
Learning edge importance in bipartite graph-based

recommendations

Robert Kwieciński

Faculty of Mathematics

and Computer Science

Adam Mickiewicz University

Uniwersytetu Poznańskiego 4

61-614 Poznań, Poland and

OLX Group

ul. Królowej Jadwigi 43,

61-872 Poznań, Poland

Email: r.kwiecinskipl@gmail.com

Tomasz Górecki

Faculty of Mathematics

and Computer Science

Adam Mickiewicz University

Uniwersytetu Poznańskiego 4

61-614 Poznań, Poland

Email: tomasz.gorecki@amu.edu.pl

Agata Filipowska

Poznań University of Economics and Business

Al. Niepodległości 10,

61-875 Poznań, Poland

and

OLX Group

ul. Królowej Jadwigi 43,

61-872 Poznań, Poland

Email: agata.filipowska@ue.poznan.pl

Abstract—In this work, we propose the P3 Learning to
Rank (P3LTR) model, a generalization of the RP3Beta graph-
based recommendation method. In our approach, we learn the
importance of user-item relations based on features that are
usually available in online recommendations (such as types
of user-item past interactions and timestamps). We keep the
simplicity and explainability of RP3Beta predictions. We report
the improvements of P3LTR over RP3Beta on the OLX Jobs
Interactions dataset, which we published.

I. INTRODUCTION

G
RAPH-BASED RP3Beta model [1] is a very strong

baseline on multiple recommender systems datasets [2],

[3], [4]. This relatively simple model outperformed other

approaches on our published OLX Jobs Interactions dataset

and is currently a state-of-the-art collaborative filtering rec-

ommender system at OLX. In this work, we propose P3LTR

(P3 Learning to Rank) model which generalizes the RP3Beta

model.

In RP3Beta each user and item is represented as a node

of the user-item bipartite graph. The recommendations are

generated based on the paths of length 3 starting from a given

user. The scores of these paths are calculated based on the

scores assigned to the edges of the graph. Scores of the edges

are directly calculated based on the degrees of the connected

nodes. Hence, there is no learning process in this approach.

In P3LTR, to better leverage the importance of the user-

item relation, we learn the score of a given edge based on

the features of this edge. As features, we not only use node

degrees but also utilize the sequence of interactions between

two given nodes. It enables us to incorporate the information

that the user visited the item several times and that the user

not only clicked but applied for a given job, or how recent the

click was.

In this work, we propose a training procedure and a loss

function for the P3LTR model. We tune, train, and evaluate

RP3Beta and P3LTR models on the OLX Jobs Interactions

dataset.

The paper consists of 6 sections. The second section

presents a literature review and formulates a research gap

addressed by this work. Section III proposes the P3LTR model

and describes its advantages and relation to the RP3Beta

model. Section IV describes the considered dataset and hy-

perparameter tuning procedure. The results of our model are

discussed in Section V. Section VI presents the conclusions

and future perspectives.

II. RELATED WORKS

A. Recommender systems

Most digital platforms provide more choices than the user

can explore in a reasonable time. Even a perfect search engine

can not resolve this problem, because it requires users to

know what they are looking for and to spend time providing

this information. For this reason, powerful recommendation

systems are developed by multiple companies, such as Netflix

[5] or Amazon [6].

We usually distinguish two categories of recommendation

methods: content-based and collaborative filtering. In content-

based models [7], [8] we utilize user and item features to

provide recommendations. The history of interactions between

users and items is considered from the perspective of a single

user. In contrast, collaborative filtering techniques [9], [10]

do not consider additional information about users or items

but utilize the rating history of all users at the same time

to provide recommendations. During the last few decades

several collaborative filtering recommendation techniques have

been proposed: neighborhood-based (e.g., [11], [12]), matrix

factorization-based (e.g., [13], [14]), graph-based (e.g., [1],

[15] or Word2Vec-based (e.g., [16], [17]).

Another category of recommendation systems, context-

aware recommendation systems (CARS) [18], [19], utilize

contextual information of user-item interactions such as time

or location. We can distinguish an important subcategory of

these methods, sequence-aware recommendation systems [20],

which utilizes sequentially-ordered user-item interaction logs.

