resulting route are visited according to the given order,
the resulting route is energy feasible and satisfies a maximum
duration limit Tmax. The state of charge (SoC) of the EV is
tracked on each traversed arc and visited node. The EV may be
partially recharged at a set of charging stations S , which may
have different technologies. For each technology we consider
a nonlinear charging function, approximated via a piecewise
linear function following the models by [10]. In the MPM the
fixed sequence of nodes to visit goes from an origin O node
to a destination D node.

Building on the FRVCP, we now describe the MPM. Let
G :=(SO,D,A) be a directed graph, where SO,D :=S*{O,D}
and A is the set of arcs that connect pairs of nodes in SO,D.
Let tij g 0 and eij g 0 be the driving time and energy
consumption of arc (i, j) * A, both satisfying the triangular
inequality. The EV departs from O with a fully charged battery
of capacity Q. We impose that the SoC of the EV is at
least qmin throughout the route. Since we consider long trip
planning, we assume that the number of nights is a user input.

The user will spend some time in the neighborhood of the
selected CS. Moreover, in certain moments of the day, the
user may prefer to visit a CS near a POI, e.g., restaurants or
hotels. CSs are typically strategically placed near those types
of POIs. It is important that the user visits CSs that best suit her
preferences. We attribute a score σj for j * S , which are input
to the MPM. We assume that they can be derived based on the
user’s ranking of POIs. Furthermore, the user may personalize
her trip by imposing TWs related to an activity (e.g., lunch
breaks). The classical definition of TWs determines a time to
visit a given node. In the MPM, such TWs may be realized

O

A

B

C

H

L

E

D2h 00’

1h 15’
1h 45’

1h 15’1h 15’

1h 45’
1h 30’2h 30’

1h 30’
2h 15’

2h 00’
3h 00’

3h 00’

1h 45’15:30
�̂10

18:15
�O10

8:30+1
ª̂10

10:45+1
µm10

13:30+1
�̂10

12:00+1
�@10 Arrive:

15:00+1
�@10 Arrive:

H Hotel

L Lunch

Figure 1: Path from O to D with a night at a hotel and lunch breaks. The
timestamp near a node represents the corresponding departure time, including
the recharging time (not reported in the figure). For D, instead, the timestamps
represent the arrival time. The number on each arc is its travel time. The red
path is optimal, stopping in the hotel as required and reaching node E. If
also the lunch break is required, then the EV is forced to arrive to D with
stopping at L (blue path). Instead, with the weakly mandatory flag, from E
the EV can go directly to D 3h in advance (green path).

at a number of CSs. We therefore denote the TWs related
to our MPM as Activity-based Time Windows (ATWs). In
our experiments in Sec. IV, we assign to each CS a randomly
generated score between 0 and 5. In practice, these values will
be established by the user in real applications.

Let W be the set of all ATWs, which is partitioned into
two subsets, WR,WM ¦ W , formed by the required and the
weakly mandatory ATWs. The EV is forced to stop in each
kR * WR, but it must stop in kM * WM only if there exists
at least one kR such that kM z kR. Otherwise, kM may be
skipped. We assume that the sets WR,WM are ordered by
chronological order of starting time of the TWs. Each ATW
is defined as:

k := (γL
k , γ

U
k , tmin

k , ok, νk), k * W,

where the interval [γL
k , γ

U
k] (with γL

k < γU
k) describes its initial

and ending times (the EV must arrive before γU
k); tmin

k is the
minimum time that the EV needs to stop during k; ok is a
binary value, equal to 1 if k * WM , and 0 otherwise. The
set W is ordered, thus, if k z h, then γL

k < γL
h , for any

k, h * W . The EV is allowed to arrive at a node with a
maximum anticipation time �ϕ. In this case, the activity will
nevertheless start at γL

k . Thus, if the EV arrives in node i
in the interval

�
γL
k 2 �ϕ, γU

k

"
, then it may decide to stop at i

for at least tmin
k or instead perform k in a subsequent node.

In addition, we use hard TWs, which means that it is not
possible to perform the ATW k before γL

k 2 �ϕ nor after γU
k .

Finally, two ATWs can overlap, but they cannot be contained
in one another. Each CSs is associated with multiple POIs, and
each TW requires a specific POI. This information is stored
in the label νk and is different for each TW. For instance, if
k * W refers to the first night, then νk = “Hotels” and the
EV is forced to stop at a CSs near a hotel. So, it is possible
to construct the set of chargers Sk ¦ S that have in their
neighborhood the POI stated in νk.

314 PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022

To determine Tmax we solve an EV Shortest Path Problem
SPM, subject to the same constraints as MPM, but with the
goal of minimizing the total trip duration (i.e., ignoring the
scores). Let T opt be the optimal objective function value of
SPM, which is a theoretical lower bound on Tmax. Then, let
T add be the tolerance of the total additional detouring time
from the shortest path to stop in nodes with higher scores.
Therefore, we set Tmax to T opt + T add.

To avoid routes with many stops at SCs, we introduce the
parameter rmin, as rmin := +0.4 (Q 2 qmin)/η,, where η
is the average energy consumption per kilometer (expressed
in kWh/km), and is dependent on the EV type. The ratio
(Q 2 qmin)/η represents the maximum autonomy of the
vehicle, excluding the minimal amount of energy that is always
required. With this arrangement it is possible to prune all the
arcs associated with a distance less than rmin, which also
avoids stops for charging the EV in consecutive locations that
are very close to each other.

Let ξ denote a lower bound on the distance of a trip
from O to D (its computation is described in Sec. IV). Then
the maximum number of legs N in a path is defined as
+1.5+ξ/rmin,,.

III. A* SEARCH ALGORITHM

In the following we propose a heuristic algorithm for the
SPM and extend it for solving the MPM. Recall that the SPM

solution serves as an input to MDPM. The algorithm is based
on the A* search, which finds a path from an origin O to a
destination D with the smallest cost. To do that, it maintains
the tree of all the paths originated from O and extends each of
them one arc at a time until D is reached. It uses a best-first
search by selecting the node that minimizes

f(i) := g(i) + h(i),

where i is the current node, g(i) is the cost of the path from
O to i, and h(i) is an estimate of the cost of the shortest path
from i to D. If h(i) never overestimates the real cost to reach
D from i, for all i, then the A* algorithm finds the optimal
solution.

