
Abstract4Designing and implementing Web Services

constitutes a large and constantly growing part of the

information technology market. Web Services have specific

scenarios in which distributed processes and network resources

are used. This aspect of services requires integration with the

model checkers. This article presents the experimentation

framework in which services can be specified and then formally

analyzed for deadlock-freedom, achievement of process goals,

and similar features. Rybu4WS language enriches the basic

Rybu language with the ability to use variables in processes,

service calls between servers, new structural instructions, and

other constructions known to programmers while remaining in

line with declarative, mathematical IMDS formalism.

Additionally, the development environment allows simulation

of a counterexample or a witness - obtained as a result of the

model checking - in a similar way to traditional debuggers.

I. INTRODUCTION

RISING number of available Web Services are used

for business processes in the modern world. Interac-

tions with other Web Services are key features in creating

more complex scenarios and satisfying business needs. An

example of interaction between different services might be a

travel agency that uses external services to book hotels,

flights, and other facilities. Service for booking flights may

use another service for processing a payment that communi-

cates with a bank or credit card provider. Such interaction

between many services is called Web Service composition

[1]. From the computer science point of view, Web Service

composition is a distributed system concerned with typical

problems like deadlocks or lack of termination..

A

In Warsaw University of Technology, Institute of Com-

puter Science, an experimentation framework for specifica-

tion and verification of web services composition was devel-

oped. It is based on IMDS formalism (Integrated Model of

Distributed Systems [2]) and DedAn [3] tool to model asyn-

chronous distributed systems and verify them automatically.

The user does not need to have deep knowledge about verifi-

cation methods such as temporal logic and model checking.

A distributed system under verification in IMDS formal-

ism is defined as a set of actions used to model the behavior.

The declarative input of the DedAn environment was de-

signed to structure a set of actions by combining them across

servers or agents. While DedAn input language is sufficient

to specify simple distributed systems, modeling more com-

plex cases is challenging due to various technical difficulties

described later in this paper.

To overcome the problem of modeling complex distrib-

uted systems, a higher-level language Rybu was initially de-

veloped [4], which simplifies the modeling of the system by

some imperative-style elements and data aggregation. To

improve the modeling of Web Service composition, Ry-

bu4WS language was created, which is the original contribu-

tion of this paper. Moreover, Rybu4WS Debugger tool was

developed to visualize counterexamples or witnesses caught

from DedAn directly on the original Rybu4WS code. The

latter feature is unique among model checking tools: they

verify the systems but do not allow to interpret the checking

results on the source code of the tested system. The projec-

tion of the verification result onto the source form of the

specification is one of the most significant achievements of

the authors.

This paper is organized as follows: Section 2 covers re-

lated work of web service composition. Architecture of the

Experimentation Framework is in section 3. Section 4 gives

a brief description of IMDS formalism and DedAn tool. De-

scription of Rybu4WS and its syntax can be found in section

5. General conversion rules of Rybu4WS code to IMDS

model are described in section 6. Section 7 contains a de-

scription of the Rybu4WS Debugger tool. Conclusions and

possible future development of our experimentation frame-

work are covered in section 8.

II.RELATED WORK

Labeled Transition Systems (LTS) are alternative ap-

proaches for modeling Web Service compositions [5] where

transitions between states can represent Web Service interac-

tions. In the mentioned paper, model-checking and temporal

An Experimentation Framework for Specification and

Verification of Web Services

Szymon Katra
Warsaw University of Technology

Faculty of Electronics

and Information Technology

Nowowiejska Str. 15/19

00-665 Warsaw, Poland

Email: szymon.katra.stud@pw.edu.pl

Wiktor B. Daszczuk
Warsaw University of Technology

Institute of Computer Science

Nowowiejska Str. 15/19

00-665 Warsaw, Poland

Email: wiktor.daszczuk@pw.edu.pl

Denny B. Czejdo
Fayetteville State University

Department of Mathematics and

Computer Science

Fayetteville, NC 28301, USA

Email: bczejdo@uncfsu.edu

Proceedings of the of the 17th Conference on Computer

Science and Intelligence Systems pp. 913–917

DOI: 10.15439/2022F188

ISSN 2300-5963 ACSIS, Vol. 30

IEEE Catalog Number: CFP2285N-ART ©2022, PTI 913

logic properties were used to verify the Web Service compo-

sition modeled using this approach.

Existing formalisms like CSP [6] or CCS [7] are well de-

signed to model concurrent systems, but they are hardly suit-

able for distributed systems. They do not possess asynchro-

nous features needed for modeling true distributed systems.