Proceedings of the of the 17th Conference on Computer

Science and Intelligence Systems pp. 227–233

DOI: 10.15439/2022F191

ISSN 2300-5963 ACSIS, Vol. 30

IEEE Catalog Number: CFP2285N-ART ©2022, PTI 227

In this work, we extend a graph-based collaborative-filtering

approach that does not utilize additional contextual infor-

mation. Our approach is a sequence-aware recommendation

method that utilizes timestamps and types of interactions.

B. Graph-based recommendations

Many graph-based recommender systems are focused on

producing the item and/or user embeddings. Some of them

utilize the graph structure to produce random walks which are

used as an input for the model which produces embeddings.

For instance, Node2vec [21], or DeepWalk [22] utilize a

SkipGram model [23]. In recent years, several collaborative fil-

tering methods based on graph convolutional neural networks

have been proposed [15], [24], [25], [26].

Another type of graph-based recommendation systems di-

rectly utilizes the graph structure to calculate the scores of

items, usually by utilizing a user-item bipartite graph. Cooper

et al. [27] proposed simple and efficient P3 and P3alpha

methods which outperformed more complex and computation-

ally demanding techniques [28], [29], [30]. Paudel et al. [1]

extended this work by proposing the RP3Beta model, an exten-

sion of P3alpha which recommends popular items less often.

These methods were recently used as a benchmark by Dacrema

et al. [2], [3] and Anelli et al. [4] who compared them

with several state-of-the-art neural recommendation methods.

P3Alpha and RP3Beta demonstrated a very good performance

against other baselines and neural models. The RP3Beta model

provided the most accurate recommendations on some of the

considered datasets (i.e., Pinterest [31], CiteULike-a [32] and

MovieLens1M [33]; on MovieLens1M authors used their own

random splits). In our previous work, as yet unpublished, we

showed that RP3Beta outperforms other methods on the OLX

Jobs Interactions dataset. It is currently the state-of-the-art

collaborative-filtering recommendations technique deployed at

OLX Jobs.

C. Research gap

The RP3Beta model does not utilize any information about

user-item relations. Additionally, there is no learning process

that could optimize model parameters. Hence it is not possible

to learn the importance of edges in the user-item bipartite

graph. In this work, we fill this gap by proposing a machine

learning model which generalizes RP3Beta.

III. PROPOSED METHOD

A. Model

Let U be a set of users and I a set of items. For each user

u ∈ U and item i ∈ I let rui be the score assigned by the

model to the pair (u, i). We denote the matrix of all user-item

scores by RRR.

We represent users and items as the nodes of the bipartite

graph, where edges represent interactions between users and

items. Let N (x) represent the set of nodes connected with the

node x.

1

2

3

4

5

1

2

3

4

Users

Items

p
(1)
11

p
(2)
13

p
(3)
34

Fig. 1. Path of length 3 with edge scores. The path is highlighted by bold
red line. Dashed lines represent the interactions between users and items.

For a given user u ∈ U our model recommends the items

with the highest score rui, excluding the items which the user

interacted with.

The score rui is calculated as the sum of the scores assigned

to the paths of length 3 connecting u and i, i.e.:

rui =
�

i2*N (u)

�

u2*N (i2)

p(u, i2, u2, i),

where p(u, i2, u2, i) is the score assigned to the given path.

Following the idea used in the RP3Beta model, we factorize

this score as:

p(u, i2, u2, i) = p
(1)
ui2p

(2)
i2u2p

(3)
u2i,

where p
(k)
xy is the score assigned to the edge connecting nodes

x and y in the k-th layer, k = 1, 2, 3. The edge scores of a

given path are illustrated in Fig. 1. With this assumption, the

calculation of the scores is simplified in the following way:

RRR = PPP (1)PPP (2)PPP (3),

where PPP (k) = (p
(k)
xy), PPP (1),PPP (3) are |U| × |I| matrices and

PPP (2) is |I| × |U| matrix.