The A* algorithm is based on minimizing cost mechanisms,
thus it is not directly applicable to prize collection settings
such as the MDPM. Therefore, we propose the MDPM which
approximates the MPM, searching for a shortest path while
maximizing the total score. To do that, we assign a weight s̃ij
with each arc, defined as

s̃ij := tij +∆j 2 µσj , "(i, j) * A s.t. i, j * S,

where ∆j is the the time spent waiting while the EV is
charging at the CS j, and µ is a parameter that indicates
the relative importance of the score with respect to the time
required to go from i to j, charging time included. The
objective function of the MDPM model is then

min
�

(i,j)*A, j*S

s̃ijxij .

This expression is nonlinear, but it can be linearized by
introducing new decision variables sij , and changing the
objective function as

min
�

(i,j)*A, j*S

[(tij 2 µσj)xij + sij]

We first discuss the computation of the potentials used to
estimate the heuristic function h. We then incorporate the TWs
in the heuristic. Finally, we modify the algorithm to account
for the scores in h.

Let q
i

and qi be the SoC when the EV arrives and departs
from CS i. The variables ci and ci are respectively the start
and end time for charging an EV. Variables τ i, τ i track the
time when the EV arrives and leaves CS i * S , respectively.
There is also a tolerance ϕi that represents how much time in
advance, with respect to γL

k , the EV can arrive in i, for any
i * SD. The maximum anticipation time is set to �ϕ, but even
if the EV arrives in advance, the minimum stopping time tmin

k

starts at γL
k and not before.

Let xij be a binary variable which equals 1 if the EV arrives
at node j from node i, 0 otherwise. The variable yjk is also
binary and it is 1 if the EV stops in j in TW k, 0 otherwise.
The maximum duration of the trip is Tmax (in Sec. III we
show how to compute an upper bound for this value). The
variable zk is binary and is equal to 1 if the EV arrives in D
after TW k, 0 otherwise, for any k * WM . It is used to link
the arrival time in node D and avoidable TWs.

A. Potentials

We now find an initial estimate of the total time from any
CS i to D, building on techniques used in [14]. We start by
dropping the charging and the TW constraints, thus we obtain
a problem that can be solved using the Dijkstra’s algorithm.
Let G := ïSO,D,Að be the directed graph from O to D, where
SO,D is the set of nodes and A := SO×SD the set of arcs. We
then apply the backward Dijkstra’s algorithm, which operates
on the reversed graph G2 := ïSO,D,A

2ð where

A2 := SD × SO such that (i, j) * A ó (j, i) * A2,

while considering D as the origin and O as the destination.
This allows us to obtain a lower bound on the driving time
from any i * SO,D to D, which we denote by πdr(i).
To account for energy consumption, we apply the backward
Dijkstra’s algorithm considering the energy consumption as
the weight for the arcs. This allows us to derive the minimum
amount of energy required from i * SO,D to D. We denote
this lower bound by πcons(i).

The EV arrives partially charged at each node, with an
amount of energy equal to SoC(i). Since the minimal amount
of SoC qmin needs to be respected at every node, we can think
of SoC(i) 2 qmin as the available energy at node i * SO,D.
Then, to compute the minimal amount of energy from i to D,
we define

π̃cons(i) := πcons(i)2 (SoC(i)2 qmin).

ANTONIO CASSIA ET AL.: THE ELECTRIC VEHICLE SHORTEST PATH PROBLEM WITH TIME WINDOWS AND PRIZE COLLECTION 315

We now compute a lower bound for the charging time, based
on the minimal required energy at a node i * SO,D. We define
Gi := ïTi,Aið as a subgraph of G, where Ti is the set of
reachable nodes from i, and Ai is the set of arcs comprising
a path from i to any j * Ti (see Fig. 2).

O

A

B

C

H

G

E

F

D

Figure 2: Illustration of GH

Let smax(i) denote the maximum charging rate of all
the CSs in Ti. We denote the maximum charging rate of
CS j as ρ̄j , which corresponds to the largest slope of the
piecewise charging function of j. We then set smax(i) as
max { ρ̄j : "j * Ti }. This improves the computation of the
charging potential with respect to [14], where smax is constant
and does not depend on the nodes that are reachable from i.

If the energy available at i is greater than the remaining
energy needed to reach D, then π̃cons can be negative. Thus,
two cases are considered when computing a lower bound for
the charging time:

πch(i) :=

ù
ú
û

π̃cons(i)

smax(i)
SoC(i)2 qmin f πcons(i)

0 otherwise

This gives a potential that returns the minimal charging time
from any node i to D. Thus, a lower bound on the total trip
time is given by

�πtt(i) := πdr(i) + πch(i) "i * SO,D.

We improve this lower bound by accounting for TWs. Let
πtw(i) be the minimal stopping time that the EV must perform
from i to D according to the ATWs. The trip accounts for the
sum of all the minimum stopping times. Let k̃ be the last TW
in the ordered set WR. Suppose that, when at node i, the EV
has not performed all TWs in WR. Then, g(i) f γL

k̃
+ tmin

k̃
,

where g(i) is the arrival time at i and γL

k̃
is the starting time of

TW k̃. In this case, we compute a lower bound for the TWs
potential as the sum of all the stopping times that have not
been performed by the time g(i). If instead, in node i, the EV
has already done all the TWs in WR, then g(i) > γL

k̃
+ tmin

k̃
and so the potential for the TWs must be zero. Therefore, if
πtw(i) is the TWs potential for node i, we have

πtw(i) :=

ù
üú
üû

�

k*WR:g(i)<γL
k

tmin
k if g(i) f γL

k̃
+ tmin

k̃

0 otherwise

For instance, suppose that WR contains a 1 hour stop for
lunch, one tourism stop for 2 hours and one for sleeping for

11 hours. Then, before lunch πtw(i) = 14, after lunch πtw(i) =
13, and the next day πtw(i) = 0.

We now incorporate πtw in �πtt. The EV charges during each
stop. Thus, we cannot simply sum πtw and πch, since they
may overlap. Instead, we can obtain a better lower bound
considering the maximum between πch and πtw, and then
adding the driving potential πdr. So,

π1
tt(i) := πdr(i) + max {πch(i),πtw(i) }

defines the lower bound for the total stopping time from i
to D. We are not overestimating the real cost, since taking
the maximum we consider for each node the best possible
charging scenario that at least the EV has to perform.

