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Abstract—In [1] we presented a framework for mining spatio-
temporal rules in the software development process. The rules are
based on specific relations between structures of the source code
which relate both to spatial (e.g. a direct call between methods of
two classes) and temporal dependencies (e.g. one class introduced
into the source code before the other) observed in the process.
To some extent, spatio-temporal rules allow us to predict where
and when certain design anti-patterns will appear in the source
code of a software system. This paper presents how, with slight
modifications, such framework can be used to improve the quality
of detecting a few popular design anti-patterns, such as Blob,
Swiss Army Knife, YoYo or Brain Class. In the proposed method,
we not only check the structure of a piece of the source code, but
we also analyse its spatio-temporal relations. Only on the basis
of the two analyses can we decide if the given piece of code is an
anti-pattern. Experimental validation shows that the addition of
spatio-temporal perspective improves detection of anti-patterns
by 4% in terms of F-measure.

I. INTRODUCTION

D
ESIGN anti-pattern is a commonly used, bad solution

for a recurring problem in software design. Software

developers, when faced with a common design problem, tend

to reinvent the solutions that are well-known for their bad

properties and widely discussed in available literature (see

[2]). This phenomenon is definitely due to many sophisticated

reasons, which are discussed in a variety of scientific and

popular publications (see [3]). The following paragraphs give

a few examples of design-anti-patterns.

Base bean is an anti-pattern in object-oriented design,

where the base class is a collection of numerous utility

methods used by its subclasses. Such a design breaks some

fundamental concepts of object-oriented programming: The

relation between subclass and superclass does not resemble the

actual domain model, the superclass has many responsibilities

and it usually does not store any state useful for subclasses.

Brain class and God Class are similar anti-patterns that

refer to classes that provide too much complexity and tend

to centralize logic of some area of the system. The difference

between God class and Brain class is that the former is a large

controller class that depends on data from the surrounding

classes, whereas the latter does not use the data from other

classes, tends to be more cohesive and encapsulates the logic

in its own complex methods (see [4], [5], [6], [7]).

Swiss Army Knife, (abbreviated as SAK) is an excessively

complex class with numerous unrelated utility methods. It

tends to appear when the creator attempts to provide a routine

for all possible uses of the class or make a single class serve

many complex unrelated functions (see [8], [9] and [6]).

YoYo is an anti-pattern in which the flow control is scattered

over complicated inheritance structure, so that in order to

understand the algorithm in the source code, one has to switch

between many classes within a common inheritance tree (see

[10], [11], [6]).

Design anti-patterns make the software more complex,

harder to maintain and defect-prone (see [12], [13], [14], [15]).

This is why their detection is a primary concern in software

engineering.

II. DESIGN ANTI-PATTERN DETECTION

The objective of design anti-patterns detection is to provide

an automated method for the discovery of fragments of the

program source code which constitute a design anti-pattern.

To make this task more formal we will use graph-theoretical

terms.

A. Software as a graph

We can treat the source code of the system written in Java

as a multigraph called software snapshot according to the

following rules: The nodes of the multigraph are all the source

code entities, namely: packages, interfaces, classes, fields,

methods (including constructors). They can be connected by

labeled edges according to the following rules:

" There is an edge (e1, e2) labeled ’contain’ iff the source

code of the entity represented by e2 is contained in

the source code of the entity represented by e1 (we

will assume that classes and interfaces are contained in

packages),

" There is an edge (e, c) labeled ’variable’ iff the body of

the entity represented by e declares at least one variable

of the type represented by class c. Each such declaration

corresponds to a single edge.

" There is an edge (m, c) labeled ’parameter’ iff the

method represented by entity m declares at least one

formal parameter of the type represented by c. Each such

declaration corresponds to a single edge.

" There is an edge (c1, c2) labeled ’extend’ iff the class rep-

resented by c1 is a direct subclass of the class represented

by c2 or the class represented by c1 is an implementation
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of the interface represented by c2. Each such class

extension or interface implementation corresponds to a

single edge.

" There is an edge (e,m) labeled ’call’ iff the body of the

entity represented by e contains at least one call of a

method represented by the method entity m. Each such

call corresponds to a single edge.

" There is an edge (e, f) labeled ’refer’ iff the body of the

entity represented by e contains at least one reference

to the field represented by the field entity f . Each such

reference corresponds to a single edge.