In this work we propose to calculate the edge scores as the

function of node features fn and edge features fe, i.e.:

p(k)xy = φ(k)(fn
x , f

n
y , f

e
xy),

where fn
x is feature vector of node x, fe

xy is a feature vector

of the edge connecting nodes x and y and φ(k) can be any

real-valued function (e.g., neural network). We will call the

functions φ(k) feature encoders and propose them below.

Assume that for each (user, item) pair we know the type

of interactions between them with corresponding timestamps.

Let E = {e1, e2, ..., e|E|} be a set of all possible types of

interactions (e.g., click, reply, purchase).

228 PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022

Then we define the following features:

" deg(x) – degree of the node x (number of distinct

users/items which interacted with x),

" rec(x, y) – number of days which passed between the

most recent user (x or y) interaction with the item (y or

x) and the most recent interaction of this user with any

item,

" ev(ei, x, y) – number of interactions of type ei between

x and y,

" ev(x, y) – number of interactions between x and y.

Then the score is calculated as:

p(k)xy =(deg(y))2d(k)

·

e2 rec(x,y)r(k)

·

σ

û

ý

�

i*|E|

ev(ei, x, y)

ev(x, y)
e
(k)
i + b(k)e

þ

ø ·

σ(ev(x, y)e(k) + b(k)),

where σ(x) = 1
1+e2x and d(k), r(k), e

(k)
i , b

(k)
e , e(k), b(k) are

model parameters.

B. Model parameters

The total number of P3LTR model’s parameters equals 3 ·
(5 + |E|).

The RP3Beta model is not learnable and has only two

hyperparameters: α and β. Our model is equivalent to RP3Beta

model when d(1) = d(2) = α, d(3) = β and all other

parameters equal 0.

RP3Beta is a generalization of P3Alpha [27] (for β = 0),

P3 [27] (for α = 1, β = 0) and #3-Paths [27] (for α = 0,

β = 0), so naturally P3LTR also includes these methods.

Parameters d(k) tell us how impactful (destination) nodes of

a given degree should be, i.e., d(k) = 0 means that we treat all

nodes equally, d(k) > 0 means that we reduce the impact of

nodes with a greater degree, d(k) < 0 means that we increase

the impact of nodes with the greater degree.

Parameters r(k) are used to utilize the recency of interac-

tions, i.e., when r(k) > 0 more recent interactions have higher

importance, when r(k) = 0 the recency of interactions has

no impact on recommendations and when r(k) < 0 the older

interactions are more impactful.

Parameters e
(k)
i , b

(k)
e are designed to utilize the information

about type of interactions between users and items. The param-

eters associated with events requiring higher user engagement

(e.g., replying to an offer) might have higher values than the

others (e.g., the parameter associated with visiting an offer).

Parameters e(k), b(k) were introduced to include the infor-

mation about the frequency of interactions. Higher frequency

is an indicator of higher user engagement and might be used

to increase the importance of a particular item.

C. Model training

The goal of training the model is to learn the values of the

parameters of our feature encoders φ(k). We describe three

components of this process: a forward pass for a single user,

a training loop, and a loss function.

1) Forward pass for a single user: We can present our

model from the perspective of a message-passing paradigm

used in graph convolutional neural networks [15], [24], [25],

[26]. For the initial representation (k = 0) we set the score

r
(0)
u = 1 for the node representing the given user and the score

0 for all other nodes. Then for all nodes x and for k = 1, 2, 3
we perform the message passing:

r(k)x =
�

y*N (x)

r(k21)
y φ(k)(fn

x , f
n
y , f

e
xy).

This process can be interpreted as spreading the message

across the graph. At the beginning, we send the message to

the neighboring nodes depending on their relevancy calculated

by φ(1). Then each of these nodes sends the message to their

neighbors with respect to the relevancy calculated by φ(2).

This process could be continued, but for efficiency reasons

and based on the results of Cooper et al. [27], we limit it to

3 steps.

2) Training loop: A training process is described by Algo-

rithm 1.