B. Labels

Label Ljm represents the state of the EV when arriving at
the m-th copy of node j, that is dynamically allocated. With
this label we keep track of the state of the EV. For notational
convenience, we denote g(jm) by gmj . Each label includes the
total time needed to reach jm, so it includes both driving and
charging times. For instance, suppose that the EV goes from
the n-th copy of i to the m-th copy of j, namely from in
to jm. Then the label Ljm considers driving from i to j and
the charge in i that is needed to reach j for the m-th time. It
excludes the time the EV spends charging in j. The label of
the m-th copy of node j, with in as its direct predecessor, is:

Ljm := (i, gmj , hm
j , fm

j , pmj , βm
j , qmj , qm

j
, λm

j ,∆m
j , ωm

j)

where

" i is the node from which the EV arrives to jm;
" gmj is the total travel time from O to jm;
" hm

j is the estimated travel remaining time from jm to D;
" fm

j is the estimated arrival time at D if the path from O
to jm is performed. It is given by fm

j := gmj + hm
j ;

" pmj is the label from which the EV arrives, i.e., Lin ,
which is the label of the n-th copy of node i, with n *
{ 1, . . . ,Mi };

" βm
j is the additional time spent at j for charging, it is

chosen from an ordered set β := {β1, β2, . . . , βs };
" qmj is the amount of energy that is charged in the

predecessor node in. It is computed to at least respect
the consumption eij and is given by qmj := qmj 2 qm

j
,

where

qmj := max
�
qn
i
+ eij , Q

�
;

" qm
j

is the amount of energy of the EV when arriving at
jm. It is computed as qm

j
:= qn

i
+ qmj 2 eij ;

" λm
j is the minimum time the EV must charge at jm. This

amount of time is considered in the next label and not in
Ljm . It is defined as

λm
j :=

ù
üú
üû

max
�
0, γL

k 2 gmj
�
+ tmin

k if TW k is

performed in in

0 otherwise

316 PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022

where γL
k is the starting time of TW k and tmin

k is its
minimum stopping time. TW k is retrieved using ωm

j

(see below);
" ∆m

j is the charging time in in. It is given by

∆m
j := max

�
λn
i , cmj 2 cmj

�
+ βm

j ,

where cmj := Φ21
j (qmj) and cmj := Φ21

j (qn
i
), with Φ21

j

the inverse of the charging function in node j. The term
βm
j is added to consider the cases in which the EV

charges more than needed;
" ωm

j is the index of the last TW k prior to node jm.

Parameters ∆, q and q are strictly related to β. As a conse-
quence, also g, h and f depend on β. The value of λ instead
depends strictly on ω.

C. A* search algorithms for the MPM and MDPM

Using the labels described above we now outline the A*
search algorithm. We start by implementing a heuristic ap-
proach to find the fastest path from O to D, referring to this
as AsM.

The origin node O is initialized as follows:

L1
O := (O, g1O = tstart, h

1
O = h1(O), f1

O = g1O + h1
O,

p1O = 2, 0, 0, q1
O
= Q, 0, 0, 0),

where g1O is the starting time of the trip. Thus, fm
D represents

the arrival time in D and not the duration of the trip. Let L
be the set of all labels, and Mj be a counter of the number of
copies of j * SO,D. The algorithm keeps track of open labels
using a priority queue Q. Every time a new label is created,
it is added to Q in a way that the first element of Q is always
the one with the lowest fm

j
, among all labels Lm

j , so

jm := argmin
jm:j*SO,D, m=1,...,Mj

�
fm
j

�
.

We now introduce some of the functions used later in the
pseudocode. The function POP(Q) returns the label with the
lowest f in Q, while function PUSH(Q, Ljm) adds the label
Ljm to the queue. Function STAR(G, j) returns the set of nodes
h * SD such that (j, h) * A, in descending order with respect
to tjh. The function NEXTTW(WR, ωm

j) returns the next TW
in WR that is not visited when the EV arrives at node jm. The
EV is allowed to arrive at a node with a maximum anticipation
time of �ϕ. The boolean function NODEHASPOI(i, ν) returns
one if there is at least one POI of the category ν in the
neighborhood of node i, and zero otherwise.

Function MAXSLOPE(Ṡ) applied to a generic subset Ṡ of
CS S , returns the maximum slope between all the charging
functions of nodes in Ṡ . To speed up the algorithm, all the
subtrees are precomputed. The function ROUTING(i, j) returns
the pair (tij , eij), that are respectively the time and the energy
required to go from i to j, for any i * SO, j * SD. The
function MINSTOP(gi) returns πtw(i).

The A* algorithm is described in Alg. 1. It starts by
initializing the counters for all the copies and storing the
subtree of each node. Then the label associated with the origin
is created and added to the queue and to the set of all the labels.

Algorithm 1 ASTARSEARCH Algorithm

1: function ASTARSEARCH(G, Q, qmin, tstart, tend, WR, β)
2: for all node h * SO,D do

3: T [h] := SUBGRAPH(G, h), Mh := 0
4: end for

5: MO := 1, Initialize L1

O
; L :=

�
L1

O

�
; Q := {O }

6: while Q do

7: Ln
i := POP(Q) = (i, gn

i , hn
i , f

n
i , pn

i , β
n
i , qni , qn

i
, λn

i ,∆
n
i , ω

n
i)

8: k := NEXTTW(WR, ωn
i)

9: if i = D then

10: if ωn
i < |WR| then go to 6

11: return Ln
i , L

12: end if

13: if k is not NONE then // See A

14: IDX := ωn
i ; C := k

15: while C is not NONE do

16: if T [i] + SC = ' then go to 6
17: IDX := IDX + 1; C := NEXTTW(WR, IDX)
18: end while

19: end if

20: NEIGHBORS := STAR(G, i)
21: for all j * NEIGHBORS do

22: tij , eij := ROUTING(i, j)
23: if eij > Q 2 qmin then go to 21
24: for all β * β do

25: ∆, q := CHARGINGENERGY(i, eij , q
n

i
)

26: ∆ := max {λn
i , ∆ }+ β, q := CHARGINGFORTIME(i, qn

i
,∆)

27: gtemp := gn
i + ∆ + tij

28: if gtemp > tend then go to 21
29: if k is not NONE then

30: if gtemp > γU
k then go to 21

31: if γL
k 2 �ϕ f gtemp f γU

k then

32: if j = D or not NODEHASPOI(j, νk) then go to 39
33: Mj := Mj + 1; m := Mj

34: λ := max
�
0, γU

k 2 gtemp

�
+ tmin

k

35: Lm
j := CREATELABEL(i, j, gn

i , qn
i
,∆, q, tij , eij , λ, ω

n
i +

1, β, Ln
i)

36: L := L *
�
Lm

j

�
; PUSH(Q, Lm

j)

37: end if

38: end if

39: Mj := Mj + 1; m := Mj

40: Lm
j := CREATELABEL(i, j, gn

i , qn
i
,∆, q, tij , eij , 0, ω

n
i , β, Ln

i)

41: L := L *
�
Lm

j

�
; PUSH(Q, Lm

j)

42: end for

43: end for

44: end while

45: return NONE , NONE // Node not found
46: end function

A Check if the subtree of current node contains the category of POI that is needed for
the next TW and the subsequents ones. Otherwise, goes to the next element in the queue.