" There is an edge (f, c) labeled ’type’ iff c represents a

class that is a declared type of the field represented by f

or a declared return type of a method declared by f .

Additionally, each node of the graph may be described by a

set of applicable software metrics that measure its complexity

(see [16]). For greater consistency we will assume that the

values of metrics form a vector of additional labels of the

node. Consequently, we can treat a software snapshot as a

node-labeled and edge-labeled multigraph. This allows us to

remain in the graph-theoretical domain. The list of metrics that

are used is given in the following subsection:

B. Software metrics

" Data abstraction coupling

This metric is applicable for class entities and measures

how many instances of other classes are instantiated

within the source code of a given class.

" Fan out

This metric is similar to Data abstraction coupling, which

measures the number of classes a given class depends on.

" Cyclomatic complexity and NPath complexity

These two metrics measure the complexity of a code

block. Cyclomatic complexity, based on the classic work

[17], denotes the number of decision point instructions

within the body block increased by 1. The NPath com-

plexity (see [18]) denotes the theoretical maximum num-

ber of different acyclic execution paths that could go

through the code block.

" NCSS - the number of lines of the source code in each

entity (file, class, method)

This simple metric measures how many lines of code a

given file, class or method take. Technically, the evalua-

tions do not count empty lines or lines with comments,

so that it approximates the actual size of the respective

source code fragment.

" Lack of cohesion of methods (LCOM1, LCOM2,

LCOM3, LCOM4, TCC)

LCOM is a suite of software metrics that evaluate the de-

sign of a given class by quantitative analysis of relations

between its methods and attributes (see [19]).

LCOM1 is defined as the difference between the powers

of two sets: the set of all pairs of different methods that

use a non-empty disjoint set of class attributes and the

set of all pairs of different methods that use at least one

attribute altogether. If the result is negative, the value of

this metric is set to 0.

LCOM2 and LCOM3 metrics are defined for the class and

the formulae to evaluate them, are based on the following

notions: m - the number of methods in a class, A - the

set of attributes of a class, ma - the number of methods

that access attribute a:

LCOM2 = 12
Σa*Ama

m 7 |A|

LCOM3 =
m2 1

|A|Σa*Ama

m2 1

LCOM2 corresponds to the fraction of methods that

do not access a specific attribute normalized over all

attributes. LCOM3 is similarly normalized with respect

to attributes and methods and its value may range from

0 to 2.

LCOM4 (see [20]) is expressed in terms of a graph of

inter-method dependencies. We say that two methods are

dependent iff one of them calls the other one or there is

at least one attribute used by both methods. The number

of connected components in such a graph is the value of

LCOM4. Instead of looking at relations between methods

and attributes within a single class, we can in a similar

manner measure the relation between methods of a given

class, with the use of Tight Class Cohesion (TCC) metric

(see [21]). TCC is defined as the number of pairs of

methods that invoke one another divided by the number

of all such pairs.

" Depth of inheritance tree (DIT)

This metric is applicable to classes only. It measures the

number of nodes on the path in the inheritance tree from

the node representing the java.lang.Object class

to the node representing the given class. Large value of

this metric indicates a deep inheritance tree, which might

indicate the presence of a Yo-yo design anti-pattern.

" Fan in (FI)

A metric dual to the Fan out. It measures the number of

other classes that depend on a given class. The greater

the value, the more likely it is that a change in the class

will affect other fragments of the software source code.

In this context we can formalize the problem of detecting

design anti-patterns as the problem of finding all such sub-

graphs of the software snapshot that correspond to instances of

these anti-patterns. For practical reasons we will only consider

subgraphs that satisfy the following Definition 1:

Definition 1 (containment-completeness): Let SSn =
(V,E) be a software snapshot, where V is a set of nodes

and E is a multi-set of labeled edges. We will say that sub-

graph g = (Vg, Eg) of SSn is containment 2 complete, if

for any n1 * Vg , if there is a node n2 * V such that n2 is

connected by ’contain’ edge with n1 in SSn then n2 * Vg .

