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Abstract—A lightweight neural network-based approach to
two-person interaction classification in image sequences, based on
human skeletons detected in sparse video frames, is proposed.
The idea is to use an ensemble of pose classifiers (”experts”),
where every expert is trained on different time-indexed snapshots
of an interaction. Thus, the expertise of "weak" classifiers is
distributed over the time duration of an interaction. The overall
classification result is a weighted combination of all the pose
experts. Important element of proposed solution is the refinement
of skeleton data, based on a merging-of-joints procedure. This
allows the generation of reliable features being passed to the
artificial neural network. This is the key to our lightweight solu-
tion, as ANN resources, needed for feature space transformation,
can be significantly limited. Our network model was trained and
tested on the interaction subset of the well-known NTU RGB+D
dataset, although only 2D skeleton information is used, typical
in video analysis. The test results show comparable performance
of our method with some of the best so far reported STM-
and CNN-based classifiers for this dataset, when they process
sparse frame sequences, like we did. The recently proposed multi-
stream Graph CNNs have shown superior results but only when
processing dense frame sequences. Considering the dominating
processing time and resources needed for skeleton estimation in
every frame of the sequence, the key to real-time interaction
recognition is to limit the number of processed frames.

I. INTRODUCTION

The aim of our work is the analysis of human interactions in

specific time-related image sequences. The data can originate

from decomposition of video clips onto frames or directly

from snapshots of videos posted as image galleries in the

Internet. Their common property is the sparsity of time-

relevant information (Figure 1).

The approaches to vision-based human activity recognition

can be divided into two main categories: activity recognition

directly in video data [1] or skeleton-based methods [2], where

the 2D or 3D human skeletons are detected first, even by

specialized devices, like the Microsoft Kinect.

In early solutions, hand-designed features like edges, con-

tours, Scale-Invariant Feature Transform (SIFT), Histogram

of Oriented Gradients (HOG) have usually been used for
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Warszawa, Poland, grant No. CYBERSECIDENT/455132/III/NCBR/2020 -
the APAKT project

detection and localization of human body parts or key points

in the image [3], [4].

More recently, Neural Network-based solutions were suc-

cessfully proposed for solving human pose- and human ac-

tivity recognition problems, e.g., solutions are based on Deep

Neural Networks (DNN) [5], especially on Long-Short Term

Memory (LSTM) models and Convolutional Neural Networks

(CNN) [6], and more recently on Graph CNNs [7]. CNNs have

the capability automatically to learn rich semantic and discrim-

inative features from images and multi-dimensional signals.

Furthermore, CNNs can learn both spatial and temporal infor-

mation from signals and model scale-invariant features as well.

Graph CNNs allow efficient implementations of convolution

layers when structured data (i.e., graphs) are processed. Some

popular solutions to human skeleton estimation (i.e., the de-

tection and localization) in images, based on DNN and CNN

models, can be mentioned: OpenPose [8], DeepPose [9] and

DeeperCut [10].

Hence, nowadays human action- and interaction recognition

in video is most often based on skeleton data extracted from

video frames. The state-of-the-art solutions to human action

encoding and classification, which process human skeleton

data, typically use "heavy" deep neural networks, like 3D

CNNs and LSTMs or slightly lightweight Graph CNNs

[11], [12].

In this work, we focus on two-person interaction recognition

in sparse frame sequences, assuming the existence of skeleton

data for key video frames. We took the straightforward idea of

extending two-person pose classification of still images to two-

person interaction classification in image sequences, by apply-

ing an ensemble of pose classifiers [13]. Typically for a clas-

sifier ensemble, individual classifiers are ”experts” in different

parts of the input data domain and the extra weighting network

differentiates between subdomains. In our approach, the pose-

classifiers are experts at different time stages, while their input

space itself (i.e., the spatial image information) is not affecting

the fusion weights. By performing a simple time decomposi-

tion, we are going to distinguish four subsequent time periods

of an interaction process, e.g. start, before midterm, after

midterm and final. The final fusion will take the form of a

weighted sum of class likelihoods of all the pose classifiers.
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Fig. 1. Example of a sparse sequence of frames from a two-person interaction video

There are 4 remaining sections of this work. Section II

refers some recent approaches in human pose, -action and -

interaction recognition. Our solution is presented in section

III. In section IV, experiments are described, to verify the

approach. The classifiers are trained and tested on two datasets:

an own human pose image dataset, called ”humiact5”, and

the well-known video dataset for action and interaction, NTU

RGB+D [14]. Finally, in section V, we summarize our work

and contribution to the subject.