Instead, they rely on synchronous communication in the sys-

tem, which requires that communicating processes reach

given states simultaneously before passing a message. Such

a scenario is impossible in Web Services or any other dis-

tributed system because components are typically placed on

separate machines in different locations. They cannot learn

about the other party9s state in other ways than by message

exchange. However, there were attempts of formal software

verification based on Service Component Architecture

(SCA) [8] converted into CSP specification [9].

Bandera [10] tool allows the creation of a finite-state tran-

sition model directly from Java source code that can be veri-

fied in the external model checker. The main goal of this

project was to provide automated model extraction from

software systems that allows easy verification without man-

ual software analysis and model creation. While automated

creation of a model from the source code could be very con-

venient, generated abstraction might affect the model preci-

sion. As an alternative to verification, automated WS testing

is proposed. Combinatorial method is described in [11] and

metamorphic in [12]. Fault injection testing is presented in

[13]. Simulation is covered in [14].

There are also languages specifically designed for writing

distributed programs, like SR language (Synchronized Re-

sources) [15] that provide various mechanisms used for con-

current process interaction. However, it lacks the ability of

formal verification and is not suitable for model checking.

Widely used in industry WSDL [16] format describes

Web Service interfaces for other services or applications.

Since WSDL is designed to specify the pure interface of

Web Services, it is not possible to define the internal behav-

ior of Web Service, which is necessary for verification

against deadlocks or checking termination.

A significant number of studies were conducted about

Web Service composition, for example hybrid approach

[14]. Report [15] presents different automatic composition

approaches. TripICS [16] is an example of a real-life appli-

cation that uses automatic WS composition for planning

trips and travels around the world. It is based on the PlanICS

framework to solve automatic composition problems, which

uses a combination of SMT-solver and genetic algorithms

[16]. Automated WS composition for Financial Decision

Support is presented in [17]. Semantic modeling is covered

in [21][22].

III. ARCHITECTURE OF THE EXPERIMENTATION

FRAMEWORK FOR WEB SERVICE COMPOSITION

To provide efficient experimentation with Web Service

Composition, a modular but highly integrated system was

created. Rybu4WS program is converted to IMDS form and

checked by DedAn verifier, then the witness/counterexample

is caught by the Rybu4WS Debugger which can simulate the

verification output directly on the source Rybu4WS code.

When DedAn is run with user interface, additional analy-

sis facilities become available, like export to Uppaal for

checking huge systems, graphical simulation over system

components [18], counterexample animation, and detailed

analysis of individual components9 behavior.

IV. IMDS AND DEDAN

IMDS [2] formalism is the key element of the experimen-

tation system. Therefore, it will be discussed first. It is a

model of a distributed system using that is constructed over

a set of actions. The actions are executed in the environment

of servers offering services and traveling agents representing

distributed computations. The agents use messages for their

traveling between servers where partial computations are

performed as the execution of actions. A set of messages in

given sequential distributed computation forms an agent.

The current configuration of a system is defined as a set of

states of all servers and a set of current messages of all

agents (one message per agent).

Action is a relation between the input pair (message, state)

and output pair (new message, new state). The server in a

given state accepts the message, which invokes the action.

Action execution changes the state of the server and issues a

new message. There is a special case on agent termination,

which changes only a state without sending a message. The

system in IMDS starts from the initial configuration, which

consists of initial states for each server and initial messages

for each agent.

Formally, the IMDS action is a quadruple of input items

and output items ((message, state)þ(next message, next

state)) or a triple ((message, state)þ(next state)) (agent ter-

minates).

The IMDS formalism can well represent Web Service

composition due to the following essential features:

" Locality - there is no global or non-local state in the

system, all servers are independent.

" Autonomy of decisions - server autonomously deter-

mines the order of message acceptance.

" Asynchrony of actions 3 always a message waits for

an appropriate state or a state waits for matching mes-

sage.

" Asynchrony of communication - messages are sent

through a unidirectional asynchronous channel.

In most cases, the states of servers and the messages of

agents can be treated as atomic, and actions are defined as a

relation in (MôS)ô(MôS) which defines input message, in-

put state, output message, and output state of an action.

Agent-terminating actions are defined in (MôS)ô(S). The

action extracts the input pair (message, state) from the input

configuration and inserts the pair (new message, new state)

into the output configuration. The execution of actions is as-

sumed to be in interleaving semantics [2].