We apply this constraint on the subgraphs, since we want

the analysed subgraphs to resemble a consistent fragment of

the source code with its natural hierarchical structure. For
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example, if we take a subgraph with a node that corresponds to

a class, we also want methods and fields of this class to be part

of the subgraph. Therefore, in all the following considerations

a subgraph always means a containment-complete subgraph.

C. Detectors of design anti-patterns

The following paragraphs provide a semi-formal description

of method of detecting specific design anti-patterns used in

this research. Each detection strategy is derived from existing

research mentioned in the respective subsections below, but

they are adapted to the graph-theoretical model described in

Section II-A. In order to enhance comprehension, detection

methods are described in mixed graph-theory and software-

engineering terms. Each description can be translated to purely

graph-theoretical terms so that for any subgraph of a software

snapshot we can always tell if it satisfies the conditions

described below. A exemplary rationale on how the conceptual

definition can be translated to graph-theoretic model is given

for the first detector only. Similar reasoning for other types

of anti-patterns can be found in the articles referred to in the

respective following subsections.

1) Swiss army knife: A Swiss Army Knife (SAK for short),

is an excessively complex class interface. It is present when

e.g. the creator attempts to provide a method for all possible

uses of the class or make a single class serve many complex

unrelated functions. Methods described or referenced in [8],

[9], [6] and [22] provide a semi-formal description of the

pattern as a class with many unrelated methods with high

complexity which implements many interfaces. Clearly, this can

be translated to the graph-theoretical language in the context of

a software snapshot: a class with many interfaces corresponds

to each node such that paths which start from it and contain

edges of type ’extend’ and ’implement’ reach many nodes

which represent interface entity. A complex method is simply

a method with high values of the complexity metrics such as

NPath complexity or cyclomatic complexity. Additionally, if a

class is intended to serve many purposes, one can expect that

it has methods that are being called by many other classes.

This conceptual description can be translated in the formal

graph-theoretical definition described below:

Definition 2 (foreign call): Let c1 and c2 be two classes

such that they are not connected by a path build from edges

labeled ’extend’. Every call from a method contained in c2 is

a foreign call for class c1.

Swiss Army Knife is each class c that satisfies the following

conditions:

" c has more than 6 methods,

" the value of metric LOC for c exceeds 150,

" the sum of cyclomatic complexity of methods contained

in c exceeds 30,

" the sum of NPath complexity of methods contained in c

exceeds 120,

" the number of non-trivial methods contained in c multi-

plied by the average NPath complexity of such methods

exceeds 160,

" the number of methods called by a foreign call exceeds

2,

" the number of foreign calls exceeds 7.

2) Anemic entities: Anemic entities are classes which only

store data and do not provide any functionality (see [23], [24]).

A straightforward, naive approach for detecting this pattern is

to take classes which have:

" many fields,

" only accessor methods (i.e. methods with a single line

of code, which refer to only a single field and have

cyclomatic and NPath complexity equal to one),

" default and possibly an initializing constructor.

This heuristic turns out to be inaccurate. Therefore, we need to

define two notions: an effectively trivial method and a complex

constructor.

A method m is effectively trivial if :

" The class c in which m is contained has field f of type

t such that m refers to f and either m has 1 argument

of type t and void return type or it has 0 arguments and

return type t,

" m has at most 5 lines of code,

" m has cyclomatic complexity not greater than 3.

The constructor con contained in c is complex if:

" The number of arguments of con exceeds the number of

fields contained in c,

" the lines of code in con exceeds 150% of the number of

fields contained in c,

" the cyclomatic complexity of con exceeds 150% of the

number of fields contained in c.

This allows us to provide a formal definition for anemic

entity: A class is an Anemic Entity iff:

" it has more than 8 fields,

" it has more than 8 methods,

" all methods but one are trivial or effectively trivial,

" there are no complex constructors contained in c,

" all subclasses of c satisfy the above four conditions.

3) Blob (also known as God Class): (see [4], [5], [6], [7]).

Entity c is considered a Blob iff:

" c calls more than 7 effectively trivial methods of other

classes,

" proportion of the number of effectively trivial methods of

other classes called by c to the number of other methods

of other classes called by c exceeds 0.6,

" the sum of cyclomatic complexity of its non-trivial meth-

ods exceeds 55,

" the value of the metric TCC does not exceed 0.3.