II. RELATED WORK

The recognition of human activities in video is a hot

research topic in the last 15 years. Typically, human activity

recognition in images and video requires first a detection of

human body parts or key-points of a human skeleton. The

skeleton-based methods compensate some of the drawbacks of

vision-based methods, such as assuring the privacy of persons

and reducing the scene lightness sensitivity.

The vast majority of research is based on the use of artificial

neural networks. However, more classical approaches have

also been tried, such as the SVM (e.g. [15], [16]). Yan et al.

[17] used multiple features, like a ”bag of interest points” and

a ”histogram of interest point locations”, to represent human

actions. They proposed a combination of classifiers in which

AdaBoost and sparse representation (SR) are used as basic al-

gorithms. In the work of Vemulapalli et al. [18] human actions

are modeled as curves in a Lie group of Euclidean distances.

The classification process is using a combination of dynamic

time warping, Fourier temporal pyramid representation and

linear SVM.

Thanks to higher quality results, artificial neural networks

are replacing other methods. Thus, the most recently con-

ducted research in the area of human activity classification

differs only by the proposed network architecture. Networks

based on the LSTM architecture or a modification of this archi-

tecture (a ST-LSTM network with trust gates) were proposed

by Liu et al. [19] and Shahroudy et al. [14]. They introduced

so called ”Trust Gates” for controlling the content of an LSTM

cell and designed an LSTM network capable of capturing

spatial and temporal dependencies at the same time (denoted

as ST-LSTM). The task performed by the gates is to assess the

reliability of the obtained joint positions based on the temporal

and spatial context. This context is based on the position

of the examined junction in the previous moment (temporal

context) and the position of the previously studied junction in

the present moment (spatial context). This behavior is intended

to help network memory cells assess which locations should

not be remembered and which ones should be kept in memory.

The authors also drew attention to the importance of capturing

default spatial dependencies already in the skeleton data. They

have experimented with different mappings of the a joint’s set

to a sequence. Among the, they mapped the skeleton data into

a tree representation, duplicating joints when necessary to keep

spatial neighborhood relation, and performed a tree traversal to

get a sequence of joints. Such an enhancement of the input data

allowed an increase of the classification accuracy by several

percent.

The work [20] introduced the idea of applying convolutional

filters to pseudo-images in the context of action classification.

A pseudo-image is a map (a 2D matrix) of feature vectors

from successive time points, aligned along the time axis.

Thanks to these two dimensions, the convolutional filters find

local relationships of a combined time-space nature. Liang et

al. [21] extended this idea to a multi-stream network with

three stages. They use 3 types of features, extracted from

the skeleton data: positions of joints, motions of joints and

orientations of line segments between joints. Every feature

type is processed independently in an own stream but after

every stage the results are exchanged between streams.

Graph convolutional networks are currently considered as

a natural approach to the action (and interaction) recognition

problem. They are able to achieve high quality results with

only modest requirements of computational resources. ”Spatial

Temporal Graph Convolutional Networks” [22] and ”Actional-

Structural Graph Convolutional Networks” [23] are examples

of such an solution.

Another recent development is the pre-processing of the

skeleton data in order to extract different type of information

(e.g., information on joints and bones, and their relations

in space and time). Such data streams are first separately

processed by so called multi-stream neural networks and later

fused to a final result. Examples of such solutions are the

”Two-Stream Adaptive Graph Convolutional Network” (2S-

AGCN) and the ”Multistream Adaptive Graph Convolutional

Network” (AAGCN), proposed by Shi et al. [24], [25].

One of the best performances on the NTU RGB+D inter-

action dataset is reported in the work of Perez et al. [26].

Its main contribution is a powerful two-stream network with

three-stages, called ”Interaction Relational Network” (IRN).
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The network input are basic relations between joints of two

interacting persons tracked over the length of image sequence.

An important step is the initial extraction of relations between

pairs of joints - both distances between joints and their motion

are obtained. The neural network makes further encoding and

decoding of these relations and a final classification. The

first stream means the processing of within-a-person relations,

while the second one - between-person relations. The use of

a final LSTM with 256 units is a high-quality version of the

IRN network, called IRN-LSTM. It allows to reason over the

interactions during the whole video sequence - even all frames

of the video clip are expected to be processed. In the basic

IRN, a simple densely-connected classifier is used instead of

the LSTM and a sparse sequence of frames is processed.