The label Ln
i with the lowest value of f is selected and then

the algorithm finds the next TW k that must be performed.
A check is performed to verify if the current label entails the
arrival to the destination point: if so, we verify whether the
index ωn

i of the last visited TW is at least equal |WR|. If
this is not the case, the EV has not visited yet all the non-
avoidable TWs, and thus the current label must be discarded.
Otherwise, the current label and the set of all the generated
labels are returned and the search terminates.

At this point, if k is not NONE the algorithm checks whether
or not there exists at least one node in Ti of the current node
i in which the POI constraint of TW k is satisfied. Then it
checks the same for all the TWs in WR that must be performed
after k.

The algorithm proceeds by considering the nodes j such that
(i, j) * A. A sequence of operations assures that the trip from
in to jm is feasible, where m is the index of the m-th copy of j
that will be created if all the checks are passed. First the energy

ANTONIO CASSIA ET AL.: THE ELECTRIC VEHICLE SHORTEST PATH PROBLEM WITH TIME WINDOWS AND PRIZE COLLECTION 317

constraints. If the energy required on arc (i, j) is greater than
the maximum amount for the EV, we discard this label, and the
algorithm proceeds to the next node in STAR(G, i). Otherwise,
if eij < Q2 qmin, we consider charging a greater amount of
energy with respect to eij by looping on β.

At line 25 of Alg. 1, the charging time and the charged
energy are computed, given the current SoC qn

i
and the amount

of energy required eij . The two values are then updated on
line 26, taking the current SoC and the arrival time.

We then compute a temporary value gtemp of the arrival time
in j. In case gtemp > tend, the current label is discarded. We
then verify if the selected TW k is in WR. If so, then the
algorithm must satisfy the constraints associated with k. First,
if gtemp > γU

k , then the arrival time at j will be after the
ending time of k, which is not feasible. If instead, gtemp is
included in the range [γL

k 2 ϕ, γU
k], then the EV arrives at j

during the TW k. In this situation, the user may decide to stop
in j, and respect the TW constraints, or to continue driving
to the next node h and see if it is possible to respect k in
node h. This scenario models the case in which, for instance,
instead of respecting the lunch constraints in node j, the user
prefers to drive longer and eat at another place. In the case
we stay in j to respect TW k, we check whether node j has
the POI that is required for k. If so, a label Lm

j is created,
imposing that ωm

j := ωn
i +1 (from jm on, TW k is respected)

and λm
j = max

�
0, γL

k 2 gtemp
�
+ tmin

k . The max function is
used to compute how much time in advance the EV arrives in
j, so the minimum stopping time imposed from any arc from
jm is λm

j . If instead node j does not have any POI of the
given category νk, we can step over and create a label that
goes from in to jm without imposing a minimum stopping
time λm

j . In this case λm
j := 0 and ωm

j := ωn
i . In both cases,

the newly created label Ljm is added to the set of labels L
and pushed to the queue Q. Finally, the loop on β continues
after updating β. Alg.s 2 and 3 outline the creation of a new
label, and its heuristic. Finally, if it is not possible to reach D
respecting all the imposed constraints, the algorithm returns
NONE .

Algorithm 2 CREATELABEL function. It creates the label
from node a to node b, given the arrival time g in a, the SoC
q, the charging time ∆, the charged energy q, the driving time
and energy, t, e, the minimum amount of time needed to charge
in node b in the next label, the index of the last performed TW
ω, the charger additional time β and the previous label L.
1: function CREATELABEL(a, b, g, q, ∆, q, t, e, λ, ω, β, L)
2: g := g +∆+ t; q := q + q − e
3: h := HEURISTIC(b, q, g)
4: f := g + f
5: �L := (a, g, h, f, L, β, q, q, λ,∆, ω)

6: return �L
7: end function

We modify the previously described A* search algorithm
for the MDPM. We refer to this algorithm as AsDM. We add

Algorithm 3 HEURISTIC function. It returns the estimated
remaining time from node i to D in graph G, considering the
SoC q and arrival time g.

1: function HEURISTIC(i, q, g)
2: πtw(i) := MINSTOP(g)
3: if q − qmin ≥ πcons(i) then

4: πch(i) := 0
5: else
6: smax := MAXSLOPE(SUBGRAPH(G, i))
7: πch(i) := [πcons(i)− (q − qmin)]/smax

8: end if
9: return πdr(i) + max {πtw(i), πch(i) }

10: end function

two parameters in the labels, as follows

Ljm := (i, gmj , hm
j , fm

j , pmj , βm
j , qmj , qm

j
, λm

j ,∆m
j ,

ωm
j ,Σm

j , τmj).

The first parameter is Σm
j , which represents the total score

gained from O to the current label. For copy jm,

Σm
j := Σn

i + σj , Σ1
O := 0.

The second parameter is τmj , it represents the arrival time
in copy jm. All the TWs constraints are now satisfied using
this parameter instead of the arrival time g. This means,
for instance, that τtemp = τmj + ∆ 2 tij , and every gtemp

is replaced with τtemp. The minimum waiting time becomes
λm
j := max

�
0, γL

k 2 τmj
�
+ tmin

k . For the origin node we
have τ1O := tstart and g1O := 0. Finally, due to the different
definition of labels, the function CREATELABEL is replaced
by CREATELABELDISCOUNTED, and is outlined in Alg. 4.