914 PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022

The IMDS models can be verified using the DedAn envi-

ronment, which allows to find deadlocks or check possible

termination in the modeled system. The input of DedAn was

designed to structure a set of actions by combining them

across servers or agents. It allows defining server and agent

types used to instantiate variables of those types along with

linking them using formal and actual parameters.

V. RYBU FOR WEB SERVICES (RYBU4WS)

It should be emphasized that the set of actions of Rybu/

Rubu4WS specification is exactly the same as the set of ac-

tions in IMDS specification after conversion. The main role

of higher level language is to ease the programming. The in-

structions in Rybu/Rybu4WS group sets of actions into more

readable high level actions, and chain the actions as in im-

perative language programming.

A Rybu [4] system consists of two kinds of servers: reac-

tive servers and threads (processing servers from which the

agents originate). The agent starts its run in a thread and in-

vokes services offered by the servers by means of messages.

Invoked service executes an action on the server, changing

its state. A server replies from the executed action by send-

ing a message back to the thread, prolonging its execution.

The Rybu4WS was developed for modeling Web Service

compositions, overcoming the limitations imposed by Rybu.

It features more advanced functionality, such as:

" server-server communication that allows agents to

travel between different servers and execute complex

scenarios,

" state variables in grouped processes, which enables

the communication between different processes with-

out sending actual IMDS messages,

" termination at any point of execution,

" complex code sequences in reactive server actions

instead of trivial state mutation and return value.

Like Rybu, the Rybu4WS system consists of reactive

servers and processes (in Rybu: thread). The reactive server

is a resource that holds a particular state and offers services.

Each service can be guarded by a condition over variables

and contains a code sequence for further actions. Process

consists of a code sequence that the agent executes to invoke

services on reactive servers and does not hold any state.

Rybu4WS introduces a third, more advanced feature

called group, which is used to group one or more processes.

It gives the possibility to declare shared variables, allowing

the creation of more sophisticated scenarios where processes

use the same variables within a server to cooperate.

The following listing presents example Web Service com-

position in Rybu4WS. It consists of services necessary to

build a simple book shop service 3 warehouse, payment,

bank. Processes are used to represent the user9s behavior.

1 type BOOL = { t, f };
2 server Payment {
3 var s: { none, pending, paid };
4 { Init | s == :none } -> { return :ok; }

5 { Conorm | s == :pending } -> {
6 s = :paid; return :ok;
7 }
8 { IsPaid | s == :paid } -> { return :t; }
9 }
10 server Bank(p: Payment) {
11 var bal: 0..5;
12 var s: BOOL;
13 { Transfer | bal > 0 && s == :f } -> {
14 s = :t; return :confReq;
15 }
16 { Transfer | bal == 0 || s == :t } -> {
17 return :fail;
18 }
19 { Conorm | s == :t && bal > 0 } -> {
20 bal -= 1; s = :f; p.Conorm(); return :ok;
21 }
22 }
23 server Warehouse() {
24 var x: BOOL;
25 { Reserve | x == :f } -> { x = :t; return :ok; }
26 { Reserve|x == :f } -> { return :outOfStock; }
27 { Dispatch | x == :t } -> { x = :f; return :ok; }
28 }
29 server BookShop(w: Warehouse, p: Payment) {
30 { Begin } -> {
31 match w.Reserve() {
32 :outOfStock -> { return :fail; }
33 :ok -> { p.Init(); return :payReq; }
34 }
35 }
36 { End } -> {
37 match p.IsPaid() {
38 :t -> { w.Dispatch(); return :ok; }
39 }
40 }
41 }
42 var p = Payment() { s = :none };
43 var b = Bank(p) { bal = 3, s = :f };
44 var w = Warehouse() { x = :f };
45 var bs = BookShop(w, p);
46 group BookPurchaseScenario {
47 var action: { idle, none, pay } = :idle;
48 process UserWebInterface {
49 match bs.Begin() {
50 :fail -> { action = :none; terminate; }
51 :payReq -> {
52 match b.Transfer() {
53 :confReq -> {
54 action = :pay; bs.End(); terminate;
55 }
56 :fail -> { terminate; }
57 }
58 }
59 }
60 }
61 process UserMobileApp {
62 wait(action != :idle);
63 if (action == :pay) { b.Conorm(); }
64 terminate;
65 }
66 }

SZYMON KATRA ET AL.: AN EXPERIMENTATION FRAMEWORK FOR SPECIFICATION AND VERIFICATION OF WEB SERVICES 915

A. Reactive servers

The reactive server in Rybu4WS consists of variables, ac-

tions, and dependencies.