The currently best results are reported by Zhu et al. [27],

where two new modules are proposed for a baseline 2S-AGCN

network. The first module extends the idea of modelling

relational links between two skeletons by a spatio-temporal

graph to a ”Relational Adjacency Matrix (RAM)”. The second

novelty is a processing module, called ”Dyadic Relational

Graph Convolution Block”, which combines the RAM with

spatial graph convolution and temporal convolution to generate

new spatial-temporal features.

From the analysis of the recent most successful solutions,

we can draw three main conclusions:

1) using an analytic preprocessing of skeleton-data to ex-

tract meaningful information and cancel noisy data, ei-

ther by employing classic functions or learnable function

approximations (e.g. relational networks);

2) preferring light-weight solutions by employing back-

ground (problem-specific) knowledge, i.e. using graph

CNNs instead of CNN, CNNs with 2-D kernels instead

of 3-D CNN;

3) a video clip containing a specific human action or

interaction can be processed alternatively as a sparse

or dense frame sequence, where sparse sequence is

chosen to achieve real-time processing under limited

computational resources, while the processing of a dense

sequence leads to better performance.

III. THE APPROACH

A. Structure

The input data for our interaction classifier is a sequence

of sparse video frames. Assuming, a video clip is given the

start and end of an interaction should be detected first. Then,

the video clip is split into some number M of consecutive

time intervals (e.g. M = 16). From each interval one frame

is selected for classification. Assume, that M = N ·m, where

N is a period of time, while m the number of frames in

one period. We may distinguish N = 4 periods: start, 1-st

intermediate, 2-nd intermediate and final. To the classification

of frames from a single period, a separate pose classifier (the

”expert”) is dedicated. As shown in Figure 2, the proposed

solution consists of several processing stages:

1) Skeleton estimation: the OpenPose net [28] is applied to

detect human skeletons with their 2D joints in an RGB

image (a video frame);

2) Feature engineering: a keypoint enhancement algorithm

is proposed in order to get more reliable two sets of

skeleton joints from the OpenPose results; next, feature

vectors are extracted from the refined joints.

3) Pose classifier training: several lightweight, densely-

connected MLP networks are trained - every one is a

”weak” classifier.

4) Model evaluation: alternative network models are evalu-

ated, to find the optimal model configuration and training

parameter. A Keras-tuner [29] - the RandomSearch al-

gorithm [30] is applied to find optimal hyper-parameter

settings.

5) Ensemble classifier: a dense gain network is also trained

to learn the weights for results of individual pose classi-

fiers. Two versions of the final classifier are implemented

- one with fixed weights and one with learned weights.

6) Model testing: after accumulating the pose class like-

lihoods over the frame sequence the final most likely

interaction class is selected as the winner. Two datasets

- an own humiact5 and the RGB subset of the NTU

RGB+D dataset, are used to evaluate the created models.

B. Skeleton estimation

In the paper [8], a multi-person 2D pose estimation ar-

chitecture was proposed based on part affinity fields (PAFs).

The work introduced an explicit nonparametric representation

of the keypoint association which encodes both position and

orientation of the human limbs. The designed architecture

can learn both human keypoint detection and association

using heatmaps of human key-points and part affinity fields

respectively. It iteratively predicts part affinity fields and part

detection confidence maps. The part affinity fields encode part-

to-part association including part locations and orientations. In

the iterative architecture, both PAFs and confidence maps will

be iteratively refined over successive stages with intermediate

supervision at each stage. Subsequently, a greedy parsing

algorithm is employed to effectively parse human poses. The

work ended up releasing the OpenPose library, the first real-

time system for multi-person 2D pose estimation [28]. In our

research, we use the core block of OpenPose, the ”body_25

model”, to extract 25 human key-points in images. The result

is an 25-elementary array, providing 2D image coordinates and

confidence score for every keypoint.

C. Feature engineering

From the (eventually more than two) sets of skeleton joints,

detected in the image by OpenPose, the two main actors are

selected based on size measure. A total variability of skeleton

keypoint locations is calculated for every skeleton and the two

with the highest variability are chosen for feature engineering.