Algorithm 4 CREATELABELDISCOUNTED function. It cre-
ates the label from node a to node b, given the discounted cost
g to a, the SoC q, the charging time, ∆, the charged energy
q, the driving time and energy, t, e, the minimum amount of
time needed to charge in node b in the next label, the index of
the last performed TW ω, the charger additional time β, the
previous label L, the arrival time τ , and the gained profit Σ.
1: function CREATELABELDISCOUNTED(a, b, g, q, ∆, q, t, e, λ, ω, β, L,

τ , Σ)
2: τ := τ +∆+ t; q := q + q − e
3: σ := SCORE(b)
4: g := g +∆+ t− µσ
5: h := HEURISTICDISCOUNTED(B, q, τ ,Σ)
6: f := g + f
7: �L := (A, g, h, f, L, β, q, q, λ,∆, ω,Σ, τ)

8: return �L
9: end function

Furthermore, function HEURISTIC, is replaced with
HEURISTICDISCOUNTED, described in Alg. 5. The new func-
tion takes as input the additional parameter Σ and returns the
following discounted estimated time to reach D:

π2
tt(i) := π1

tt(i)2 µΣ.

Thus, the final value of f computed for node D can be
compared to the one computed with MDPM.

318 PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022

Algorithm 5 HEURISTICDISCOUNTED function. It returns the
estimated time from node i to D, considering the SoC q, the
arrival time g and the gained score Σ

1: function HEURISTICDISCOUNTED(i, q, g, Σ)

2: πtw(i) := max
�
0, γL

k̃
− g + tmin

k̃

�

3: if q − qmin ≥ πcons(i) then // See A

4: �πcons(i) := 0
5: else
6: smax := MAXSLOPE(SUBGRAPH(G, i))

7: πch(i) :=
πcons(i)− (q − qmin)

smax
8: end if
9: return πdr(i) + max {πtw(i), πch } (i)− µΣ

10: end function

A Available energy is potentially sufficient to reach D.

IV. COMPUTATIONAL EXPERIMENTS

A. Data description and preprocessing

We obtain CS locations and specifications from a company,
whose name we cannot disclosed due to privacy reasons. The
CSs were extracted from a bounding box that goes from 43.55°
to 49.05° latitude and from 8.68° to 13.11° longitude, covering
parts of Italy, Germany, Austria, Switzerland and the totality
of Liechtenstein and San Marino (see Fig. 3).

Figure 3: Distribution of the CSs (created with mapcustomizer.com [7]).

CS i has a charging power pi. We categorize the CSs as
follows:

" slow: pi f 11 kW,
" medium: 11 kW < pi f 30 kW,
" fast: pi > 30 kW.

We have performed a number of preprocessing actions on the
provided data set. The first step was to group CSs at similar
locations, for each group the fastest charger within that group

was considered. We then considered that CSs within a radius
of rM = 100m form a cluster and if one CS belongs to two
or more clusters, then all of them are merged. This reduction
is based on the Haversine formula for computing the distance
between each pair of nodes and assumes that the distances
are symmetric. Merging all the CSs into a cluster produces a
new CS that replaces the other CSs in the cluster. The cluster
position is set as the average of the GPS coordinates of the
CSs that comprise it, while its charging speed is set as the
maximum among the CSs that comprise it. The final dataset
is denoted by Γ. The final number of CSs is summarized in
Tab. I.

Table I: Distribution of CSs for each country.

Original # CSs # CSs after grouping # CSs after clustering

Germany 59 339 5 955 4 135
Italy 15 009 5 713 4 911
Switzerland 5 400 1 583 1 334
Austria 3 679 1 488 1 219
Liechtenstein 65 33 27
San Marino 34 17 15

Total 83 526 14 789 11 641

Using the post-processed database, we computed the dis-
tance and time matrix for each pair of CSs, obtained from
multiple requests to the Open Source Routing Machine API
(OSRM, [8]) server. The energy required by each arc was
instead given by the product of the arc length and the average
consumption per kilometer, as in [10].

The sets of required WR, and weakly mandatory time
windows WM are given as input. Furthermore, we consider
that tourism AWTs WT are also given as input. For k * WT

a single CS location Pk is given. To construct the set Sk, the
Haversine distance is computed by searching for CSs within a
radius rT centered in Pk. The CSs with a distance less than rT
are included in Sk. If no eligible nodes are present, the radius
is iteratively increased by δT and the search is repeated, up
to a maximum of �rT . If Sk is still empty, the computation is
resumed and an error informs that it is not possible to reach
Pk unless the EV is left more than �rT away. This process
simulates the approach that a user needs to search for a CS
near the location she wants to visit. If no CS is available at
a reasonable distance from Pk, then the user can decide to
remove or change that tourism stop. For our experiments, we
used rT = 2km, δT = 200m and �rT = 4km.

Given the origin O, the destination D and the set of tourism
stops WT , we construct the set of chargers S and the set of
arcs A. Using OSRM, the optimal path without charging stops
is computed and is used as a lower bound for SPM. All the
CSs that are within a range of 5 km centered on the OSRM
optimal route form the set S . Finally, we construct A as the
set of all arcs (i, j) connecting nodes in SO,D.

In addition, we remove from S all the nodes that have a
distance from O that is less then rmin, due to the fact that
we want a solution with a small number of stops. Selecting
one of those would have caused the EV to stop for just a few

ANTONIO CASSIA ET AL.: THE ELECTRIC VEHICLE SHORTEST PATH PROBLEM WITH TIME WINDOWS AND PRIZE COLLECTION 319

kilometers from the origin point, which is not desirable. The
same reasoning is applied to D.

We also remove arcs that are going in the opposite direction
with respect D. More precisely, for each arc (i, j) * A, if by
going from i to j the distance to D is reduced, then (i, j) is
kept, otherwise it is deleted. This process nearly halves the
amount of edges included in A.

Since the EV needs to respect the battery capacity Q and
we want the total travel time to be small, we consider only
the arcs (i, j) such that rmin f dij f rmax, where

rmax := +(Q2 qmin)/η,.

Finally, nodes that were not reachable from any other CS, as
well as the corresponding arcs, are deleted.

B. Experiments and results

The codes were implemented in Python, using IBM ILOG
CPLEX Optimization Studio 20.1. The tests ran on a single
core of an Apple MacBook Pro with 8 core Apple M1
processor of 3.2 GHz, with 8 GB of LPDDR4 RAM.

The considered EV was a Škoda Enyaq iV 60, with a net
battery capacity of Q := 58 kWh and a maximum average
consumption of η := 0.187 kWh/km [3]. It has a maximum
power charge P := 40 kW, and we set the minimum required
energy level qmin to 15 kWh.