Variables form the internal state of the server, which can

be used in conditions for action and can be mutated by the

actions code.

An action defines the behavior of a service. It includes an

optional predicate, a condition over state variables used to

determine whether an agent can execute the given action in

the current server state or not, and a code sequence for exe-

cution. The code sequence might contain service calls to

other servers, variable mutations, return statements, process

termination, or conditional statements. Each service has a

unique name used by other servers or processes for calling

the service. In case a server state satisfies the predicate of

more than one action in a given service, the action to execute

is chosen non-deterministically. The code sequence is a se-

quence of statements executed when an action is invoked.

The collection of other servers needed by the given server

is called dependencies. Only servers defined in the depen-

dency list can be called from the server.

In order to use reactive servers, an actual server instance

must be created. Initial state and required dependencies must

be defined for each reactive server instance. This allows cre-

ation of many servers with the same behavior but with dif-

ferent initial states or dependencies.

B. Processes

A process is a code sequence with an accompanying

agent. It is used as an entry point for agent execution. Each

process is converted into one IMDS server and a single

IMDS agent. Ungrouped processes (group will be explained

later) can only call instantiated reactive servers in the system

and cannot define any variables.

C.Groups

A group is a collection of processes and variables. The

group9s primary goal is to enable processes to use shared

variables for sophisticated business scenarios where pro-

cesses can communicate without sending actual IMDS mes-

sages. Agents are instantiated like in ungrouped processes,

one agent per one process, meaning that many agents can

work simultaneously on the same variables.

VI. CONVERSION TO IMDS

Rybu4WS language is used only for modeling distributed

systems and cannot be directly verified against deadlocks or

terminations. For the purpose of verification in the DedAn

environment, Rybu4WS code must be converted into IMDS

equivalent using a set of unambiguous translation rules.

More detailed description of Rybu4WS language and archi-

tecture of the environment is available in [19].

It is important to note, that during conversion, the original

code locations of each statement are preserved in IMDS

states and messages. In a later stage, they are used to vis-

ually present deadlock or termination/non-termination sce-

narios directly on the Rybu4WS code after verification in

DedAn.

Each Rybu4WS reactive server instance is converted to a

state machine. Every state machine represents a single IMDS

server.

Server variables are converted to IMDS states exactly like

in Rybu - they are defined by a Cartesian product of sets of

all possible values of the variables in the server.

The process is converted into a state machine and corre-

sponding agent instance. In comparison to Rybu4WS reac-

tive servers, it does not provide any services that could be

externally invoked. The process consists of a single code se-

quence block that is converted into a state machine and pro-

vides a special service used by agent as an entry point.

Group is converted into a single, encompassing state ma-

chine by merging state machines created for each process.

Additionally, the group can contain variables that are con-

verted as in the reactive servers. Many agents can run con-

currently in the same group and share variable values with-

out sending any IMDS message. Each action in the encom-

passing state machine also includes an agent for which this

transition is valid, which means that the agent can travel

only within his corresponding code sequence.

VII. RYBU4WS DEBUGGER

The Rybu4WS Debugger [20] is a desktop application

that allows Rybu4WS code to be loaded and converted it

into a corresponding IMDS representation for the purpose of

verification in the DedAn environment. DedAn is invoked

automatically (or manually if advanced analysis options are

needed) and finds deadlocks/checks termination automati-

cally. It is worth emphasizing that partial deadlocks are iden-

tified as well. During verification, a counterexample/witness

is elaborated, and visualized in a user-friendly way for the

manual analysis. This reverse mapping of the sequence of

action onto the source code is achieved because actions in

Rybu4WS program are expressed in a more abstract and eas-

ily readable form than in IMDS specification. However, the

sets of actions in Rybu4WS and IMDS are exactly the same,

and the semantics of both specifications is equal.

VIII.CONCLUSIONS

The growing number of designed Web Services requires

more and more assistance in the programmer9s activities, in-

cluding verification of whether the designed services behave

safely (free from deadlocks), whether they finish in in-

evitable success (process termination), or whether there is

even a possibility of success. Tools based on temporal logic

are used to verify such behavior.