Algorithm 1 Training loop of the P3LTR model.

for iteration = 1, 2, . . . , iterations do

Update edge weights of the graph based on feature

encoders

Set the loss to 0.

for i = 1, 2, . . . , batch size do

Pick a random target user (by default: random user

who interacted with at least 2 items) and take his most

recent interacted item as a validation node.

Make a forward pass for this user and calculate the

scores of top k items and the score and position of a

validation node.

Calculate the loss for this user and add it to the current

loss.

end for

Backpropagate the loss and update the weights of feature

encoders.

end for

3) Loss function: The idea of our loss function is to score

the validation item higher than the other items. Let us define

ratio =
avg score of top k items

validation node score
.

To stabilize the training, we additionally calculated the sum

of squares of the parameters and multiplied it by a constant

regularization parameter. We considered three loss functions:

" ratio: ratio + regularization term,

" log ratio: ln (ratio) + regularization term,

" boosted log ratio: ln(ratio) · validation node position +

regularization term.

The idea of the log ratio was inspired by BPR loss [34]

function and the idea of the boosted log ratio was inspired

ROBERT KWIECIŃSKI ET AL.: LEARNING EDGE IMPORTANCE IN BIPARTITE GRAPH-BASED RECOMMENDATIONS 229

by WARP loss [35]. The best loss function was chosen during

the hyperparameter optimization.

D. Model advantages

We would like to emphasize the following advantages of

the proposed approach:

1) P3LTR generalizes RP3Beta which is a strong baseline

model.

2) P3LTR directly utilizes the information about the user-

item relationship. For instance, our model may be used

for encoding the importance of ratings in the explicit

feedback dataset used for the top N recommendations

task if we treat each rating as a different type of

interaction.

3) P3LTR utilizes additional information regarding the

users and the items. In our collaborative filtering dataset,

we used only node degrees as such features, but we can

easily extend the model to include additional user and

item features.

4) P3LTR is an explainable model from two perspectives:

we can explain because of which items a given item

is recommended and explain why some items are more

influential on recommendations.

5) P3LTR directly utilizes the information of the node’s

neighbors. Such an approach might give better results

than embedding-based approaches for users with a low

number of interactions.

6) The training pipeline is used only for optimizing the

weights of feature encoders. Hence it can be trained

sporadically (or even just once) and be utilized for

providing predictions every day.

7) The model prediction is almost as efficient, as RP3Beta.

The difference is in the preprocessing stage, where in

P3LTR, we need to additionally calculate features and

pass them through feature encoders.

IV. EXPERIMENTAL SETUP

A. Dataset

We utilized the OLX Jobs Interactions dataset which is

publicly available on Kaggle1. In our previous work, as yet

unpublished, we compared several collaborative filtering non-

neural approaches. The RP3Beta model outperformed other

approaches in terms of accuracy and efficiency and, after

online A/B tests, has been deployed at OLX.

The dataset contains 65 502 201 events made on http://olx.

pl/praca by 3 295 942 users who interacted with 185 395

job ads in 2 weeks of 2020. Each event contains 4 pieces of

information: user id, item id, event type (e.g., click or reply)

and timestamp.

It is important to note that users usually do not interact with

many job ads (average: 20, median: 6, first quartile: 2, third

quartile: 18).

1https://www.kaggle.com/datasets/olxdatascience/olx-jobs-interactions

0.00

0.01

0.02

0.03

P3LTR RP3Beta

Model name

P
re

c
is

io
n
@

1
0

Fig. 2. Precision for each model depending on parameters.

B. Train-test splitting

We split the events into train and test sets by time, i.e., 20%

of the newest events (approximately 2.8 days) were included

in the test set. We filtered out from the test set all user-item

pairs which appeared in the train set (to avoid recommending

already seen items).

C. Hyperparameter tuning

For the sake of efficiency, we extracted 20% of users and

20% of items from the original train set and, according to the

train-test splitting technique described in the previous section,

we divided them into train and test sets used for validation.

For each model, we defined the hyperparameter space and

performed 100 iterations chosen by Bayesian optimization us-

ing Gaussian processes. We were optimizing for precision@10

[36] calculated on 30 thousand users. In Fig. 2 we can observe

that the hyperparameters significantly affect the performance

of tuned models. Therefore, tuning was essential for providing

reliable results for compared methods. We can also see that

choosing suboptimal hyperparameters for the RP3Beta model

can result in very poor performance, which is not the case for

P3LTR. We report the optimal hyperparameters in Table I.

