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Abstract—The protein structure prediction problem is one
of the most important bioinformatics problems. Computational
methods can be used to approach this problem and de novo meth-
ods are able to generate protein structures without the need of
having known similar structures to the predicted protein. These
methods transform the prediction problem into an optimization
problem, using optimization models that combine different en-
ergy functions and high-level information. These models usually
have only a single optimization objective. However, it is known
that this single objective optimization approach may harm the
optimization search due to the existence of conflicts between
the different terms that compose the optimization objective. The
proposed model has three objectives: energy function, secondary
structure, and contact maps. A multi-objective Biased Random-
Key Genetic Algorithm (BRKGA) with online parameter control,
named MOBO, is proposed as the optimizer. The final predictor
comprises two phases of the MOBO algorithm and selects a final
structure using the MUFOLD-CL clustering method. Results
obtained demonstrated that the proposed predictor generated
highly competitive results with the literature.

Index Terms—Bioinformatics, Multi-objective Optimization,
Evolutionary Computation, Clustering, Online Parameter Tun-
ing, Protein Structure Prediction

I. INTRODUCTION

P
ROTEINS are base molecules present in living organisms
[1]. They are responsible for many biological functions,

and understanding their mechanisms is important to better
understand how organisms work. One application of this
knowledge about proteins is in the biomedicine and pharma-
ceutics areas [2], where novel proteins could be developed to
combat particular types of diseases.

The Protein Structure Prediction (PSP) problem has the
objective of determining the spatial structure of proteins, using
the amino acid sequence of a protein as its main input.
Although these structures can be determined using classical
laboratory methods, such as Nuclear Magnetic Resonance
(NMR) or X-ray crystallography [3], they have a considerable
cost and are time-consuming. An alternative method is the use
of computational resources to simulate these structures.

Recently, the AlphaFold, the deep learning algorithm de-
veloped by DeepMind, achieved highly promising results in
the CASP13 and CASP14 competition [4]. The AlphaFold
combines features derived from homologous templates and
from multiple sequence alignment to generate the predicted
structure. Nevertheless, AlphaFold has some drawbacks, such
as the bias to the PDB database, and the heavy dependency on
high-computational efforts for training their model [5]. Also,
given the number of possible natural and artificial protein
structures, it is currently unfeasible to rely on template-based
methods to predict any unknown structure with consistent
quality. As such, the PSP is still considered to be an open
problem. So far, there is no viable general solution to this
challenging problem. In this way, metaheuristics can be a
faster option to the problem even though achieved results are
not the same as AlphaFold.

In the literature, there are many computational methods
proposed as possible approaches to the PSP problem [6], [7].
Among these methods, some works further explore the use of
specific types of protein structure information [8], [9].

For a more general solution to this problem, one possible
way is to use methods that do not rely on databases. One class
of methods that do not employ known structure information
are the ab initio methods. These methods work by generating
structures using some evaluation function, which guides the
optimization towards the optimal structure. Different from
other types of methods, these methods only need as input the
amino acid sequence to work [3].

While it is possible to work with pure ab initio methods,
which utilize only information provided by the amino acid
sequence, their results may be unfeasible given inaccuracies
of currently employed energy functions. One way to deal
with this issue is to utilize high-level information about the
protein structure, such as secondary structure and contact
map information. Ab initio methods that employ this type of
information are called de novo methods. This work employs
de novo methods instead of pure ab initio.
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All this information related to the PSP problem can be
described in an objective function. However, combining mul-
tiple information in a single objective function is not always
optimal. It is known that some of the terms that compose
an energy function, such as the bonded and non-bonded
energies, are in conflict [10]. These conflicts indicate that
optimizing one particular function term may not optimize the
others. Hence, it is interesting to separate conflicting terms in
different objectives. The separation of conflicting terms creates
a multi-objective model, whose final solution is a set of non-
dominating solutions [11]. This set, also called the Pareto set,
represents possible solutions for the mathematical model.

As the optimization result of a multi-objective problem is a
set of non-dominating solutions [11], it may be necessary to
employ a decision-making method to select a single final solu-
tion from this set. As each non-dominated solution represents
some trade-off among all objectives, it is not always trivial to
choose a singular solution. To assist this selection, decision-
making methods can be employed to filter the non-dominated
set and identify the most promising solutions based on some
desired properties.

This work is an extension of a previous study [12]. The
previous work proposed the use of the Biased Random-Key
Genetic Algorithm (BRKGA) method as an optimizer for a de

novo multi-objective optimization model of the PSP problem.
The present work brings some contributions compared to the
previous publication:

" Online parameter control strategies were incorporated,
creating the new version called MOBO. The main objec-
tive of this change is to reduce the number of parameters
that the user must define to use the optimizer effectively.
This change makes it possible to dedicate more time to
problem modeling than parameter tuning.

" The MUFOLD-CL was employed as decision-maker in
the Pareto set. The generated clusters were analyzed to
determine the distance between the best solution found by
the optimizer and the solution selected by the decision-
maker.