4) Brain class: (see [4], [5], [6], [7]). Entity c is considered

brain class iff

" c is not a God Class, as defined in the preceding subsec-

tion,

" c has more than 2 non-trivial methods with more than 4
outgoing edges of type ’call’ and more than 15 lines of

code (controller methods),

" c calls more than 5 trivial methods of other classes,
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" proportion of the number of trivial methods of other

classes called by c to the number of non-trivial methods

of other classes called by c does not exceed 0.6,

" the number of calls to trivial methods divided by the

number of lines of the source of c is smaller than 0.2,

" the value of tight class cohesion metric for c does not

exceed 0.5,

" One of the following conditions is true:

i sum of cyclomatic complexity of methods contained

in c exceeds 50 and the value of NCSS metric for c

exceeds 400,

ii sum of cyclomatic complexity of methods contained

in c exceeds 90 and the value of NCSS metric for c

exceeds 50,

5) Base Bean: (see [25]) Base Bean is a class which only

provides utility methods for its subclasses.

A method m contained in class c is an utility method iff:

" m is neither a constructor nor a trivial method,

" m does not refer to any field contained in c, nor to a field

in any direct or indirect superclass of c,

" there is no path that connects m with field f contained

in c or one of its direct or indirect superclasses, such that

the last edge on this path has a label ’refer’ and all other

edges have a label ’call’.

Conceptually, a utility method is a non-trivial method that does

not modify the state nor does it orchestrate other methods

contained in the class it is defined in or any of its ancestors

and is used only by its descendants.

A class c is Base Bean iff:

" it has more than 2 utility methods,

" c has at least 5 direct or indirect subclasses,

" the number of incoming edges of type ’call’ from the

hierarchy of c to utility methods contained in c exceeds

2.

6) Yo-yo: (see [10], [11], [6]). A containment-complete

sub-graph induced by nodes Y = {e1, . . . , en} is a YoYo iff:

" Each pair (ei, ej) * Y × Y is connected by a path

constructed from edges of type ’extend’, where each edge

is treated as undirected,

" the longest path between any two nodes from Y con-

structed from such edges exceeds 5,

" the number of edges (m1,m2) with label ’call’ or ’refer’

such that m2 is not a trivial method and there are edges

(m1, ei), (m2, ej) with label ’contain’, i ;= j exceeds 5.

" there is no super-set of nodes Y 2 § Y such that graph

induced by Y 2 satisfies the above three conditions.

7) Data Clumps: (see [15], [26], [27], [28]) a Data Clump

is an anti-pattern that occurs when a group of data items

are being passed together in the source code. This informal

definition can be rephrased formally:

Let parameters(m) denote set of entities connected with

m by an edge labeled ’parameter’. A set of method entities

M = {m1, . . . ,mn} is a Data Clump iff:

" n exceeds 3,

" |parameters(mi)| exceeds 3 for each i,

" for each pair (mi,mj) such that i ;= j and

mi and mj are connected by ’call’ edge,

|parameters(mi) + parameters(mj)| =
min(|parameters(mi)|, |parameters(mj)|),

" there is no such superset of M that satisfies the above

conditions.

8) Circular dependency: Circular dependency is a relation

between two or more software entities transitively contained

in different packages which either call each other directly or

indirectly to function properly. We can translate this into graph

theoretical terms:

A pair of classes (c1, c2) forms a circular dependency iff:

" there exist two different packages p1, p2 such that there

are edges (c1, p1) (c2, p2) with label ’contain’,

" there are two methods m1,m2, such that there are edges

(m1, c1) and (m2, c2) with label ’contain’,

" there is a path build only from edges labeled ’call’ from

m1 to m2 and another such path from m2 to m1.

9) Detection quality: The detection quality of purely static

methods of identification of design anti-patterns described in

the preceding subsections is presented in Table I.