V. RESULTS

We used the best found hyperparameters to train our model

on the full dataset and generate recommendations for all

619 389 users in the test set. We compared the following

methods:

" P3LTR,

" RP3Beta,

" P3: which is the RP3Beta model for α = 1 and β = 0,

" #3-Paths: which is the RP3Beta model for α = 0 and

β = 0. We initialized all the parameters of our P3LTR

model to zeros, which makes the #3-Paths model equiv-

alent to the P3LTR model before the learning process.

In this section, we compare the accuracy and diversity of

these models. We will also discuss the parameters of our

P3LTR model.

A. Accuracy

In Table II we list common accuracy evaluation metrics

calculated with respect to the top 10 recommendations. The

230 PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022

TABLE I
MODEL HYPERPARAMETERS.

Model Model hyperparamerers

RP3beta {’alpha’: 0.61447198, ’beta’: 0.1443548}
P3LTR {’regularization’: 0.001, ’learning_rate’: 0.02, ’batch_size’: 153, ’iterations’: 80, ’top_k’:

205, ’loss’: ’log_ratio’}

TABLE II
ACCURACY RESULTS. ALL PRESENTED METRICS WERE DESCRIBED IN

[36].

Model P3LTR RP3Beta P3 #3-Paths

precision 0.0515 0.0484 0.0481 0.0391
recall 0.0817 0.0783 0.0782 0.0611
ndcg 0.0798 0.0759 0.0755 0.0599
mAP 0.0414 0.0393 0.0390 0.0302
MRR 0.1423 0.1365 0.1363 0.1107
LAUC 0.5408 0.5391 0.5391 0.5305
HR 0.3242 0.3131 0.3147 0.2605

values should not be directly compared with the results

achieved on other datasets, because metrics heavily depend

on the distribution of the dataset (for example high sparsity)

and the train/test splitting strategy. We can observe that our

method P3LTR outperforms RP3Beta with respect to all listed

metrics.

To identify differences between the methods, we test the

null hypothesis that all methods perform the same. We used

the Friedman test with Iman and Davenport extension. The

p-value from this test is equal to 0 which indicates that we

can safely reject the null hypothesis that all the algorithms

perform the same. We can therefore proceed with the post-

hoc tests in order to detect significant differences among all of

the methods. Demšar [37] proposes the use of the Nemenyi’s

test and preparing a plot to visually check the differences, the

critical difference plot. In the plot, those algorithms that are

not joined by a line can be regarded as different. In our case,

with a significance of α = 0.05 any two algorithms with a

difference in the mean rank above 0.006 are regarded as non-

equal (Fig. 3).

We can observe three disjoint groups of methods:

1) P3LTR,

2) RP3Beta and P3,

3) #3-Paths.

From this analysis, we see that P3LTR performs significantly

better than other methods on the examined dataset.

B. Diversity

Most of the job ads refer to only one job position. Hence we

should avoid recommending the same item to a great number

of users. For that reason, we report also the diversity metrics in

Table III. Test coverage is a fraction of items from the test set

which were recommended to at least one user. We also report

Shannon entropy [38] and Gini index [38]. We can see that

P3LTR is the most diverse method with respect to all these

metrics. We can also note that the #3-Paths method seems less

2 3

CD = 0.006

P3LTR

RP3Beta

P3

#3-Paths

Fig. 3. Critical difference plot (for precision).

TABLE III
DIVERSITY RESULTS.

Model P3LTR RP3Beta P3 #3-Paths

test coverage 0.757 0.573 0.617 0.374
Shannon entropy 10.090 9.527 9.631 8.712
Gini index 0.844 0.908 0.898 0.957

diverse than other methods. We suppose that the reason is that

this method recommends the items based on the number of

paths of length 3 connecting a given user and item, so the

most popular items are more often recommended.