II. BACKGROUND

A. Proteins and Protein Structure Prediction

Proteins are biomolecules composed of amino acids linked
by peptide bonds. The amino acids are molecules composed
of a central carbon, called ³-carbon, that is connected to
an amino group (NH), a carboxyl group (CO), a hydrogen
molecule (H), and a side chain [1]. The side chain is a variable
group unique to each type of amino acid. The molecular
structure of each amino acid is the same, changing only the
side chain, which gives its identity.

The structure of a generic amino acid can be seen in Figure
1. These amino acids connect between themselves through the
peptide bonds, created by the combination of the carboxyl
and amino group [1]. A point of interest in this figure is the
three dihedral angles (Φ, Ψ, and Ω), which are important for
computational representation of the protein structures.

Fig. 1: Chemical structure of an amino acid

1) Computational representation: There are several ways
to represent a protein structure computationally. The most
direct would be to maintain complete information on all the
atoms and interactions of the structure. However, this type
of representation can be computationally expensive given the
large number of atoms and interactions of a single protein
structure [3].

One interesting computational representation of protein
structures uses only the backbone and side chain torsion angles
of each amino acid. Instead of maintaining the entire atomic
structure of each amino acid, algorithms may use only the ×,
È, and É backbone angles and the Ç side chain angles. These
angles can be seen in Figure 1. By using these angles, the
final three-dimensional structure can be uniquely determined.

2) Structure prediction: Computational methods can be
used to generate protein structures. One class of such methods
are the ab initio methods, which do not use information from
known protein structures [3]. These methods use physical
energy functions to guide the generation of protein structures,
using only the amino acid as necessary input. As such, ab

initio methods effectively transform the PSP problem into an
optimization problem.

Besides the computational representation of a protein struc-
ture, defining a function to evaluate these structures is also
necessary. As ab initio methods generally perform searches
in the space of structures, it is necessary to select a suitable
evaluation function. Regarding accuracy, the most optimal
choice would be an evaluation function representing the natu-
ral energy function. However, such realistic energy functions
are computationally expensive [2].

Other types of information can be incorporated into the
evaluation function to enhance the search process. Although
pure ab initio methods do not use information from known
structures, it may be beneficial to use this type of information,
if available. There are different types of high-level information
that can be added to the evaluation function, such as sec-

ondary structure prediction and contact maps. When an ab

initio method incorporates information other than the energy
function, it is called an de novo method [3].
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B. Biased Random-Key Genetic Algorithm

The Biased Random-Key Genetic Algorithm (BRKGA) [13]
is an optimization method of the evolutionary algorithms
class. It is a variation of the genetic algorithm in which
only the selection and crossover routines are used to evolve
solutions [13]. Initially, all individuals are initialized uniformly
at random. Each generation, pairs of individuals are selected
and combined through a biased uniform crossover operator,
where one parent is an elite solution, and the other is a non-
elite. A new population is formed by a fraction of the most-fit
solutions of the current generation, a fraction of randomly and
uniformly generated solutions, and the remaining individuals
are the offspring generated through the crossover operation.
There is no explicit mutation operator in this algorithm, but
an implicit mutation can be simulated through the crossover
of a random individual with a non-random individual.

The main aspect of the BRKGA is the clear separation of
the problem-dependent and independent parts. Other notable
aspects are elitism as a core mechanism for the evolution
and the generation of random solutions instead of applying
mutation to offspring solutions.

The problem-independent codification is composed of real
numbers in the [0, 1] interval, decoded into a problem-specific
solution using a decoding function, and evaluated by a fit-
ness function. This way, the algorithm’s main structure is
standardized for all problems, with only the decoding and
fitness functions needing to be developed. This standardization
simplifies the algorithm structure by removing the necessity of
developing complex solution encodings and various genetic
operators, such as crossover or mutation operators.

Similar to other evolutionary algorithms, the BRKGA has
a set of parameters that need to be defined. These parameters
are the number of iterations (Nit), population size (p), elite
fraction (pe), random individuals fraction (pm), and crossover
probability (cpr). Due to the standardized structure of the
algorithm, the crossover operator is fixed.

III. RELATED WORK

One of the initial works in the area of multi-objective PSP
was [10]. In this pioneering study, the authors proposed a
multi-objective model for the PSP problem, decomposing the
CHARMM energy function into two objectives: bonded and
non-bonded energies. They demonstrated that these energies
were in conflict, and combining them in a single objective
would harm the optimization. To optimize the model, they used
the IPAES algorithm and also employed a decision-making
step to select a final structure by using the method of knees.

Other works followed this approach of breaking the energy
function into bonded and non-bonded energies [14], [15], [16],
[17], [18]. Most works approaching the multi-objective PSP
employed some evolutionary algorithm [14], [15], [16], [19],
[20], [18], [21]. Regarding the protein structure representation,
most works employed the full atomic structure [14], [15], [16],
[22], [21], although some preferred the centroid representation
[19], [20], [18].