The formalism used to describe services should be well-

suited to distributed systems: support asynchrony, locality of

actions, and autonomy of nodes. Ideally, the specification

language can be explicitly used for formal verification. Such

a modeling method is IMDS, for which the DedAn verifica-

tion environment has been built. However, the DedAn input

language does not fully meet the requirements of program-

916 PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022

mers; therefore the Rybu language was created and its suc-

cessor 3 Rybu4WS. Conveniently for the programmer, it

combines the basic IMDS paradigm, adding the possibility

of coupling actions in reactive servers. It was achieved using

a syntax close to the programmers9 habits, using typical con-

trol statements such as conditional branching, loops, and re-

sponse handlers. Shared variables in process groups allow to

easily communicate by mutation of variable values.

The severe limitation of Rybu 3 allowing the server to be

called only from a process 3 was solved: now a call chain

can be created. Additionally, it is possible to terminate the

process without returning it to the home server Communica-

tion between servers, declaring shared variables for pro-

cesses, and termination at any point of execution gives the

ability to model Web Service compositions

The Rybu4WS Debugger tool provides a user-friendly in-

terface that allows analyzing counterexamples similarly to

debuggers in usual programming environments. It is a back-

ward engineering principle, seldom observed in typical veri-

fiers: they produce counterexamples or witnesses that are not

easy to analyze in the context of the source code.

Rybu4WS can be used to model a wider variety of con-

current distributed systems than just Web Service themes.

The development needs of such systems would require addi-

tional programming elements, which could eventually lead

to the creation of a Domain Specific Language (DSL) family

that might be the subject of further research. It is currently

impossible to create a circular dependency between reactive

servers, meaning that callbacks or recursive calls are not

supported. Also, it is not possible for a single agent to =split=

and perform multicast action, i.e., calling multiple services

in a parallel manner. That would allow the creation of agents

traveling in the distributed system and not returning to the

place they originate from.

REFERENCES

[1] B. AL-Shargabi, A. El Sheikh, and A. Sabri, <Web Service

Composition Survey: State of the Art Review,= Recent Patents Comput.

Sci., vol. 3, no. 2, pp. 913107, Jun. 2010.

doi:10.2174/2213275911003020091

[2] W. B. Daszczuk, <Specification and Verification in Integrated Model of

Distributed Systems (IMDS),= MDPI Comput., vol. 7, no. 4, pp. 1326,

Dec. 2018. doi:10.3390/computers7040065

[3] W. B. Daszczuk, <Using the Dedan Program,= in Integrated Model of

Distributed Systems, Cham, Switzerland: Springer Nature, 2020, pp.

87397. doi: 10.1007/978-3-030-12835-7_6

[4] W. B. Daszczuk, M. Bielecki, and J. Michalski, <Rybu: Imperative-

style Preprocessor for Verification of Distributed Systems in the Dedan

Environment,= in KKIO917 3 Software Engineering Conference,

Rzeszów, Poland, 14-16 Sept. 2017, 2017, pp. 1353150.

https://arxiv.org/abs/1710.02722

[5] M. Ghannoudi and W. Chainbi, <Formal verification for Web service

composition: A model-checking approach,= in 2015 International

Symposium on Networks, Computers and Communications (ISNCC),

Yasmine Hammamet, Tunisia, 13-15 May 2015, 2015, pp. 136. doi:

10.1109/ISNCC.2015.7238576

[6] C. A. R. Hoare, <Communicating sequential processes,= Commun.

ACM, vol. 21, no. 8, pp. 6663677, Aug. 1978.

doi:10.1145/359576.359585

[7] R. Milner, A Calculus of Communicating Systems, LNCS vol. 92, vol.

92. Berlin, Heidelberg: Springer Berlin Heidelberg, 1980. ISBN 978-3-

540-10235-9

[8] H. Paik, A. L. Lemos, M. C. Barukh, B. Benatallah, and A. Natarajan,

<Service Component Architecture (SCA),= in Web Service

Implementation and Composition Techniques, Cham: Springer

International Publishing, 2017, pp. 2033250. doi: 10.1007/978-3-319-

55542-3_8

[9] W. Chargui, T. S. Rouis, M. Kmimech, M. T. Bhiri, L. Sliman, and B.