Two subsets of CSs were created: a small one, Γ1, with
650 CSs, used to compare the exact solution obtained with the
MILP models with the A* search algorithms, and a larger one,
Γ2, with 5 813 CSs, used to test the A* search. Both datasets
are extracted with uniform probability from Γ, so we must
guarantee that in each tourism stop there is at least one CS.
We created a 5 km×5 km square centered in the coordinates of
each tourism stop and uniformly extracted four CSs. Γ1 and Γ2

were obtained by selecting uniformly a certain amount of CSs
from Γ and adding them to the ones selected for the tourism
stops.

For both sets of CSs we use the same set of instances defined
as trips. Since our CSs lay in a rectangular area that covers part
of central Europe, those instances are chosen so that they fully
lay in the same geographical area. We generate three main
trips, with some variations, such as starting time, presence of
tourism stops and minimum stopping times, presence or not of
lunch (1 hour) and night (11 hours) ATWs. The ATW of lunch
is [12:00, 13:30], while that of the night is [19:00, 22:30]. The
instances have the following O 2D pairs:

" from Genoa to Zürich denoted by GeZu;
" from Livorno to Regensburg denoted by LiRe;
" Stuttgart to Ancona denoted by StAn

The remaining details are summarized in Tab. II. The name
of the O2D is followed by a running number to distinguish
the instances. Overall, we created 20 instances.

We tested the MILP shortest path model, SPM, and maxi-
mum profit model, MPM, as well as both A* heuristics, the
A* search algorithm for the SPM, AsM, and its variant for
the maximum discount profit model, AsDM, for set Γ1. In
addition, only the heuristics AsM and AsDM were applied to

Table II: Description of the instances

At When Min stop

GeZu1 10:00 18:30+1 Lugano 14:00-17:30 2h - -
GeZu2 10:00 18:30+1 Lugano 14:00-17:30 2h Yes -
LiRe1 10:00 18:30+1 - - - Yes -
LiRe2 10:00 18:30+1 - - - - Yes
LiRe3 10:00 18:30+1 Verona 14:00-17:30 2.5h Yes -
LiRe4 10:00 18:30+1 Verona 14:00-17:30 2.5h - Yes
LiRe5 4:00 18:30+1 Verona 14:00-17:30 2.5h Yes Yes
LiRe6 6:00 18:30+1 Verona 14:00-17:30 2.5h Yes Yes
LiRe7 8:00 18:30+1 Verona 14:00-17:30 2.5h Yes Yes
LiRe8 10:00 18:30+1 Verona 14:00-17:30 2.5h Yes Yes
LiRe9 10:00 18:30+1 Verona 14:00-17:30 2h Yes Yes
LiRe10 10:00 18:30+1 Verona 14:00-17:30 3h Yes Yes
StAn1 10:00 18:30+1 - - - Yes -
StAn2 10:00 18:30+1 Vaduz 14:00-17:30 2h Yes -
StAn3 20:00 18:30+1 Bologna 7:00-10:30+1 2h Yes -
StAn4 10:00 18:30+1 Vaduz 14:00-17:30 2h Yes Yes
StAn5 10:00 18:30+1 Bologna 7:00-10:30+1 2h Yes Yes

Vaduz 9:30-13:00 2h
Bologna 18:30-22:00 2h
Vaduz 14:00-17:30 2h

Bologna 9:30-12:30+1 2h
Vaduz 14:00-17:30 2h

Bologna 14:00-17:30+1 2h

ID Departure Arrival
Tourism Stops

Lunch Night

StAn6 6:00 2:00+1 - -

StAn7 10:00 22:00+1 - Yes

StAn8 13:00 22:00+1 Yes Yes

set Γ2. Then for all AsDM models we solved SPM imposing
that the EV must use the arcs selected by the heuristic. CPLEX
was unable to solve any instance in Γ2 within one hour. We
denote by GSy

x (GT y
x) the relative gap between the total score

(trip time) of the models x and y. Also, to ease the notation,
in the following we denote by AsDMµ0

the application of
AsDM for µ = µ0, and use TS for the total score, TT for the
trip time, and RT for the run time.

As seen in Tab. II, some instances describe the same trip,
with different timings, and thus lead to the same set of
unconstrained shortest optimal paths, and to the same set of
CSs. For this reason, we subdivide the instances, and for both
Γ1 and Γ2 extract the set of CSs related to each subdivision
and store them. In this way, instances in the same subdivision
use the same graph for all the models. In Tab. III we list the
size for each subdivision.

Table III: Number of nodes and arcs for each instance.

Nodes Arcs Nodes Arcs Nodes Arcs Nodes Arcs

GeZu1, GeZu2 36 1 260 22 52 296 87 320 212 3 236
LiRe1, LiRe2 43 1 806 36 157 480 229 920 391 22 230
LiRe3 to LiRe10 49 2 352 42 244 492 241 572 403 23 889
StAn1 84 6 972 54 276 667 444 222 415 19 762
StAn2, StAn4 104 10 712 73 629 820 671 580 555 34 622
StAn3, StAn5 83 6 806 54 276 666 442 890 414 19 698
StAn6 to StAn8 103 10 506 73 629 819 669 942 554 34 542

Instances

Dataset Γ1 Dataset Γ2

Before After Before After

We use the dataset Γ1 to analyze the performance of the A*
search with respect to the exact solution found. Initially we
find the shortest path value T opt of SPM and AsM. Then we
compute the maximum relaxed time Tmax = T opt + T add and
solve the MPM model. For the evaluation, we fix the value of
T add to 1h 30’. The result is then compared to the score gained

320 PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022

with AsDM for different values of the score multiplier µ, µ =
1, 2. For the heuristic algorithms, we set β := { 0, 1, 4 }.

a) Small dataset: We solve the MPM model and apply
the A* algorithm for µ = 2. The results are in Tab. IV and V.

First, the solutions obtained with the A* search are refined
using a MILP formulation. In particular, we create another
SPM in which we set xij = 1 for each arc (i, j) selected in
the final solution of AsDM for µ = 2. The total trip times
obtained by both approaches are quite similar. The results are
summarized in Tab. IV and compared with the shortest path
model SPM. The total trip time increases in average 3.3%
when the refined SPM is applied, which is a small detour
with respect to shortest path.