Considering the extra information that can be added to
complement the energy function, there are several possibili-
ties. Some works employ structural information that energy
functions may not capture accurately, such as solvent terms
[15], [16], [22], compactness [19], and hydrogen bonding
[19], [20]. Also, high-level information that can be predicted
was explored, such as protein fragments [19], [20], secondary
structures [14], [15], [16], [17], [19], [22], [18], [21], and
contact maps [19], [20], [22].

As the complete solution of multi-objective problems is a
set of non-dominated solutions, selecting a single final solution
from this set may be necessary. Several works employ some
decision-making criteria to select the final optimized solution.
Popular methods include the knees method [10], [23], [14]
and clustering-based methods [15], [17], [17], [16], [21].
One promising clustering method for protein structures is the
MUFOLD-CL method, which was employed in recent works
for the multi-objective PSP problem [17], [21].

IV. PROPOSED MODEL

A multi-objective Biased Random-Key Genetic Algorithm
(BRKGA) with online parameter control is proposed, named
MOBO. In the present work, proteins are modeled with the
Rosetta framework 1 using the full-atom with centroid back-
bone representation [24], where the side chain is simplified as
a centroid. The ×, È, and É angles model each amino acid.
These angles are in the [2180, 180] domain, except for the É
angle, whose optimal value can be either 180º or 0º [10]. In
this work, the É angle is restricted to 180º, as both values are
equally optimal. Figure 2 shows how an amino acid sequence
can be coded as a list of angles.

Fig. 2: Protein structure representation as a list of torsion
angles.

The optimization model for the PSP problem is composed
of 3 objectives, shown in Expressions (1)-(3):

min score4(÷x) (1)

max SS(÷x) (2)

max CM(÷x) (3)

The ÷x vector represents a protein structure coded as a list
of angles with size 2L, where L is the length of the amino

1https://www.rosettacommons.org/software
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acid sequence of the protein. The angle list is mapped into
a protein structure before being evaluated by each objective
function. Expression (1) is the score4 energy function from
the Rosetta framework [24] and is used to evaluate the protein
structure.

Expression (2) refers to secondary structure information
predicted by the PSIPRED [25] server 2. This prediction
was performed excluding homologous proteins. Equation (4)
details the evaluation, where for each amino acid xi, the pSS
function will return the predicted probability for the current
secondary structure manifested, determined with the DSSP
program [26], which assigns secondary structure to proteins
structures. Hence, protein structures with the most probable
secondary structures are benefited.

SS(÷x) =

L
�

i

pSS(xi) (4)

Expression (3) refers to contact map information predicted
by the RaptorX [27] server 3. This prediction was performed
by removing homologous proteins. Two atoms are considered
in contact if their distance is less than the cutoff distance.
Equation (5) describes how each contact is evaluated for a
given protein structure.

For each contact ci in the L-best list, the pair of amino
acids c1i and c2i from this contact is verified. If their distance,
d(c1i , c

2

i ), is less than the cutoff value (8Å), the pair is said
to be in contact, and a term equal to the predicted probability
of this contact is summed. Otherwise, this probability term
is decreased exponentially due to the cutoff value’s distance,
allowing slight deviations from the cutoff to be considered.
Protein structures that exhibit the most probable contacts are
rewarded using this objective function.

CM(÷x) =
L
�

i

�

pi if d(c1i , c
2

i ) f 8
pi

e
d(c1

i
,c2

i
)−8

otherwise
(5)

As global optimizer, the multi-objective BRKGA is
employed[12]. The proposed algorithm uses the base structure
of the original BRKGA [13] and can be applied to any multi-
objective problem that can be approached with evolutionary
algorithms. The main modifications were to allow the al-
gorithm to optimize multi-objective problems. Modifications
were made to the problem-independent parts to achieve multi-
objective optimization. The elitist selection operator from
NSGA-II [28] was used to generate the elite part of the
population.

An archive (set of solutions) is maintained and updated
at each generation. This archive has the same size as the
population, and it is updated using the non-dominated sorting
with crowding. At the end of the algorithm, the archive is
returned and contains the best Pareto set found. However, it
may also contain dominated solutions as the best Pareto set
may not occupy the entire archive.

2http://bioinf.cs.ucl.ac.uk/psipred/
3http://raptorx.uchicago.edu/

A. Parameter control

There are several types of parameter control in evolutionary
algorithms [29]. This work employs an adaptive online param-
eter control by simple rules to control and guide the optimizer.
The information utilized to guide the search is the population
diversity defined in Equation (6):

Div(P ) =

�

x,y*P dnorm(x, y)

|P | 7 (|P | 2 1)
(6)

where x and y are individuals from population P , and dnorm
is the normalized Euclidean distance metric, defined by:

dnorm(÷x, ÷y) =
d(÷x, ÷y)

N
(7)

where d(÷x, ÷y) is the Euclidean distance and N is a normal-
ization factor representing the solution space diagonal. This
distance is a genotypic diversity metric, that is, it measures
the diversity in the problem-independent part of the algorithm.
This work will not incorporate fitness information in the
parameter control, as the definition of fitness is different for a
multi-objective optimizer, and concepts such as best and mean
fitness are not trivially defined.