1) Skeleton enhancement: There are cases where OpenPose

wrongly splits one human region into different regions due to
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Fig. 2. General structure of our approach

occlusion, low resolution, or complex visual context. There-

fore, we developed a keypoint (i.e., skeleton joints) merging

and replacement algorithm. In the first step, we try to merge

sets of joints, where applicable, to produce finer skeleton joints

(see Figure 3).

Two calculations are made for each pair of sets including the

number of intersection points of the two sets and the distance

between them. The intersection indicator value is scaled by the

number of points of the smaller set. The distance calculation

takes their two mean points and two standard deviation values

into account. These calculated values then will be compared

with corresponding thresholds to decide whether the two sets

are going to be merged or not. In case merging conditions are

met, the intersection points of the two sets will be treated in

the following way: the data points with higher probability will

be kept and the lower ones will be ignored.

For the sake of clarity, Figure 4 illustrates the merging

procedure of two specific sets, A and B, based on the

assumption that they come from the same person in the image.

The bigger set A is missing key-points for the left leg, while

the smaller set B includes these key-points. The mean points

(center of gravity) of A and B are mA and mB , respectively,

the standard deviations of joints locations for A and B are

[stdA,x, stdA,y] and [stdB,x, stdB,y], respectively.

The conditions for a merging action are as follows:

|A ∩B|

|B|
≤ θ1 (1)

|mA,x − mB,x|

stdA,x + stdB,x

+
|mA,y − mB,y|

stdA,y + stdB,y

≤ θ2 (2)

where θ1, θ2 are intersection threshold and distance threshold,

respectively.

After a merging action has been performed, the remaining

joints in the smaller set (call it S) can eventually replace low-

confident, corresponding joints in a subset Bs of the big set B.

To decide about this, the following values are considered: the

normalized Euclidean distance between the smaller set joints

and the corresponding candidate joints of the subset Bs, the

average confidence of all candidate joints in the small set S
and the average confidence of the corresponding joints in the

bigger set (Figure 5).

Let N -elementary sets S and Bs of corresponding joints

are given, considered for possible replacement. Standard de-

viation coefficients of the smaller set joints locations are

[stdS,x, stdS,y]. Let the confidence value of a joint j be

denoted as P (j). The conditions for a joints replacement are

as follows:

1

stdS,x + stdS,y

N
�

i=1

�

(xSi
− xBsi

)2 + (ySi
− yBsi

)2 ≤ θ3

(3)

1

N

N
�

i=1

P (Si) ≥ θ4 (4)

1

N

N
�

i=1

P (Bsi) ≤ θ5 (5)

where θ3 is the normalized Euclidean distance threshold, θ4
- the confidence threshold for S and θ5 - the confidence

threshold for Bs.

The skeletons, which remain after the merging and replace-

ment steps, will be ordered by their bounding box size in

descending order. With (w, h) representing width and height

of a bounding box, the score = w·h. The two sets with highest

score will be kept and used further in the feature extraction

step.
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Fig. 3. The skeleton merging step.

Fig. 4. Illustration of a skeleton merging situation.

2) Feature extraction: Feature extraction means the calcu-

lation of normalized distances between pairs of joints from

two skeletons, tracked in the frame sequence of a video

clip. First, the distance between two middle-of-spine points

of two human skeletons is calculated and normalized by the

length of the spine I1 of the first person, giving the distance

feature (Figure 6). Then, every set of joints is independently

normalized by: translating the local coordinate system to the

middle-of-spine point O1 or O2, rotating the points so that

the spine segment (connecting joint 1 with joint 8) is parallel

to the Y axis of local system, and finally, scaling the point

coordinates by the spine length Ii.

Denote by H1,H2 the skeletons of the first and the second

human; O1, O2 - the centers of spine segments of the first

and second human, respectively; l1 - the length of the spine

segment of the first human; α1, α2 - the rotation angles to

make corresponding spine segments parallel to the Y axes

of local Cartesian coordinate systems. The distance feature

is calculated as the distance between local system origins,

O1, O2, normalized by the length l1:

d =
distance

l1
(6)

The normalization of joints coordinates (translation to local

system, rotation, scaling) is performed independently for ev-

ery set H1,H2. Let pi = (pi,x, pi,y) denotes the image

coordinates of a joint from skeleton Hi, (i = 1, 2). The

normalization of this joint is given as follows:

p2

i = (p2i,x, p
2

i,y) = (pi,x −Oi,x; pi,yi −Oi,y), i = 1, 2 (7)

�

p22i,x
p22i,y

�

=

�

cos(αi) − sin(αi)
sin(αi) cos(αi)