SAK Bl DC BB

Argo Uml 0.78/1.0 0.90/0.76 N/A 0.71/0.88

Elasticsearch 0.78/0.99 0.83/0.9 0.99/0.96 0.71/0.88

JHotDraw 1.0 /0.91 1.0/1.0 0.28/0.0 N/A

Lucene 0.86/1.0 0.88/0.9 N/A 0.97/1.0

Struts 0.99/1.0 N/A 0.98/0.1 N/A

Wildfly 0.94/1.0 0.92/1.0 0.99/1.0 1.0/1.0

Xerces 0.8/0.89 0.91/0.69 0.99/0.84 N/A

BC YY AE

Argo Uml N/A 1.0/1.0 1.0/1.0

Elasticsearch 0.87/0.84 0.98/1.0 1.0/1.0

JHotDraw 0.0/0.0 N/A N/A

Lucene 0.95/0.78 1.0/1.0 N/A

Struts N/A N/A N/A

Wildfly N/A N/A 1.0/1.0

Xerces N/A 0.98/1.0 N/A

Table I
THE TABLE SHOWS THE QUALITY OF DETECTION OF INSTANCES OF THE

DESIGN ANTI-PATTERNS. THE COLUMNS CORRESPOND TO A RANGE OF

ANTI-PATTERN TYPES WHEREAS THE ROWS PRESENT DIFFERENT

SOFTWARE SYSTEMS. THE DETECTION METHODS ARE DESCRIBED IN

SUBSECTIONS II-C1–II-C8 ABOVE. EACH CELL CONTAINS TWO

NUMBERS: PRECISION/RECALL. SAK = SWISS ARMY KNIFE, BL = BLOB,
DC = DATA CLUMPS, BB = BASE BEAN, BC = BRAIN CLASS, YY =

YOYO, AE = ANEMIC ENTITY.

III. SPATIAL RELATIONS

Since design anti-patterns are subgraphs of one common

graph, we can introduce the notion of distance between two

patterns defined as the length of the shortest path that connects

nodes from these subgraphs:

Definition 3 (closeness and remoteness of patterns): Let

PI1 = (V1, E1) and PI2 = (V2, E2) be subgraphs of software

snapshot SSn. We will say that

PI1 and PI2 are d-distance-close iff d(PI1, P I2) f d,

where d(PI1, P I2, SSn) = minv1*V1,v2*V2
dist(v1, v2, SSn)

where dist(a, b,G) is the distance between vertices a and b

measured as the shortest path between them in the multigraph

G treated as undirected graph.1

1This makes dist symmetric.
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Similarly: PI1 and PI2 are d-distance-remote iff

d(PI1, P I2) > d.

IV. SOFTWARE EVOLUTION

Usually software development is done in the source code

management system that allows us to track all changes done

to the source code. Each individual modification of the source

code is called commit and is identified by unique number

called revision. Commit has precise date, author and a set

of modifications to the source code files. If we take the

commits from a single main development branch, we can order

them linearly according to the commit date. The code at each

revision has a corresponding software snapshot, thus we can

treat linearly-ordered sequence of such snapshots as a model

of software evolution.

One specific design anti-pattern can be observed at multiple

revisions. The set of all such revisions will be called the

lifespan of a pattern. Clearly, the lifespan can be divided into

intervals of maximum lengths such that the corresponding

pattern instance is not observed in the revision that directly

precedes the left end of this interval nor is it observed in the

revision that directly follows the right end of this interval. Each

such interval will be called occurrence of the pattern. Please

note that each pattern instance can potentially have more than

one occurrence, as e.g. a certain software structure can be

removed and then added again to the source code.

V. SPATIO-TEMPORAL RELATIONS

If we take two different patterns PI1 and PI2 and their

two occurrences l1 = (l1start, l
1
end) and l2 = (l2start, l

2
end), we

can tell the temporal relation between l1 and l2 (e.g. l1 may

directly precede l2 when l1end = l2start). In order to model

the temporal relations we use Allens interval algebra in this

research (see [29]), which introduces 13 different possible

relations which comprise equality and 6 pairs of invertible

relations.

We will say that Allens relation between l1 and l2 defined

above is non-inverted iff l1start < l2start ( (l1start = l2start '
l1end < l2end). Conceptually it means that l1 takes place before

some non-degenerated sub-interval of l2. In other words, l2
will last for some time after l1 has started. The non-inverted

relations of these pairs are given in the following list:

1) l1 takes place before l2 if there exists a revision s such

that (l1end < s < l2start)

2) l1 meets l2 (l1end = l2start)

3) l1 overlaps l2 (l1start < l2start < l1end < l2end)

4) l1 starts l2 (l1start = l2start ' l1end < l2end)

5) l1 contains l2 (l1start < l2start < l2end < l1end)

6) l1 is finished by l2 (l1start < l2start ' l2end = l1end)

Each Allens operator A has its inversion A21 (which is also

an Allens operator) defined by: xAy iff yA21x.