The algorithm is modified to control and increase diversity
in the population to incorporate diversity information. In the
original BRKGA method, the crossover probability pcr is
defined as a parameter of the algorithm and should have
a value in the range (0.5, 1). In this work, the crossover
parameter is modified to be a uniformly random value in the
range (0.5, 1), removing the complexity of defining an optimal
value for this parameter and minimizing the impact in the
diversity. This value is generated for each crossover operation.

Another modification is the introduction of two diversity
control values: the diversity fraction (pd) and the exploration
diversity threshold (¶). These values are used to control the
generation of the elite part of the population. The diversity
fraction indicates the fraction of the elite part that should
be diversified. The exploration diversity threshold is used
to indicate the minimum distance between two diversified
solutions during the exploration part of the search.

The set Pd of diversified elite solutions is defined as:

Pd = { "÷x * Pd | ∆(÷x) g ¶ } (8)

where ∆(÷x) is defined as:

∆(÷x) = min
÷y*Pd

÷x ;=÷y

dnorm(÷x, ÷y) (9)

where dnorm is the normalized Euclidean distance expressed
by Equation (7). This definition of diversified individuals
spreads the solutions through the space. Incorporating this
diversification in the elite part allows the algorithm to explore
the best solutions in different parts of the search space.

Given the population of size p, E = p × pe is the size of
the elite part of the population and Ed = E × pd is the size
of the diversified elite. With Ps as the sorted population, the
elite part Pe is generated by the following steps:
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" While |Pe| < E, do:

1) If |Pd| < Ed, then:

a) If exists ÷xi * Ps that can be inserted in Pd, then
select ÷xi with lowest index i.

b) Else, from Ps select ÷xi with greatest ∆
c) Insert selected ÷xi in Pd and Pe

d) Remove selected ÷xi from Ps

2) Else:

a) From Ps select ÷xi with lowest index i
b) Insert selected ÷xi in Pe

c) Remove selected ÷xi from Ps

The parameter control is performed by dividing the opti-
mization procedure into two phases: exploration and exploita-
tion. The algorithm generates diversified solutions in the explo-
ration phase to search the entire solution space. The algorithm
increases the evolutionary pressure in the exploitation phase
by favoring the best solutions found. By properly controlling
the algorithm parameters, it is possible to balance global and
local searches.

To balance between exploration and exploitation, each phase
runs for Nit/2 iterations. For both phases, the parameters pe
and pm are initially set to 0.25. With these values, half of the
population is composed of offspring. With pe = 0.25, it also
means that each elite individual should on average generate
two offspring each generation.

This initial value was defined empirically. The following
initial values and ranges for each parameter were also defined
empirically. Although these values may not always be optimal,
they are reasonable and straightforward enough to be used as
base values.

The exploration phase initializes the optimization process.
The diversification parameters pd and ¶ are used to explore the
search space. The diversification fractions starts as pd = 0, and
is modified in steps of k = 0.01. This parameter is updated
during the exploration phase to keep the population diversity
Div(P ) above ¶. If the current Div(P ) < ¶, pd is increased
by k. Otherwise, pd is decreased by k. The parameter pd is
kept in the range [0, 0.5], diversifying at most half of the elite
part.

If the Div(P ) is still below ¶ when pd = 0.5, then the
parameter pm is also modified. The parameter is kept in the
range [0.25, 0.5] and is updated using step k. By increasing the
random part of the population, the diversity of the population
is increased. At the maximum value of pm = 0.5, half of
the population is uniformly randomly generated each iteration.
Also, only 1/4 of the population is offspring, with each elite
individual generating on average one offspring and each non-
elite parent being on average 2/3 of the time a random
individual.

The exploration diversity threshold ¶ is used to define the
diversity of the exploration phase. The user can define it as
an algorithm parameter. However, the value 0.4 should be
reasonable, in general, and is used as the default value for
this parameter. This value was selected due to the nature of
uniformly randomly generated solutions and global search.

Considering this, ¶ is set to 0.4 by default. With this value,
the population of the exploration phase has the property of
being similar to a uniform distribution without losing the
generation of reasonable solutions. Although, in general, it
should not be necessary to change this value, in some cases,
it can be interesting to lower the parameter to limit the
exploration.

In the exploitation phase, the algorithm eliminates the diver-
sity parameters. The parameter pm is reset to the initial value
0.25 if modified during the exploration. The only parameter
modified during this phase is the elite fraction pe.

The algorithm forces the search to converge to the best
solution found during this phase. To increase the convergence,
the parameter pe is increased in the range [0.25, 0.5], using step
k. At the maximum value of pe = 0.5, half of the population
is composed of elite solutions, and each elite individual will
generate, on average, one offspring.