��

p2i,x
p2i,y

�

, i = 1, 2

(8)

(p222i,x, p
222

i,y) =

�

p22i,x
wi

,
p22i,y
hi

�

, i = 1, 2 (9)

3) Feature vector: Both the OpenPose (applied for our

RGB dataset) and the built-in skeleton detector from Kinect

v2 (generating the skeleton data in the NTU RGB+D dataset)

deliver person skeletons of 25 joints. By analysing a small

skeleton data subset, we found that the data for joints num-

bered from 15 to 24, corresponding to ”small” parts, like

fingers, are very often missing. Thus, we use only joints

numbered from 0 to 14. The feature vector obtained from

skeleton data of a single frame has 61 dimensions as there are

15 joints× 2 coordinates× 2 sets and one distance feature.

Assuming that we have selected m frames for analysis, we get

a map of m× 61 features.

D. Pose classifier training and evaluation

The feature data is fed to several MLP-based pose classi-

fiers. We use fully-connected MLP architecture with variants

of several hyper-parameters: the number of hidden layers of

the network can vary from 1 to 3, different activation functions

(ReLU and/or sigmoid) may be chosen, as well as the number

of neurons in hidden layers and the learning rate can vary. The

ANN is implemented using Keras [29].

Automated hyper-parameter tuning [31] is a crucial step dur-

ing ANN model training to increase the model’s performance.

We perform a hyper-parameter search during training using

the Random Search algorithm, offered in Keras [30]. For both

datasets the hyper-parameter search space is defined as:

Ssearch = [afun, lrate, nlayer, nneur], (10)

where the entries are: activation function, afun ∈
{relu, sigmoid}, learning rate, lrate ∈ [1025, 1022], number

of hidden layers, nlayer ∈ {1, 2, 3}, number of neurons in

hidden layer, nneur ∈ {100, 200, . . . , 1000}.
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Fig. 5. The joints replacement step

Fig. 6. The normalization elements for two sets of joints

E. Ensemble classifier

As mentioned earlier, every pose classifier is an ”expert”

to recognize snapshots taken during different time period of

an interaction. In practice, the training of such an assembly is

performed at the same time, but 3 out of 4 ”expert” networks

are always in a dropout mode. The actually updated network

depends on the time period the current input frame belongs

to.

In the testing process, the interaction class is known after the

entire frame sequence - from a single video clip - has been

classified and the results of individual pose classifiers were

accumulated. The likelihood of every interaction class comes

from an aggregation of pose class likelihoods, as a weighted

sum of pose likelihoods, for frames indexed from t=0 to t=T.

1) Fixed gains: In a hand-crafted form we define the ag-

gregation of likelihoods, obtained by particular pose classifiers

(i = 1, 2, 3, 4) for frames (t = 1, 2, ..., N), the Prpose_i(t)−s,

as follows:

S =
�T

t=0
[Prpose_1(t) ·max(0, (T/2− t)/T )+

+Prpose_2(t) ·min(0.5, t/T )+
+Prpose_3(t) ·min(0.5, (T − t)/T )+
+Prpose_4(t) ·min(0, (t− T/2)/T )]

(11)

2) The gain network: In the trained case, the gain network

provides gain coefficients wi(t) for the four pose classifiers

depending on the frame index (t):

S =
�T

t=0
[Prpose_1(t) ·w1(t)+Prpose_2(t) ·w2(t)+

+Prpose_3(t) · w3(t) +Prpose_4(t) · w4(t)]
(12)

IV. RESULTS

A. Datasets

In order to evaluate and test the trained classifiers, two

datasets were used. The search after best hyper-parameters

of a single pose classifier will be performed by training and

validating them on our humiact5 dataset. Its consists of im-

ages of 5 two-person poses - snapshots of interactions: boxing,

facing, hand holding, hand shaking and hugging/kissing. There

are 1695 images in total, in which 1154 images are in the

training set and remaining 541 images are in the evaluation set

(Figure 7). In this series of experiments, the OpenPose library

has been applied for skeleton detection in RGB images.

The best configuration of the pose experts and the final,

time-accumulating network will be trained and tested on the

interaction subset of the NTU RGB+D dataset. It includes 11

two-person interactions of 40 actors: A50: punch/slap, A51:

kicking, A52: pushing, A53: pat on back, A54: point finger,

A55: hugging, A56: giving object, A57: touch pocket, A58:

shaking hands, A59: walking towards, A60: walking apart. In

our experiments, already the skeleton data of the NTU RGB+D

dataset is considered. There are 10420 video clips in total, in

which ca. 70% are in the training set and remaining 30% are

in the test set. No distinct validation subset is distinguished.