In order to decide whether to deploy a new recommendation

system in production, we usually check how different are the

recommendations produced by a new model compared to the

old one. To assess it we calculated the overlap coefficient [39]

with respect to user-item pairs. The results are reported in

Table IV. We see that 70% of the top 10 recommendations

provided by P3LTR and RP3Beta models are the same recom-

mendations. We can also observe that RP3Beta and P3 provide

pretty similar results on our dataset (overlap coefficient equals

84%).

C. Parameters of the P3LTR model

As we mentioned, the parameters of our model can be

easily interpreted. In the Table V we report the values of

d(k) (parameters related to node degrees) and r(k) (parameters

related to recency).

In previous works regarding the RP3Beta model, usually

positive values for α and β were chosen to discourage the

model from recommending the most popular items [1], [3].

ROBERT KWIECIŃSKI ET AL.: LEARNING EDGE IMPORTANCE IN BIPARTITE GRAPH-BASED RECOMMENDATIONS 231

TABLE IV
AN OVERLAP OF MODELS.

Model P3LTR RP3Beta P3 #3-Paths

P3LTR 100% 70% 64% 50%
RP3Beta 70% 100% 84% 68%
P3 64% 84% 100% 60%
#3-Paths 50% 68% 60% 100%

TABLE V
PARAMETERS OF THE P3LTR MODEL.

Parameter k = 1 k = 2 k = 3

d
(k) 0.631 0.163 0.433

r
(k) 0.081 0.008 0.028

We can see that in our machine learning approach also positive

values were learned for all d(k) parameters.

Additionally, in RP3Beta model we have d(1) = d(2) = α.

However, P3LTR model chose very different values for d(1)

and d(2).

Regarding recency, the model chose positive values of r(k)

parameters. It means that the more recent interactions should

have higher importance.

We do not discuss parameters related to event type e.g.,

viewing or replying to an ad, because they did not converge

within the number of iterations we have chosen. Hence the

reported results might differ when we train the model multiple

times. We believe the convergence could be achieved with a

greater value of a batch_size hyperparameter, but it would also

significantly increase the training time.

VI. SUMMARY

In the paper, we introduced a new graph vertex ranking

recommendation method which we named P3LTR. It gener-

alizes the RP3Beta model which provides very efficient and

accurate recommendations on multiple datasets. We described

several strengths of our approach, including explainability and

prediction efficiency. We showed that our method is superior

to RP3Beta on the OLX Jobs Interactions dataset in terms of

accuracy and diversity of recommendations.

The proposed method may improve the quality of rec-

ommendations currently being generated using the RP3Beta

model that is implemented at OLX Jobs in a production

setting.

In future work, we plan to explore more advanced feature

encoders which utilize user and item features. We would like

to explore and compare different loss functions for the P3LTR

model. Additionally, we would like to launch A/B tests on

production to measure the model’s effectiveness on real users.

REFERENCES

[1] B. Paudel, F. Christoffel, C. Newell, and A. Bernstein, “Updatable, accu-
rate, diverse, and scalable recommendations for interactive applications,”
ACM Transactions on Interactive Intelligent Systems, vol. 7, pp. 1–34,
12 2016.

[2] M. F. Dacrema, P. Cremonesi, and D. Jannach, “Are we really making
much progress? a worrying analysis of recent neural recommendation
approaches,” in Proceedings of the 13th ACM Conference on Recom-

mender Systems, ser. RecSys ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 101–109.

[3] M. F. Dacrema, S. Boglio, P. Cremonesi, and D. Jannach, “A troubling
analysis of reproducibility and progress in recommender systems re-
search,” ACM Transactions on Information Systems, vol. 39, pp. 1–49,
01 2021.

[4] V. W. Anelli, A. Bellogín, T. Di Noia, and C. Pomo, “Reenvisioning
the comparison between neural collaborative filtering and matrix fac-
torization,” in Fifteenth ACM Conference on Recommender Systems,
ser. RecSys ’21. New York, NY, USA: Association for Computing
Machinery, 2021, p. 521–529.

[5] C. Gómez-Uribe and N. Hunt, “The netflix recommender system,” ACM

Transactions on Management Information Systems, vol. 6, pp. 1–19, 12
2015.