Considering the modifications proposed, the parameters pe,
pm and cpr are no longer user-defined. The only parameters
that still need to be defined are the number of iterations Nit

and the population size p. The exploration diversity threshold
¶ can also be defined if necessary.

This proposed parameter control aims to find a reasonable
balance between usability complexity and optimization effi-
ciency. The proposed control does not guarantee the selection
of optimal values for every problem. However, it should select
reasonable values for any general optimization, as it uses the
generic concept of exploration and exploitation. Although the
algorithm may not execute the most optimal search for some
specific problem, the decreased number of parameters allows
the user to focus more on the problem modeling and less on
the calibration of the algorithm.

B. Parallelism

To increase the scalability of the algorithm, a master-
slave model was developed using CPU threads. During fitness
evaluation, the master thread divides the population into equal-
sized chunks and distributes them to other threads. More
formally, considering a number t of threads (e.g., the number
of processors), the master will divide the population into
chunks of size p/t. Each thread will evaluate the fitness of
individuals in its chunk, effectively reducing the processing
time of fitness evaluation, which is usually the most time-
consuming step of the optimizer.

C. Codification and fitness

The fitness for the multi-objective model of the PSP is a
tuple (F1, F2, F3), where F1, F2, and F3 are the objectives
defined by the Expressions (1)-(3), respectively. The decoder
function is a function that will receive a coded solution
x = (x1, x2, x3, ..., xn), where n is the size of an encoded
chromosome, which is problem-specific, and each xi is in the
domain [0, 1]. The decoder should map this chromosome into
a problem-specific solution, which will then be evaluated by
the fitness function.
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In this work, two decoders are used in two different algo-
rithm executions. The first decoder, named fragment decoder,
takes an F = L/9-sized chromosome, with L being the amino
acid sequence length, and maps it into an angle list by inserting
fragments of size nine. Each of these fragments is a continuous
sequence of nine amino acids extracted from some known
protein structure.

For each amino acid in the protein to be predicted, 200
fragments of size nine were generated using the Robetta server
4. These fragments were predicted excluding homologous pro-
teins. As the fragments are size nine, each selected fragment
contributes nine pairs of × and È angles in the solution. The
torsion angles × and È are extracted from each fragment and
used to build the solution.

In the fragment decoder, each variable of the chromosome
x (candidate solution) is used to select a fragment from the list
of 200 fragments of an amino acid. The xi variable represents
a fragment fi that starts on the amino acid with position pi =
9× (i2 1)+1 in the protein sequence. The inserted fragment
fi is the one with position +200× xi, in the fragment list of
amino acid pi. Figure 3a shows the decoding process.

The second decoder, named residue decoder, takes an L-
sized chromosome y and maps it into an angle list by extract-
ing the × and È angles from each variable. The yi variable is
mapped into torsion angles ×i and Èi by using 14 digits as
scale, where the first 7 digits are used to generate ×i and the
remaining 7 are used to generate Èi. If Di = {d1, d2, ..., d7}
are the 7 digits used to generate ×i, the angle ×i can be
defined as ×i = 2180+360×r where r = 0.d1d2...d7 (the È
angle is defined similarly). Figure 3b exemplifies this decoding
process.

D. Predictor

The predictor first applies the MOBO with the fragment
decoder, MOBO/FRAG, to predict protein structures. This
algorithm will search the structure space using fragments,
generating valid low-resolution structures. Then, the MOBO
with the residue decoder, MOBO/RES, optimizes the initial
archive of solutions.

Using the archive from MOBO/FRAG as the initial pop-
ulation, the MOBO/RES can refine the results and increase
their resolution. The archive returned by the MOBO/RES is
the predicted set of protein structures. Then, a decision-making
step is applied to select the final predicted protein structure.
To accomplish that, the MUFOLD-CL method [30] is used to
cluster the final set.

The MUFOLD-CL works by first estimating potential clus-
ter representatives (center of a cluster) using a structural dif-
ference metric. These representatives are then used to cluster
the remaining structures, also using this metric. Finally, after
all clusters are formed, new representatives are selected for
each cluster using a structural similarity metric that is able
to describe more accurately the center of a cluster [30]. The
representative structure of the largest group is returned as the
predicted structure of the proposed method.

4http://old.robetta.org/

(a) Fragment decoder.

(b) Residue decoder.

Fig. 3: MOBO decoders

A diagram with a visualization of the complete predictor can
be seen in Figure 4. In this diagram, the primary input is the
amino acid sequence. The secondary structure, contact map,
and fragment information are generated from this sequence.
This information is used to feed the optimizer, which starts
with MOBO/FRAG method. This method generates an archive
of solutions, used as the initial population for the second
method, MOBO/RES. The output of the second method is the
optimizer output. This output is also an archive of solutions,
used as input for the clustering method MUFOLD-CL. The
final structure is then selected from the largest cluster found.