Raddaoui, <Towards a formal verification approach for service

component architecture,= in SOMET 2017: 16th International

Conference on Intelligent Software Methodologies, Tools, and

Techniques, Kitakyushu, Japan, 26-28 Sept 2017, 2017, pp. 4663479.

doi: 10.3233/978-1-61499-800-6-466

[10]J. C. Corbett, M. B. Dwyer, and J. Hatcliff, <Bandera: a source-level

interface for model checking Java programs,= in 22nd international

conference on Software engineering - ICSE 900, Limerick, Ireland, 4-

11 June 2000, 2000, pp. 7623765. doi: 10.1145/337180.337625

[11] I. Bluemke, M. Kurek, and M. Purwin, <Tool for Automatic Testing of

Web Services,= in 5th International Workshop Automating Test Case

Design, Selection and Evaluation, FEDCSIS, Warsaw, Poland, 7310

Sept 2014, 2014, pp. 155331558. doi: 10.15439/2014F93

[12] I. Bluemke and A. Sawicki, <Tool for Mutation Testing of Web

Services,= in 13th DEPCOS/Reclomex, Brunów, Poland, 2-6 July 2018,

2019, pp. 46355. doi: 10.1007/978-3-319-91446-6_5

[13]S. Ilieva, I. Manova, and D. Petrova-Antonova, <Towards a

methodology for testing of business processes,= in 7th Federated

Conference on Computer Science and Information Systems, FEDCSIS,

Wroclaw, Poland, 09-12 Sept 2012, 2012, pp. 131531322.

https://ieeexplore.ieee.org/document/6354354

[14]T. Preisler, T. Dethlefs, and W. Renz, <Simulation as a Service: A

Design Approach for large-scale Energy Network Simulations,= in 10th

Federated Conference on Computer Science and Information Systems,

FedCSIS, Lodz, Poland, 13-16 Sept 2015, 2015, pp. 176531772. doi:

10.15439/2015F116

[15]G. R. Andrews et al., <An overview of the SR language and

implementation,= ACM Trans. Program. Lang. Syst., vol. 10, no. 1, pp.

51386, Jan. 1988. doi:10.1145/42192.42324

[16]E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana, <Web

Services Description Language (WSDL),= 2001.

https://www.w3.org/TR/wsdl.html

[17]L. Belava, <Concept of Platform for Hybrid Composition, Grounding

and Execution of Web Services,= in 11th Conference on Advanced

Information Technologies for Management, FEDCSIS, Kraków,

Poland, 8311 Sept 2013, 2013, pp. 1071 3 1077. https://annals-

csis.org/Volume_1/pliks/190.pdf

[18]G. Baryannis and D. Plexousakis, <Automated Web Service

Composition: State of the Art and Research Challenges,= 2010.

https://publications.ics.forth.gr/tech-reports/2010/2010.TR409_Automa

ted_Web_Service_Composition.pdf

[19]A. Niewiadomski, P. Switalski, M. Kowalczyk, and W. Penczek,

<TripICS - a Web Service Composition System for Planning Trips and

Travels,= Fundam. Informaticae, vol. 157, no. 4, pp. 4033425, Jan.

2018. doi:10.3233/FI-2018-1635

[20] I. PaweCoszek, <Integrating Semantic Web Services into Financial

Decision Support Process,= in 11th Conference on Advanced

Information Technologies for Management, FEDCSIS, Gdansk,

Poland, 11-14 Sept 2016, 2016, pp. 118931198. doi:

10.15439/2016F99

[21]S. De, P. Barnaghi, M. Bauer, and S. Meissner, <Service modelling for

the Internet of Things,= in 6th Federated Conference on Computer

Science and Information Systems, FedCSIS, Szczecin, Poland, 18-21

Sept 2011, 2011, pp. 9493955.

https://ieeexplore.ieee.org/document/6078180

[22]S. Demirkol, M. Challenger, S. Getir, T. Kosar, G. Kardas, and M.

Mernik, <SEA_L: A Domain-specific Language for Semantic Web

enabled Multi-agent Systems,= in 7th Federated Conference on

Computer Science and Information Systems, FEDCSIS, Wroclaw,

Poland, 09-12 Sept 2012, 2012, pp. 137331380.

https://ieeexplore.ieee.org/document/6354358

[23]W. B. Daszczuk, <Graphic modeling in Distributed Autonomous and

Asynchronous Automata (DA3),= Softw. Syst. Model., vol. 20, no. 5, pp.

3633398, 2021. doi:10.1007/s10270-021-00917-7

[24]S. Katra, <Specification and verification of Web Service composition in

DedAn environment,= MSc thesis, Dept. of Electronics and Information

Technology, Warsaw University of Technology, 2022.

SZYMON KATRA ET AL.: AN EXPERIMENTATION FRAMEWORK FOR SPECIFICATION AND VERIFICATION OF WEB SERVICES 917