Let 0 < dc < dr be two fixed natural numbers which

we will associate with dc-distance-closeness and dr-distance-

remoteness relation respectively. If l1 and l2 are in A Allen

relation and at some revision graph induced by nodes of PI1
is dc-distance-close to graph induced by nodes of PI2, then

we will say that these two occurrences are in A-dc-distance-

closeness spatio-temporal relation. If these graphs are dr-

distance-remote at all revisions we will say that they are in A-

dr-distance-remoteness spatio-temporal relation. Please note

that the above definitions are also valid if PI1 and PI2 are

never observed together at a single revision.

If we take a single occurrence l1 of some anti-pattern PI1
([l1, P I1]), we can tell all its spatio-temporal relations to all

other occurrences of other anti-patterns. Each such relation

can be characterized by three arguments:

" T - the type of other anti-pattern (T * {BLOB, SAK,

Base Bean, YOYO, Brain Class, Data Clump, Anemic

Entity, Circular Dependency}),

" A - the non-inverted Allen algebra relation (A * { takes

place before, meets, overlaps, starts, contains, is finished

by}) and

" s * {remote, close} - which determines if we are

talking about A-dc-distance-closeness or A-dr-distance-

remoteness spatio-temporal relation.

Therefore, for each triplet (T,A, s) we can tell how many

respective spatio-temporal relations to [l1, P I1] exist in the

software evolution. This yields a vector in N (8×6×2) space

which provides information about the number of all spatio-

temporal relations of occurrence [l1, P I1] in the entire evolu-

tion. The dimension of this space is related to the Cartesian

product of:

" all types of anti-patterns described in Section II (8),

" the number of non-inverted Allen relations (6) and

" the number of types of different spatial relations from

Definition 3 (2).

Consequently, the occurrence of an anti-pattern is described

by a vector of 96 natural numbers.

Please note that the notions of closeness and remoteness

from Definition 3, as well as the notions of lifespan, occur-

rence and spatio-temporal relations, are defined in such a way

that they are also applicable to any sub-graph that can be

observed in snapshots of the software evolution. Thus, we can

compute the aforementioned 96 attributes for any occurrence

of such a subgraph.

In ([1]) we argued that such a vector appears to be very spe-

cific for occurrences of design anti-pattens. This phenomenon

may be interpreted as a tendency for certain design anti-

patterns to appear close to each other (spatial relation) and

one after another (temporal relation). They can therefore be

used to predict areas in the source code, where design anti-

pattern may appear in the future. In this research we will use

similar framework to improve detection quality for detectors

described in Section II.

A. Spatio-temporal rules

We will describe a method of mining spatio-temporal rules

which allows us to reason about spatio-temporal relations

in the entire software evolution. We will construct these

rules by applying a rule-based machine-learning classification

algorithm on specially prepared decision table. The following

paragraphs describe how this table is constructed.
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In Section V we argued that for any occurrence of design

anti-pattern and any occurrence of any other subgraph of

software snapshot we can compute a vector of 96 attributes

that describe its spatio-temporal relations. For each occurrence

of design anti-pattern PI of type t (e.g. Blob) we will insert

one row to the decision table, with 96 conditional attributes

and decision=t. We will call this a positive row for t (e.g.

positive row for Blob). To balance this we will pick a random

subgraph that does not correspond to anti-pattern t and has the

same number of nodes as PI and insert it into decision table

with 96 conditional attributes computed likewise. For such a

row we will set decision=NOT_t (e.g. NOT_Blob). We will

call such a row a negative row for t (e.g. negative row for

Blob).

The decision table constructed according to the above de-

scription has 97 columns and the number of rows is twice the

number of occurrences of all design anti-patterns in the entire

software evolution. We can partition this table into smaller

tables by selecting only positive and negative rows for only

single type t of anti-patterns (e.g we only take rows with

decision Blob and NOT_Blob). Each such sub-table is in fact

a perfectly balanced binary decision table that can be used to

train a machine-learning classification algorithm that produces

a classifier in the form of a set of classification rules. We will

call these rules spatio-temporal rules for t and the classifier

will be called spatio-temporal classier for t. Technically, the

classifier, given a vector of 96 natural numbers, outputs either

t or NOT_t.