V. EXPERIMENTS, RESULTS & ANALYSIS

Table I shows the protein set employed in the experiments.
All proteins were taken from the RCSB database 5, with the
exception of proteins T0868, T0900, T0968s1, and T1010,
which were taken from the CASP competition 6. An amount
of 20 proteins with different sizes and different types of
secondary structures were selected.

The Root Mean Square Deviation (RMSD) metric was
utilized to measure the quality of the predicted structures.
The RMSD measures the distance of atoms between two
superimposed structures, with lower values indicating higher
similarity structures [31]. The distance is taken considering

5https://www.rcsb.org/
6https://predictioncenter.org/
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Fig. 4: Predictor

Protein Size Class

1ACW 29 αβ

1DFN 30 β

1ZDD 34 α

1I6C 39 β

2MR9 44 α

2P81 44 α

1AB1 46 αβ

1CRN 46 αβ

1ENH 54 α

1GB1 56 αβ

Protein Size Class

2KDL 56 α

1BDD 60 α

1ROP 63 α

1AIL 73 α

1HHP 99 β

T0900 106 β

T0968s1 119 αβ

1ALY 146 β

T0868 161 α

T1010 210 β

TABLE I: Proteins utilized in the experiments

the C³ atoms (protein backbone) and can be mathematically
defined as:

RMSD(÷a,÷b) =

�

�L
i=1

d(ai, bi)2

L
(10)

where L is the number of residues (amino acids), ÷a and
÷b are two superimposed structures, and d(ai, bi) returns the
Euclidean distance (in angstroms) between the atoms ai and
bi. The best and average values (with standard deviation) were
measured for all proteins.

All the experiments were executed 20 times for statistical
validation. The proposed predictor was implemented using
C++17, and experiments were performed on an Ubuntu 18.04
system with an Intel Xeon E7-8860 @ 80x 2.26GHz and 1TB

RAM. The utilized system has a NUMA architecture [32]
with four nodes, each node with 20 cores (10 physical and
10 virtual).

The experiments were conducted using the number of
iterations Nit = 1000 and the population size p = 500. Both
MOBO/FRAG and MOBO/RES use the same values, resulting
in 1,000,000 fitness evaluations. However, the MOBO/RES
also defines the exploration diversity threshold as ¶ = 0.25.
This definition occurs to limit the exploration of new solutions
in the MOBO/RES, whose objective is to refine the solutions
found by the MOBO/FRAG. These parameters were empiri-
cally defined.

A. Predictor performance analysis

The first experiment compared the results obtained by
MOBO against the previous work [12]. The previous algorithm
has the same structure as MOBO, including the diversity
modifications, but uses static parameters defined before the
algorithm execution. The ANOVA test with 95% confidence
interval was performed to validate the statistical difference
between the result of the MOBO and the previous algorithm.
From the results obtained, both algorithms obtained statisti-
cally same results in all 20 proteins. As one objective of using
online parameter control strategies is to reduce the usability
complexity of the algorithm, the MOBO algorithm has an
advantage over the previous work with fewer parameters to be
adjusted. Therefore, the use of parameter control is validated
reducing the number of parameters to be tuned from 6 to
2. The only parameters that still need to be defined are the
number of iterations Nit and the population size p.

In the following, three types of results are analyzed consid-
ering the proposed MOBO predictor:

" Best value of the final archive: MOBOBEST ;
" Average value of the final archive: MOBOMEAN ; and
" Value from the structure selected with MUFOLD-CL:

MOBOCL.
This analysis was performed to verify the overall quality of

generated archive and the quality of the solution selected with
MUFOLD-CL. Although it is not expected that the decision-
maker will always select the best-generated structure, it should
at least select a structure with quality higher than the average
generated structure.

Comparisons with predictors from the literature were also
conducted, which can be seen in Table II. For the Rosetta de

novo protocol, the set of proteins was predicted locally. The
results of the other predictors were extracted directly from
their respective works.

The predictor proposed in [21] uses the MUFOLD-CL to
select a final solution from the optimized set of structures. In
[17], a hierarchical clustering method is used for this purpose.
In [18], a single final solution was not selected, using the best
solution generated by the algorithms for evaluation instead.

The overall results are shown in Table III. The table
compares each protein with the results of all methods. The
best and average values from other works were utilized, if
available. Missing results are marked with ’-’ in the table.
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The ANOVA test with 95% confidence interval was performed
to validate the statistical difference between the result of the
proposed predictor MOBO (with MUFOLD-CL) and the other
predictors. At the end of Table III, an extra row (B/S/W)
was added to summarize the result of this test. B represents
the number of proteins where the competing method was
statistically better than the proposed predictor, and the W is the
number of times where the competing method was statistically
worse than the proposed predictor. S is the number of proteins
where there was no statistical difference between the results
of the competing method and the proposed predictor.