The NTU RGB+D dataset allows to perform a cross-subject

(person) (short: CS) or a cross-view (CV) evaluation. In the

cross-subject setting, samples used for training show actions

performed by half of the actors, while test samples show

actions of remaining actors. In the cross-view setting, samples

recorded by two cameras are used for training, while samples

recorded by the remaining camera - for testing. We apply the

cross-subject (CS) evaluation mode, i.e., videos of 20 persons

are used for training and videos of remaining 20 persons - for

testing. The training set contains video clips of users identified

as: 1, 2, 4, 5, 8, 9, 13, 14, 15, 16, 17, 18, 19, 25, 27, 28, 31,
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Fig. 7. Samples from our humiact5 dataset: RGB images with skeleton data

Fig. 8. Samples from the NTU RGB+D interaction dataset: RGB video frames
with skeleton data [14]

34, 35 and 38. The number of samples in the training set is

7649, while in the test set - 2771.

Each skeleton instance consists of 25 joints of 3D skeletons

that apparently represent a single person (Figure 8). As our

research objective is to analyse video data and to focus on

only reliably detected joints, we use only the 2D information

of only first 15 joints.

From a video sample a set of frames is chosen as follows:

the video clip is uniformly split into N = 4 time intervals

(”periods”), from every interval some number of frames m is

selected (we tested m = 2, 4, 8). The number of frames in the

training set grows from 61192 to 244768 and the number of

frames in the test set grows from 22168 to 88672, accordingly

to the value of m from 2 to 8.

B. Pose classifier optimization

The hyper-parameter optimization of a pose classifier is

performed on the small humiact5 dataset. In order to run the

RandomSearch function of Keras, a NNHyperModel is created,

which implements the HyperModel class from the Keras-tuner.

The hyper-parameters of the search space are declared in

NNHyperModel as class parameters. Using the RandomSearch

function, we identified three ANN configurations, each one

being optimal for given number of hidden layers (1, 2 or 3).

The performances of the three selected models after 100

epochs of training are shown in Table I. The best test accuracy

(i.e., the recall averaged over all classes) of 84% was achieved

by the second model, whereas the other two have shown an

accuracy of 82%. Consequently, we have chosen an ANN

TABLE I
THE MEAN ACCURACY ON THE humiact5 DATASET OF THREE OPTIMAL

ANN CONFIGURATIONS WITH 1, 2 AND 3 HIDDEN LAYERS.

Training/test 1 hidden 2 hidden 3 hidden

ANN - mean training accuracy 95% 96% 99%
ANN - mean test accuracy 82% 84% 82%

TABLE II
THE MEAN ACCURACY OF POSE CLASSIFIERS VERIFIED ON THE NTU
RGB+D INTERACTION DATASET IN THE CS (CROSS SUBJECT) MODE

Expert 2 f/p 4 f/p 8 f/p

Pose - mean training accuracy 79.2% 82.4% 88.2%
Pose - mean test accuracy 61.2% 70.8% 76.1%

configuration of 2 hidden layers with 700 and 500 neurons in

the first and second layer, respectively. The activation functions

are ReLU and sigmoid, respectively. The learning rate is

5.89 · 1025.

C. Verification on the NTU RGB+D dataset

We train and test our models in the CS (cross-subject)

verification mode proposed for the NTU RGB+D dataset, i.e.

when actors in the training set are different than in the test

set, but data from all the camera views are included in both

sets. The frame sampling process for both training and testing

will be done three times with different number of frames per

time period (i.e., extracted from a single video sample): 2, 4,

8. The training set is split into learning and test subsets - two

third for learning and one third for validation/testing. There

are run 100 epochs of training and the best validation result

will be chosen.

1) Pose classifiers: In the follwing, we apply the second

version of the ANN pose classifiers, with two hidden layers,

as reported earlier in Table I. We train four pose classifiers

three times - every one is effectively trained on different

frames according to its dedicated time period of action (i.e.

t ∈ [0, T/4], [T/4, 2T/4], [2T/4, 3T/4], [3T/4, T ]) of training

samples with different frame sampling rates (i.e. n = 2, 4, 8
frames/period). The mean accuracy of these four pose experts,

depending on the number of frames per period is shown on

(Table II).