[6] B. Smith and G. Linden, “Two decades of recommender systems at
amazon.com,” IEEE Internet Computing, vol. 21, pp. 12–18, 05 2017.

[7] M. J. Pazzani and D. Billsus, “Content-based recommendation systems,”
in The Adaptive Web. Springer, 2007.

[8] U. Javed, K. Shaukat Dar, I. Hameed, F. Iqbal, T. Mahboob Alam, and
S. Luo, “A review of content-based and context-based recommendation
systems,” International Journal of Emerging Technologies in Learning

(iJET), vol. 16, 02 2021.

[9] R. Chen, Q. Hua, Y.-S. Chang, B. Wang, L. Zhang, and X. Kong,
“A survey of collaborative filtering-based recommender systems: From
traditional methods to hybrid methods based on social networks,” IEEE

Access, vol. PP, pp. 1–1, 10 2018.

[10] X. Wang, X. He, M. Wang, F. Feng, and T.-S. Chua, “Neural
graph collaborative filtering,” in Proceedings of the 42nd International

ACM SIGIR Conference on Research and Development in Information

Retrieval, ser. SIGIR’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 165–174. [Online]. Available:
https://doi.org/10.1145/3331184.3331267

[11] X. Ning and G. Karypis, “Slim: Sparse linear methods for top-n
recommender systems,” in Proceedings of the 2011 IEEE 11th

International Conference on Data Mining, ser. ICDM ’11. USA:
IEEE Computer Society, 2011, p. 497–506. [Online]. Available:
https://doi.org/10.1109/ICDM.2011.134

[12] H. Khojamli and J. Razmara, “Survey of similarity functions on
neighborhood-based collaborative filtering,” Expert Systems with Appli-

cations, vol. 185, p. 115482, 2021.

[13] M. Kula, “Metadata embeddings for user and item cold-start recommen-
dations,” arXiv preprint arXiv:1507.08439, 2015.

[14] Y. Hu, Y. Koren, and C. Volinsky, “Collaborative filtering for implicit
feedback datasets,” in Proceedings of the 2008 Eighth IEEE Inter-

national Conference on Data Mining, ser. ICDM ’08. USA: IEEE
Computer Society, 2008, p. 263–272.

[15] X. He, K. Deng, X. Wang, Y. Li, Y. Zhang, and M. Wang,
LightGCN: Simplifying and Powering Graph Convolution Network

for Recommendation. New York, NY, USA: Association for
Computing Machinery, 2020, p. 639–648. [Online]. Available: https:
//doi.org/10.1145/3397271.3401063

[16] M. Grbovic, V. Radosavljevic, N. Djuric, N. Bhamidipati, J. Savla,
V. Bhagwan, and D. Sharp, “E-commerce in your inbox: Product
recommendations at scale,” in Proceedings of the 21th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining,
ser. KDD ’15. New York, NY, USA: Association for Computing
Machinery, 2015, p. 1809–1818.

[17] O. Barkan and N. Koenigstein, “Item2vec: Neural item embedding for
collaborative filtering,” 09 2016, pp. 1–6.

[18] G. Adomavicius and A. Tuzhilin, Context-Aware Recommender Systems.
Boston, MA: Springer US, 2015, pp. 191–226. [Online]. Available:
https://doi.org/10.1007/978-1-4899-7637-6_6

[19] S. Kulkarni and S. F. Rodd, “Context aware recommendation
systems: A review of the state of the art techniques,” Computer

Science Review, vol. 37, p. 100255, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1574013719301406

[20] M. Quadrana, P. Cremonesi, and D. Jannach, “Sequence-aware
recommender systems,” ACM Comput. Surv., vol. 51, no. 4, jul 2018.
[Online]. Available: https://doi.org/10.1145/3190616

[21] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” vol. 2016, 07 2016, pp. 855–864.

232 PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022

[22] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of
social representations,” Proceedings of the ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, 03 2014.
[23] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed

representations of words and phrases and their compositionality,” in
Proceedings of the 26th International Conference on Neural Information

Processing Systems - Volume 2, ser. NIPS’13. Red Hook, NY, USA:
Curran Associates Inc., 2013, p. 3111–3119.