TABLE II: Compared methods

Reference Algorithm Function evaluations

[21] MODE-K 100,000 (105)

[18]
NSGA-II

1,000,000 (106)GDE3
DEMO

[17] MOPSO 100,000 (105)
Rosetta de novo protocol 1,000,000 (106)

Proposal MOBO 1,000,000 (106)

Considering the best solution found on all executions, the
MOBO was able to generate the best solution for almost
all proteins except for 1ACW (Rosetta), 1GB1 (Rosetta),
1ZDD (DEMO), and 2P81 (MODE-K). The quality of the
solutions found using MUFOLD-CL was not far from the best
solution generated by the MOBO. It seems that, on average,
the distance between the best solution and the MUFOLD-CL
solution is between 1 and 3 Å.

Overall, the solutions selected by the MUFOLD-CL are
better than the other methods. The MOBO with MUFOLD-
CL selected better solutions most of the time when compared
with NSGA2, GDE3, DEMO, and Rosetta.

Considering the best and mean values of the MOBO, the
MUFOLD-CL was always worst than the best and almost
always similar to the mean. These results make sense, as the
MUFOLD-CL is a clustering method and selects as the final
result the center of the largest cluster. As this center is similar
to all the other structures of the cluster, and the largest cluster
is selected, it is expected that the results are close to the mean
of the final frontier.

1) Predicted structures visualization: The visualization of
the predicted structures can be seen in Figure 5. In this figure,
the best solution predicted by the MOBO with MUFOLD-CL
is in red, while the native structure is in blue. The structures
were overlapped using the ³-carbons. This overlap displays
the quality of the predicted structures.

It is possible to see that the ³-helices of the proteins
were accurately predicted, in general. This behavior can be
seen in the structures of 1AB1, 1BDD, 1CRN, 1ENH, 1GB1,
1ROP, 1ZDD, and 2MR9. However, for some ³ proteins, the
algorithm was unable to generate accurate helices. This can
be observed in 2KDL and 2P81, which are small ³ proteins
with poor predictions. This divergence of quality is probably
due to the secondary structure and contact map information
predicted for these proteins. If the input information has poor

quality, it is expected that the output structure will be equally
bad.

It is also possible to see in this visualization that one difficult
part is the prediction of ´-sheets. These structures are harder
to predict than the ³-helices, and proteins of the class ´
are usually the ones with the lowest prediction quality. This
difficulty can be observed both in simpler proteins, such as
1DFN, and in the more complex, such as 1ALY and 1HHP.

VI. CONCLUSION AND FUTURE WORK

The PSP problem is one of the most important open problem
in biology. As proteins are a core biological macromolecule,
understanding their structure and functionality is essential to
understanding complex biological processes. For this purpose,
computational methods are employed to build and simulate
protein structures.

Among possible methods to approach the PSP problem,
multi-objective optimization shows great potential. Being able
to simultaneously optimize multiple conflicting objectives,
these methods can optimize complex mathematical models.
Due to this, recent works in the literature have invested multi-
objective optimization for the PSP problem.

(a) 1AB1 (2.63Å) (b) 1ACW

(3.86Å)

(c) 1AIL (5.10Å) (d) 1ALY

(8.52Å)

(e) 1BDD

(3.24Å)

(f) 1CRN (1.86Å) (g) 1DFN

(3.55Å)

(h) 1ENH

(2.93Å)

(i) 1GB1 (1.94Å) (j) 1HHP (6.21Å) (k) 1I6C (3.77Å) (l) 1ROP (2.54Å)

(m) 1ZDD

(1.55Å)

(n) 2KDL

(10.07Å)

(o) 2MR9

(2.37Å)

(p) 2P81 (7.94Å)

(q) T0868

(4.16Å)

(r) T0900 (7.43Å) (s) T0968s1

(5.65Å)

(t) T1010

(14.90Å)

Fig. 5: Overlap of predicted and native figures. The predicted
structure is in red and the native structure is in blue.
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TABLE III: RMSD results. For each method, the best solution found (f7), mean value (x) and standard deviation (s) are
displayed. The best absolute f7 for each protein is set in bold.

Protein NSGA2 GDE3 DEMO MOPSO MODE-K Rosetta MOBOBEST MOBOMEAN MOBOCL

1AB1

f∗ - - - 9.80 7.38 4.90 2.17 4.72 2.63
x - - - - - 7.78 2.93 5.81 5.08
s - - - - - 1.20 0.46 0.75 1.61

1ACW
f∗ 3.81 3.63 3.82 - - 1.65 2.71 4.47 3.86
x 6.47 6.56 7.17 - - 5.48 3.90 5.55 5.29
s 1.58 1.72 1.81 - - 1.27 0.58 0.44 0.55

1AIL

f∗ 7.07 3.25 3.14 - - 6.26 3.84 5.96 5.10
x 10.30 6.77 7.40 - - 9.50 5.72 7.78 7.42
s 1.38 2.81 2.55 - - 1.98 0.89 0.81 1.31

1ALY
f∗ - - - - - 13.62 7.78 14.29 8.52
x - - - - - 16.51 11.29 17.29 14.59
s - - - - - 2.14 1.75 1.29 2.93