An immediate observation is, that all learning and test

accuracies increase, when the training data size is increased.

Specifically, with 8 frames per time-period (f/p), these accu-

racies reach to 88% and 76%, respectively. The average per

class accuracies (i.e. four class poses representing the same

interaction class) of the ANN experts, obtained with a 4 f/p

TABLE III
THE PER-CLASS TEST ACCURACY OF ANN POSE EXPERTS TRAINED ON

THE NTU RGB+D INTERACTION DATASET, VERIFIED IN THE CS (CROSS

SUBJECT) MODE, WHEN SAMPLED WITH 4 F/P

Class A050 A051 A052 A053 A054 A055

Test accuracy 58% 52% 66% 69% 72% 83%

Class A056 A057 A058 A059 A060

Test accuracy 70% 64% 80% 81% 78%
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TABLE IV
THE ACCURACIES OF ANN POSE CLASSIFIER AND TWO VERSIONS OF THE

ENSEMBLE CLASSIFIER (E-ANN-1, E-ANN-2), VERIFIED ON THE NTU
RGB+D INTERACTION DATASET IN THE CS (CROSS SUBJECT) MODE

Classifier Training accuracy Test accuracy

Mean of pose classifiers 88.2% 76.1%
E-ANN-1, eq. (11) 92.4% 81.3%
E-ANN-2, eq. (12) 94.5% 83.3%

TABLE V
THE PER-CLASS TEST ACCURACY OF ANN ENSEMBLE CLASSIFIER,

TRAINED ON THE NTU RGB+D INTERACTION DATASET, VERIFIED IN THE

CS (CROSS SUBJECT) MODE, WHEN SAMPLED WITH 8 F/P

Class A050 A051 A052 A053 A054 A055

Test accuracy 67% 67% 77% 87% 86% 91%

Class A056 A057 A058 A059 A060

Test accuracy 81% 76% 92% 93% 90%

frame sampling on the test set, is shown on Table III. There

are 3 classes (A55, A58, A59) that perform at least at 80%,

other 6 classes - from 60% to 80% and two - below 60%.

Compared with random choice - there are 11 classes and the

random prediction (a guess) would be 1/11 = 9.09%. The

largest accuracy is observed for the ”A055 - hugging” class.

The distance between two persons is here significantly smaller

than of the rest and the poses are relatively stable in every time

period.

2) Ensemble of pose classifiers: There are two variants

of the final ensemble classifiers: E-ANN-1, when the final

score of every interaction class is obtained by fixed weights,

according to equation (11), or E-ANN-2, where the trainable

gain network is used, according to equation (12). The class

with highest score is selected as the winner of the interaction

classifier. A notable improvement of interaction classifica-

tion is observed, when accumulating over time sequence the

weighted pose likelihoods. The mean accuracy of the best

version of pose experts (i.e., for frame sampling of 8 f/p)

was 88.2% (training) and 76.1% (testing), while the ensemble

classifier has reached 92.4 % and 81.3% (version 1), or 94.5%

and 83.3% (version 2), respectively (Table IV).

The per-class test accuracy of our ensemble classifier E-

ANN-2 (with 8 f/p frame sampling) is shown in Table V.

There are four classes (A55, A58, A59, A60) with an accuracy

of 90% and higher, while the lowest performance (67%) is

achieved for classes A50 (punch) and A51 (kicking), The

confusion matrix for this testing case is shown in Figure 9.

As the numbers of class samples in the test set are slightly

unbalanced, we normalized the results, assuming 276 test

instances per class, to make them easier comparable. ”Punch”

(A50) is most often misclassified with classes A51-A58, which

all use hands to express an action, but most often is confused

with ”Point finger”. ”Kicking” (A51) is frequently confused

with all other classes, slighly less with ”pat on back”. The

main errors appear between actions ”giving an object” (A56)

and ”shaking hands” (A58) - 18 and 9 cases, and between ”pat

on back” (A53) and ”touch pocket” (A57) - 9 and 18 cases.