Table IV: Comparison of total trip time (in hours) between SPM and the
refined SPM in Γ1

GT
Ref. SPM
SPM

TT TT ×100 [%]

GeZu1 8.6 9.0 4.7
GeZu2 9.0 9.0 0.0
LiRe1 14.1 15.7 11.2
LiRe2 23.6 24.4 3.4
LiRe3 15.7 16.1 2.5
LiRe4 24.6 25.5 3.7
LiRe5 30.6 30.9 1.0
LiRe6 28.6 28.6 0.0
LiRe7 26.6 26.7 0.4
LiRe8 25.3 25.4 0.4
LiRe9 25.1 26.2 4.4
LiRe10 27.7 26.6 3.5
StAn1 15.8 17.4 10.1
StAn2 18.2 19.5 7.1
StAn3 16.9 17.3 2.4
StAn4 29.0 29.8 3.8
StAn5 26.3 27.3 3.8
StAn6 19.0 19.3 1.6
StAn7 29.0 29.2 0.7
StAn8 29.8 29.9 0.3

Average 3.3

ID
SPM Ref. SPM

In Tab. V we compare the total score gained and the run
time of MPM and AsDM for µ = 2. In average, the relative
change between the maximum score computed with MPM and
the one computed with AsDM there is an average of 11.9%
worse scores with respect to the optimal solution found by
MPM. This last value is quite large, with some instances
having a relative change of over 25%. A possible approach
to obtain better results may be to rely on different values of
the parameter µ. The run time is quite low for all the models,
but it is worth noting that we are considering the small graph
created with the CSs in Γ1.

b) Medium dataset: We want to test the A* search algo-
rithm for the medium dataset Γ2. We tested all the instances
using only the heuristic approaches, AsM and AsDM. The
results are reported in Tab. VI and VII. According to Tab. VI,
we obtain an average increase of the total score with µ = 1
with respect to µ = 2. The difference is due to the fact that
with µ = 2 the shortest arcs become more important, even

Table V: Comparison of total score and run time (in sec.) between MPM and
AsDM with µ = 2 in Γ1

RT TS RT TS ×100 [%]

GeZu1 0.0 7.7 0.0 7.7 0.0
GeZu2 0.0 4.6 0.0 4.6 0.0
LiRe1 0.5 19.2 0.0 12.8 33.3
LiRe2 1.3 16.6 0.0 13.8 16.9
LiRe3 1.2 23.2 0.1 22.6 2.6
LiRe4 1.3 22.6 0.1 18.6 17.7
LiRe5 0.8 22.8 0.0 22.8 0.0
LiRe6 0.6 20.9 0.0 15.1 27.8
LiRe7 0.7 21.6 0.0 21.3 1.4
LiRe8 1.4 22.8 0.0 17.7 22.4
LiRe9 1.5 23.9 0.0 21.4 10.5
LiRe10 0.7 17.4 0.0 14.7 15.5
StAn1 1.4 17.1 0.0 15.2 11.1
StAn2 3.1 18.5 0.0 16.1 13.0
StAn3 1.4 15.2 0.1 11.4 25.0
StAn4 2.6 13.7 0.0 13.3 2.9
StAn5 2.0 17.5 0.2 14.6 16.6
StAn6 0.5 18.2 0.0 18.0 1.1
StAn7 0.3 19.3 0.0 19.2 0.5
StAn8 0.3 19.3 0.0 15.6 19.2

Average 1.1 2.1 11.9

ID
MPM AsDM2 GS

AsDM2

MPM

with a lower score in the arrival node. The final solution
might improve by tuning µ, also dynamically for each arc. The
run time for the AsM model is quite high, with an average
of 118.8 sec for the trip from Livorno to Regensburg and of
81.4 sec for the trip from Stuttgart to Ancona. If instead we
analyze the AsDM model, we see a meaningful drop in the
run time, with some exceptions. In particular, the instances
that continue to have higher run times are the ones that have
large time intervals without any TWs constraints. For instance,
after the lunch break StAn1 has no other TW that constrains
the problem, so the research for a best bound solution is more
time demanding.

The same holds for LiRe1, LiRe2 and StAn6. Instead,
StAn8, the instance with more TWs, is solved in less than 1
sec. in each discounted model. When the TWs are balanced
along the trip, with not too many uncovered time intervals, the
computation with the A* search is very fast, even in medium
sized graphs. In Tab. VII we can see an average total trip time
variation of less than 6.0% in the AsDM models with respect
to the AsM.

V. CONCLUSIONS

We investigate the problem of finding a path for an EV
performing a a long trip. The objective is to select CSs that
better match the user preferences while respecting ATWs
constraints.

We proposed an A* algorithm AsM for the shortest path ver-
sion of our problem. We then proposed the AsDM algorithm
which privileges POIs preferred by the user. This algorithm
was quite fast in finding a shortest path solution with high
total score. The algorithm performed fairly well with respect

ANTONIO CASSIA ET AL.: THE ELECTRIC VEHICLE SHORTEST PATH PROBLEM WITH TIME WINDOWS AND PRIZE COLLECTION 321

Table VI: Comparison of total score and run time (in sec.) between AsM and
AsDM with µ = 1, 2 in Γ2

RT TS RT TS RT TS ×100 [%] ×100 [%]

GeZu1 0.1 8.5 0.0 9.7 0.0 9.7 14.1 14.1
GeZu2 0.1 7.1 0.0 8.5 0.0 9.1 19.7 28.2
LiRe1 0.7 6.2 0.1 22.8 71.9 22.8 267.7 267.7
LiRe2 175.5 11.7 14.0 21.0 25.7 21.0 79.5 79.5
LiRe3 36.5 4.7 0.5 23.2 0.7 23.3 393.6 395.7
LiRe4 77.3 8.6 0.3 27.3 0.4 19.3 217.4 124.4
LiRe5 196.6 11.0 6.8 26.2 4.4 26.2 138.2 138.2
LiRe6 463.7 14.9 22.7 20.0 25.8 20.0 34.2 34.2
LiRe7 213.2 16.5 0.4 27.4 0.3 27.4 66.1 66.1
LiRe8 132.1 8.8 0.3 23.9 0.1 24.5 171.6 178.4
LiRe9 78.6 12.9 0.5 19.4 0.3 23.6 50.4 82.9
LiRe10 128.4 7.6 0.1 23.7 0.4 17.5 211.8 130.3
StAn1 0.7 8.1 134.4 19.2 540.4 19.2 137.0 137.0
StAn2 2.8 5.6 0.5 21.2 0.2 17.0 278.6 203.6
StAn3 99.8 9.7 15.0 19.0 40.2 19.0 95.9 95.9
StAn4 90.6 18.6 62.2 26.1 96.0 26.1 40.3 40.3
StAn5 92.7 12.8 2.7 15.6 4.7 15.6 21.9 21.9
StAn6 30.2 4.1 34.4 14.3 36.5 10.5 248.8 156.1
StAn7 148.9 6.9 37.9 12.9 38.4 19.0 87.0 175.4
StAn8 185.6 11.4 0.2 18.6 0.1 18.8 63.2 64.9