1BDD
f∗ - - - 5.64 4.98 5.27 2.79 3.76 3.24
x - - - - - 7.61 3.26 4.15 3.94
s - - - - - 1.60 0.19 0.29 0.59

1CRN

f∗ 6.23 5.13 6.32 7.57 - 4.91 1.65 3.53 1.86
x 9.24 9.62 9.31 - - 7.24 2.52 5.28 4.72
s 1.50 2.69 2.79 - - 1.02 0.45 1.04 2.08

1DFN
f∗ - - - - 7.00 5.48 2.68 4.49 3.55
x - - - - - 7.10 3.23 5.12 4.72
s - - - - - 0.68 0.34 0.57 1.05

1ENH
f∗ 6.84 3.10 4.29 8.92 7.80 3.66 1.94 3.29 2.93
x 10.14 8.09 7.47 - - 5.00 2.30 3.86 3.67
s 1.31 2.79 1.67 - - 1.03 0.26 0.33 0.62

1GB1
f∗ - - - - - 1.63 1.63 2.53 1.94
x - - - - - 2.92 2.45 3.38 2.94
s - - - - - 1.82 0.53 0.63 0.74

1HHP
f∗ - - - - - 11.32 4.28 8.83 6.21
x - - - - - 14.58 8.57 12.80 10.55
s - - - - - 1.28 2.26 1.93 2.63

1I6C
f∗ - - - 8.47 7.76 6.84 3.21 4.66 3.77
x - - - - - 8.31 3.74 5.37 5.32
s - - - - - 0.76 0.41 0.35 0.76

1ROP

f∗ 5.96 2.74 3.04 3.51 3.01 8.34 1.14 2.56 2.54
x 10.86 7.05 6.80 - - 11.01 1.63 3.56 3.18
s 1.85 2.07 1.61 - - 1.52 0.43 0.99 0.52

1ZDD
f∗ 3.47 1.79 1.19 2.15 2.50 2.99 1.31 1.54 1.55
x 6.04 4.05 4.01 - - 5.26 1.58 1.83 1.83
s 1.29 1.16 1.98 - - 1.06 0.18 0.22 0.21

2KDL

f∗ - - - 10.29 7.72 11.41 6.01 10.57 10.07
x - - - - - 12.98 8.55 11.26 11.13
s - - - - - 0.44 0.97 0.37 0.67

2MR9
f∗ 6.16 3.00 2.62 - - 2.21 1.66 2.41 2.37
x 8.29 7.09 7.21 - - 4.46 1.89 2.61 2.61
s 1.29 1.87 1.87 - - 2.62 0.20 0.12 0.18

2P81
f∗ 5.85 4.78 5.06 6.28 4.76 5.56 5.89 8.33 7.94
x 8.94 7.10 7.72 - - 7.97 7.12 9.08 8.94
s 1.30 1.34 1.44 - - 1.34 0.67 0.37 0.49

T0868

f∗ - - - - - 13.06 3.38 6.00 4.16
x - - - - - 15.26 5.20 8.82 6.90
s - - - - - 1.41 1.15 1.46 1.63

T0900
f∗ - - - - - 12.71 5.93 10.72 7.43
x - - - - - 15.07 7.39 12.21 9.40
s - - - - - 0.88 0.74 0.66 1.33

T0968S1

f∗ - - - - - 12.79 4.85 8.47 5.65
x - - - - - 15.78 6.50 11.43 8.93
s - - - - - 1.67 1.02 1.49 2.00

T1010
f∗ - - - - - 18.37 12.86 20.68 14.90
x - - - - - 21.13 14.36 22.50 19.46
s - - - - - 1.43 0.88 0.97 3.53

B/S/W 0/1/7 1/1/6 1/1/6 - - 1/3/16 20/0/0 0/14/6 -

The results obtained by the proposed approach demonstrated
that the predictor with the decision-making step is highly
competitive with other works from the literature. Although
the predictor is consistently able to predict ³-helices, the

prediction of ´-sheet is unstable, with proteins of the ´
class having considerably lower quality when compared with
proteins of the ³ class.

It is possible to define some improvements in the proposed
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work. Multiple predictors could be used to reduce the inac-
curacy of predicted information in the optimization. By using
the information of different predictors, it is possible the reduce
bias and combine the best information from each source.
This combination of multiple data sources may increase the
effectiveness of secondary structures and contact maps in the
prediction of tertiary structures.

Also, the prediction of ´ should be more thoroughly re-
searched. Other types of information could be added to the
optimization model with the objective of increasing the quality
of ´-sheets in protein predictions. By focusing on this weak
point, the overall effectiveness of the predictor should increase
not only for ´ proteins but also for all proteins in general.

Another line of work is to further improve the search
algorithm itself. This work presents a simple online parameter
control that is able to select reasonable values. However, more
complex techniques could be employed, such as the use of
fuzzy systems to incorporate expert information about the
problem that is being optimized. Also, local search could be
implemented to further specialize the proposed algorithm for
the optimization of protein structures.
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