Fig. 9. The confusion matrix for the ensemble classifier E-ANN-2, verified
on the NTU RGB+D interaction dataset in the CS (cross subject) mode

TABLE VI
INTERACTION CLASSIFICATION ACCURACY OF LEADING WORKS

EVALUATED ON THE NTU RGB+D INTERACTION SET IN THE CS (CROSS

SUBJECT) MODE. NOTE: † - RESULT ACCORDING TO [26], ‡ - RESULT

ACCORDING TO [27]

Work - reference Accuracy Parameters Frames

FSNET [32] 74.0% (†) ∼ 200K 32
ST-LSTM [19] 83.0% (†) ∼ 2.1M 32
ST-GCN [22] 83.3% (†) 3.08M 32

Our E-ANN-2 83.3% 400K 32
GCA-LSTM [33] 85.9% (†) unknown 32

2S GCA-LSTM [34] 87.2% (†) unknown 32
AS-GCN [23] 89.3% (†) ∼ 9.5M 32

IRNinter+intra [26] 85.4% ∼ 9.0M 32
LSTM-IRN [26] 90.5% ∼ 9.08M max(all, 128)
2S-AGCN [24] 93.4% (‡) 3.0M max(all, 300)
AAGCN [25] 91.5% (‡) ∼ 6.0M max(all, 300)
DR-GCN [27] 93.6% 3.18M max(all, 300)

2S DR-AGCN [27] 94.6% 3.57M max(all, 300)

D. Comparison

Many approaches to two-person interaction classification

have been tested on the NTU RGB+D interaction dataset. We

list some of the leading works in the Table VI. Our solution

needs a low number of weights to be trained and it processes

a sparse frame sequence. It shows a good tradeoff between

competitive accuracy and low complexity when compared with

other recently reported results.

Let us notice how we counted the number of parameters

of the E-ANN-2 network. Remember that the pose classifiers

have a common part - the feature transforming MLP with 2-

hidden layers - and there are separate fully-connected output

layers for every pose classifier. We can create two versions

of the E-ANN network - one network with multiple feature-

transforming MLPs that processes in parallel the four frame

subsets, and another one that processes all frames in sequence.

188 PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022



As the individual results are finally aggregated over all frames,

both configurations deliver the same final result. In the first

configuration, there are 1 597 677 weights needed, while in

the sequential version - 399 444 weights only:

1) The feature transforming ANN: 61 · 700 + 700 + 700 ·
500 + 500 = 393 900 The FC classification layer: 500 ·
11+11 = 5 511 The gain network: (11+11)+11 = 33

2) Four parallel pose classifiers: 4·393 900+4·5 511+33 =
1 597 677

3) Four sequential pose classifiers: 393 900+4·5 511+33 =
399 444

Taking into account, that the dominating processing time for

a single frame is spent by the skeleton detector (on our

equipment, it takes ca. 67 ms, compared to 1 ms for the pose

classifier), the sequential version is preferred. Even when the

skeleton detection itself will be performed in parallel, for every

phase subset of frames one pose classifier will be allocated,

the sequential version will take only (N − 1) ms more time

than when using N pose classifiers in parallel.

Typically, the performance of an interaction classifier is sig-

nificantly improved when dense frame sequences are processed

instead of sparse ones. But the overall processing time grows

proportionally to the frame number, as the computation is

dominated by the skeleton estimation step. Thus, processing a

dense sequence of 100 frames (typical for the best performing

solutions with accuracy > 90%) takes roughly three times

longer than the time needed for a sparse sequence of 32 frames

(where a typical accuracy is < 90%). The recently proposed

multi-stream Graph CNNs have shown superior results but

only when processing dense frame sequences. Considering the

dominating processing time and resources needed for skeleton

estimation in every frame of the sequence, the key to real-

time interaction recognition is to limit the number of processed

frames.

V. CONCLUSION

A light-weight approach to two-person interaction classi-

fication was proposed, that can be applied both in video-

and single image-analysis. This is a skeleton-based approach,

what means, that an external module for human detection and

estimation in images is needed. We adopted the state-of-the

art OpenPose library for this purpose. This is a powerful deep

network solution for human skeleton estimation in images. Our

main contribution are algorithms for skeleton data correction

and normalization and the design of an ANN classifier that has

the form of an ensemble of several ANN-based pose experts.

Aggregating four or more ”weak” pose classifiers leads to

an efficient and robust solution to human interaction classi-

fication. We also found that a comparison of classification

approaches should not only consider the accuracy measure but

also the amount of information received (i.e., whether a sparse

or dense frame sequence is analyzed). Our future research

should focus on the extraction of motion information for the

skeleton joints and testing the model network on longer frame

sequences.
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