If we take occurrence l of some subgraph g in the software

evolution we can compute 96 attributes for it and apply a

spatio-temporal classifier on such a vector. Conceptually, the

classifier for type t can tell if the given graph occurrence

resembles a design anti-pattern t occurrence in terms of its

spatio-temporal relations. We can use this observation to

introduce an improved spatio-temporal detector for t. This

concept is described in the following section.

VI. SPATIO-TEMPORAL DETECTORS OF ANTI-PATTERNS

Let us assume that some subgraph g, that is part of a

software snapshot at revision r, is considered to be an anti-

pattern of type t by a respective detector described in Section

II. If we have a spatio-temporal classifier for t, then we can

find its output for the occurrence of g at revision r according

to the method described in the preceding Section V-A. In

the proposed approach we will consider g to be an actual

anti-pattern of type t iff the output of the spatio-temporal

classifier was also t. Conceptually, in this detection strategy

we combine a purely static definition of design anti-patterns

given in Section II with spatio-temporal knowledge about the

evolution of the software. We will consider a graph to be an

actual anti-pattern, only when both premises hold.

Clearly, such a compound classifier can reduce the num-

ber of false positives but also increase the number of false

negatives, thus it does not necessarily improve the quality

of an anti-pattern detection. However, in practice, it appears

that such a construct improves the classification quality by an

average of 4% in terms of F-measure, if we mine the spatio-

temporal rules from the very beginning of software evolution

and use them to identify static patterns in a separate, final

period of this evolution. Details of the experimental setting is

given in the following Section VII.

VII. EXPERIMENTAL VALIDATION

The experiments were run on the evolution of the following

open-source software:

" Argouml ([30], [31], [32]) is a simple UML editor, which

used to be popular. The SCM of this software (along with

Xerces2j and Jhotdraw) is frequently used as the source

of data in mining software repositories research. The

analyzed evolution of this software spans from January

1998 to December 2011.

" Struts1 ([33], [34], [35]) is a java web framework, which

was popular 20 years ago. The analyzed evolution of this

software spans from May 2000 to December 2008.

" Xerces2j ([36], [34], [35]) is a popular Java XML Parser.

The analysed software evolution spans from November

1999 to May 2008.

" Elasticsearch ([37], [38]) is a popular search engine. The

analyzed evolution of this software spans from February

2010 to September 2017.

" JHotdraw ([39], [40]) is a Java framework for 2D graph-

ics. The analyzed evolution of this software spans from

October 2000 to November 2012.

" Lucene-solr ([41], [42], [35]) is a popular search engine.

The analyzed evolution of this software spans from

September 2001 to November 2016.

" Wildfly ([43], [44], [45]) is a popular Java application

server. The analyzed evolution of this software spans from

June 2010 to June 2013.

For each system, the spatio-temporal classifier, based on

C4.5 Boolean classifier, was trained on the sub-evolution built

from the first 70% revisions of the respective system. The

closeness and remoteness spatial relations were defined by

dc = 1 and dr = 2 respectively (see Section III). The detection

quality was tested on each commit of the sub-evolution which

consisted of the last 30% of revisions. Table II shows the cases,

where the result of detection was different. In two cases the

quality decreased by 6-11%, and in all other cases it improved

by 1-14% in terms of F1. There was an average improvement

of 4%.

VIII. CONCLUSIONS

In our previous work ([1], [46]) we analyzed the phe-

nomena of spatio-temporal relations between occurrences of

anti-patterns in the software evolution. This paper presents

how spatio-temporal rules can help to slightly improve the

quality of detection of a few anti-patterns: We combine typical

static detectors derived from existing state-of-the-art detection

methods with additional knowledge that comes from analysis

of the spatio-temporal relations in the software development

process.
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Spatial Spatio-temp. Change of
Dataset APT Prec./Rec. Prec./Rec. F1

elastic BB 0.71 / 0.88 1.0 / 0.54 0.89
argouml Bl 0.9 / 0.76 1.0 / 0.76 1.05
elastic Bl 0.83 / 0.9 1.0 / 0.88 1.08
Xerces Bl 0.91 / 0.69 1.0 / 0.69 1.04
elastic BC 0.87 / 0.84 1.0 / 0.81 1.05
argouml SAK 0.78 / 1.0 1.0 / 0.94 1.11
elastic SAK 0.78 / 0.99 1.0 / 0.99 1.14
Lucene SAK 0.86 / 1.0 1.0 / 0.92 1.04
Xerces SAK 0.8 / 0.89 1.0 / 0.65 0.94
Xerces YoYo 0.98 / 1.0 1.0 / 0.99 1.01