Average 107.7 16.6 44.3 131.9 121.7

ID
AsM AsDM1 AsDM2 GS

AsDM1

AsM GS
AsDM2

AsM

Table VII: Comparison of total trip time (in hours) between AsM and AsDM
with µ = 1, 2 in Γ2

GT
AsDM1

AsM GT
AsDM2

AsM

TT TT TT ×100 [%] ×100 [%]

GeZu1 8.6 8.6 8.6 0.0 0.0
GeZu2 8.8 8.9 9.5 1.1 8.0
LiRe1 13.5 14.9 14.9 10.4 10.4
LiRe2 23.1 24.5 24.5 6.1 6.1
LiRe3 15.4 16.8 16.7 9.1 8.4
LiRe4 24.8 26.3 26.3 6.0 6.0
LiRe5 31.0 32.0 32.0 3.2 3.2
LiRe6 28.6 30.0 30.0 4.9 4.9
LiRe7 26.6 27.6 27.6 3.8 3.8
LiRe8 25.0 26.4 26.4 5.6 5.6
LiRe9 24.6 25.5 26.0 3.7 5.7
LiRe10 25.5 26.8 26.9 5.1 5.5
StAn1 15.1 16.6 16.6 9.9 9.9
StAn2 17.5 19.0 19.0 8.6 8.6
StAn3 15.8 17.0 17.0 7.6 7.6
StAn4 27.3 28.7 28.7 5.1 5.1
StAn5 26.2 27.4 27.4 4.6 4.6
StAn6 17.8 19.0 19.2 6.7 7.9
StAn7 28.0 29.5 29.1 5.4 3.9
StAn8 29.7 30.2 31.0 1.7 4.4

Average 5.4 6.0

ID
AsM AsDM1 AsDM2

to the exact solutions. This comparison was only possible on
small instances, but the run times tend to increase with the size
of the graph. If instead, the chosen trip has many TWs, then
the computation is very fast even in medium sized graphs.

The run time of the MILP formulations increases exponen-
tially in the size of the graph, so it can be computationally
infeasible to solve even for medium size graphs. Both AsM

and AsDM solve this problem by storing only the promising
states of the EV. However, the heuristics cannot manage real
values of the additional charging time, so we must discretize
those values using the set β. Solving again the SPM model
with the arcs selected by the heuristics helps to optimize the
charging times on the final solution.

Despite the promising results obtained by AsM,AsDM,
there is potential for further improvements. More efficient
heuristics can be developed to account for the potentials,
leading to speeding up the A* search algorithm. Such speeding
ups may allow exploring more labels, yielding improved
solutions.

REFERENCES

[1] M. Baum, J. Dibbelt, A. Gemsa, D. Wagner, and T. Zündorf. Shortest
feasible paths with charging stops for battery electric vehicles. In
Proceedings of the 23rd SIGSPATIAL international conference on ad-

vances in geographic information systems, pages 1–10, 2015. https:
//doi.org/10.1145/2820783.2820826.

[2] M. Baum, J. Dibbelt, T. Pajor, J. Sauer, D. Wagner, and T. Zündorf.
Energy-optimal routes for battery electric vehicles. Algorithmica,
82:1490–1546, 2020. https://doi.org/10.1007/s00453-019-00655-9.

[3] API ChargePrice.com. Open EV Data, Chargeprice.app API. https:
//github.com/chargeprice/open-ev-data. Accessed: 18-03-2022.

[4] S. Erdoğan and E. Miller-Hooks. A green vehicle routing problem.
Transportation research part E: logistics and transportation review,
48:100–114, 2012. https://doi.org/10.1016/j.tre.2011.08.001.

[5] E. Fadda, D. Manerba, G. Cabodi, P. Camurati, and R. Tadei. Kpis
for optimal location of charging stations for electric vehicles: the biella
case-study. In 2019 Federated Conference on Computer Science and

Information Systems (FedCSIS), pages 123–126. IEEE, 2019. http://dx.
doi.org/10.15439/2019F171.

[6] A. Froger, J. E. Mendoza, O. Jabali, and G. Laporte. Improved
formulations and algorithmic components for the electric vehicle routing
problem with nonlinear charging functions. Computers & Operations

Research, 104:256–294, 2019. https://doi.org/10.1016/j.cor.2018.12.013.
[7] P. Kaeding. MapCustomizer. https://www.mapcustomizer.com. Ac-

cessed: 12-03-2022.
[8] D. Luxen and C. Vetter. Real-time routing with openstreetmap data. In

Proceedings of the 19th ACM SIGSPATIAL International Conference on

Advances in Geographic Information Systems, GIS ’11, pages 513–516,
New York, NY, USA, 2011. ACM. https://doi.org/10.1145/2093973.
2094062.

[9] A. Montoya, C. Guéret, J. E. Mendoza, and J. G. Villegas. A multi-space
sampling heuristic for the green vehicle routing problem. Transportation

Research Part C: Emerging Technologies, 70:113–128, 2016. https://doi.
org/10.1016/j.trc.2015.09.009.

[10] A. Montoya, C. Guéret, J. E. Mendoza, and J. G. Villegas. The
electric vehicle routing problem with nonlinear charging function.
Transportation Research Part B: Methodological, 103:87–110, 2017.
https://doi.org/10.1016/j.trb.2017.02.004.

[11] M. Schiffer, S. Stütz, and G. Walther. Electric commercial vehicles
in mid-haul logistics networks. In Behaviour of Lithium-Ion Batteries

in Electric Vehicles, pages 153–173. Springer, 2018. https://doi.org/10.
1007/978-3-319-69950-9_7.

[12] M. Schneider, A. Stenger, and D. Goeke. The electric vehicle-routing
problem with time windows and recharging stations. Transportation

science, 48:500–520, 2014. https://doi.org/10.1287/trsc.2013.0490.
[13] T. Vidal, T. G. Crainic, M. Gendreau, and C. Prins. Heuristics

for multi-attribute vehicle routing problems: A survey and synthe-
sis. European Journal of Operational Research, 231:1–21, 2013.
https://doi.org/10.1016/j.ejor.2013.02.053.

[14] T. Zündorf. Electric vehicle routing with realistic recharging models.
Unpublished Master’s thesis, Karlsruhe Institute of Technology, Karl-

sruhe, Germany, 2014.

322 PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022