[24] X. Wang, X. He, M. Wang, F. Feng, and T.-S. Chua, “Neural
graph collaborative filtering,” ser. SIGIR’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 165–174. [Online].
Available: https://doi.org/10.1145/3331184.3331267

[25] R. van den Berg, T. Kipf, and M. Welling, “Graph convolutional matrix
completion,” ArXiv, vol. abs/1706.02263, 2017.

[26] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton,
and J. Leskovec, “Graph convolutional neural networks for web-
scale recommender systems,” in Proceedings of the 24th ACM

SIGKDD International Conference on Knowledge Discovery and

Data Mining, ser. KDD ’18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 974–983. [Online]. Available:
https://doi.org/10.1145/3219819.3219890

[27] C. Cooper, S. H. Lee, T. Radzik, and Y. Siantos, “Random walks in rec-
ommender systems: Exact computation and simulations,” in Proceedings

of the 23rd International Conference on World Wide Web, ser. WWW
’14 Companion. New York, NY, USA: Association for Computing
Machinery, 2014, p. 811–816.

[28] F. Fouss, A. Pirotte, and M. Saerens, “A novel way of computing
similarities between nodes of a graph, with application to collaborative
recommendation,” in The 2005 IEEE/WIC/ACM International Confer-

ence on Web Intelligence (WI’05), 2005, pp. 550–556.
[29] F. Fouss, A. Pirotte, J.-m. Renders, and M. Saerens, “Random-walk

computation of similarities between nodes of a graph with application to

collaborative recommendation,” IEEE Transactions on Knowledge and

Data Engineering, vol. 19, no. 3, pp. 355–369, 2007.
[30] M. Gori and A. Pucci, “Itemrank: A random-walk based scoring

algorithm for recommender engines.” 01 2007, pp. 2766–2771.
[31] X. Geng, H. Zhang, J. Bian, and T.-S. Chua, “Learning image and

user features for recommendation in social networks,” in 2015 IEEE

International Conference on Computer Vision (ICCV), 2015, pp. 4274–
4282.

[32] C. Wang and D. Blei, “Collaborative topic modeling for recommending
scientific articles,” 08 2011, pp. 448–456.

[33] F. M. Harper and J. A. Konstan, “The movielens datasets: History and
context,” ACM Trans. Interact. Intell. Syst., vol. 5, no. 4, dec 2015.
[Online]. Available: https://doi.org/10.1145/2827872

[34] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme, “Bpr:
Bayesian personalized ranking from implicit feedback,” Proceedings of

the 25th Conference on Uncertainty in Artificial Intelligence, UAI 2009,
05 2012.

[35] J. Weston, S. Bengio, and N. Usunier, “Wsabie: Scaling up to large
vocabulary image annotation,” 01 2011, pp. 2764–2770.

[36] Y.-M. Tamm, R. Damdinov, and A. Vasilev, “Quality metrics in
recommender systems: Do we calculate metrics consistently?” in
Fifteenth ACM Conference on Recommender Systems, ser. RecSys ’21.
New York, NY, USA: Association for Computing Machinery, 2021, p.
708–713. [Online]. Available: https://doi.org/10.1145/3460231.3478848

[37] J. Demšar, “Statistical comparisons of classifiers over multiple data sets,”
Journal of Machine Learning Research, vol. 7, pp. 1–30, 2006.

[38] G. Shani and A. Gunawardana, Evaluating Recommendation Systems.
Boston, MA: Springer US, 2011, pp. 257–297. [Online]. Available:
https://doi.org/10.1007/978-0-387-85820-3_8

[39] M. Vijaymeena and K. Kavitha, “A survey on similarity measures in text
mining,” Machine Learning and Applications: An International Journal,
vol. 3, pp. 19–28, 03 2016.

ROBERT KWIECIŃSKI ET AL.: LEARNING EDGE IMPORTANCE IN BIPARTITE GRAPH-BASED RECOMMENDATIONS 233