Average 1.04
Table II

IMPACT OF SPATIO-TEMPORAL RULES ON STATIC DETECTION QUALITY.
THE TABLE PRESENTS HOW SPATIO-TEMPORAL RULES CHANGE THE

QUALITY OF DETECTION OF SPATIAL DETECTORS DESCRIBED IN

SUBSECTIONS II-C1–II-C8. THIRD COLUMN PRESENTS

PRECISION/RECALL OF PURELY STATIC DETECTION. THE FOURTH

COLUMN PRESENTS PRECISION/RECALL AFTER ADDING

SPATIO-TEMPORAL RULES. APT = ANTI-PATTERN TYPE, BB = BASE

BEAN, BL = BLOB, BC = BRAIN CLASS, SAK = SWISS ARMY KNIFE, F1
= F-MEASURE.

The experimental validation shows that in most cases the

prediction quality was identical, with an observable difference

only in a few cases described in Table II above. It was worse in

only two cases, and on average in improved by 4% in terms of

F-measure, which is a harmonic mean of precision and recall.

A. Future work

The following paragraphs provide some proposals for appli-

cations and modifications of the proposed framework, which

yield to future research in the topic.

In this paper we have presented how spatio-temporal rules

can be used to improve the quality of prediction of static

pattern detection. The same rules can be used to predict where

certain types of anti-patterns may appear in the future in the

software source code.

In the method described herein, spatio-temporal rules were

trained and used within the same software system. However, it

is possible that rules trained on the evolution of one software

system can be interpreted within another system. By doing

so we may answer if there are universal spatio-temporal rules

that model typical spatio-temporal phenomena in the software

development process that hold across many projects.

The proposed framework is specifically suited for Java

programming language, but can be easily adopted to other

programming languages as well. It would require changing

the definition of the software snapshot multigraph.

Allens algebra is a helpful formalism, but it can arguably be

too simplifying when it is used to model temporal relations

between intervals of revisions in the software development

process. For example, it cannot measure temporal proxim-

ity between intervals. Please note that relation between the

separated intervals of revisions are indiscernible in terms of

Allens theory in two cases: when they are separated by a

single commit and when they are separated by thousands of

commits. Thus Allens algebra could be replaced by alternative

formalism, which would incorporate more accurate model of

temporal relations.

In this research we have assumed time to be linear (i.e.

commits are linearly ordered), as we have considered commits

from only a single main development branch. In fact, the

software development process typically uses many parallel

branches and cross-branch merges (see [47]). To cover such

phenomena, the time representation in the proposed framework

should be replaced with a more versatile model, such as e.g.

CTL.

This research is based on the concept of a spatio-temporal

relation to occurrences of anti-patterns described in Section

II. But it can easily be adapted so that we can use other

subgraphs in place of anti-patterns. For example we could

use frequent subgraphs ([48]) or graphs built from frequently

modified source code entities ([49]).

B. Threats to validity

Drawing general conclusions from empirical studies based

on just a few software systems is always difficult, because

of the complexity of the matter and the variety of different

sources of data. This paper is based on data gathered from

systems that share a common characteristic: they are open-

source, non-commercial systems, developed by the commu-

nity for many years. It may appear that software developed

differently (e.g. by smaller teams, commercially, with closed

source) tends to evolve differently.

Anti-patterns are very infrequent in relation to all possible

containment-complete subgraphs in the software, as the num-

ber of the latter is exponential in relation to the number of

software entities in the source code. To have a balanced set

of examples, we have randomly selected sub-set of such sub-

graphs to construct a decision table described in Section V-A.

Even though the results presented in Section VII were stable

with multiple repetitions of the experimental reproduction, this

fact presumably introduces some randomness in the results.
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