
Channel-Less Process Communication

Tomas Plachetka

Comenius University, Bratislava

Faculty of Mathematics, Physics and Informatics

Email: plachetka@fmph.uniba.sk

Abstract—A channel is an abstract data structure which allows
for passing messages from one process to another one. We pro-
pose several variants of OCCAM, a minimalistic programming
language in which a program consists only of processes and
channels. The variants differ in how channels are accessed by
processes. We prove that all these variants are equally expressive,
i.e. an arbitrary OCCAM program can be simulated in any of
the variants and the other way around. A particularly interesting
variant is to assign exactly one channel to each parallel process.
This makes the concept of channels redundant, provided that the
parallel processes are named. The simulation techniques can be
applied to a variety of abstract models and practical systems.

I. INTRODUCTION

C
HANNELS are widely used in abstract models of com-

municating parallel processes [1], [2], [3], [4], as well

as in computer programming languages [5], [6], [7] [8], [9],

[10], and hardware descriptions [11], [12], [13]. In operating

systems, Unix pipes [14] directly correspond to channels.

The main contribution of this paper is showing a transforma-

tion of a channel-based programming language to an equally

expressive programming language in which channels and pro-

cesses become a single entity. We illustrate this transformation

on OCCAM [5], [15], which is is based on the synchronous

abstract model CSP (Concurrent Sequential Processes) [1] and

belongs to practical programming languages whose semantics

has been formally defined [16], [17], [18], [19], [20]. Although

OCCAM is “pure and small”, a sharper Ockham’s razor trims

it even more. Along with channels, we also eliminate nesting

of parallel processes and the ALT constructor from OCCAM.

The motivation of this work is not solely theoretical. Many

programming languages build on a message passing paradigm

without channels, e.g. MPI [21], Erlang [22] and Akka (JVM)

[23]. An important question is whether the absence of channels

is restraining. This paper suggests a negative answer. A con-

sequence is that channel-based (OCCAM-like) programming

languages are intrinsically redundant.

The paper is organised as follows. Section II presents a

relevant subset of the OCCAM language (leaving out unnec-

essary details, occasionally using an abbreviated syntax). In

Section III, it is shown that nesting of parallel processes can

be replaced by a flat process structure (a variant OCCAM-

1PAR). In Section IV, the directional graph interconnection

of processes and channels is replaced with a hypergraph

This research has been supported by the grant 1/0601/20 of the Slovak
Scientific Grant Agency VEGA.

interconnection which uses shared channels (OCCAM-SH). In

Section V, a concrete hypergraph structure is proposed which

leads to a unification of process and channel identifiers, i.e. to a

channel-less model (OCCAM-CL). All the variants OCCAM,

OCCAM-1PAR, OCCAM-SH, and OCCAM-CL are equally

expressive. Section VI concludes the paper.

II. OCCAM

OCCAM was targeted to Transputers [24], single-chip com-

puters specifically designed to support parallel programming.

Transputers could be easily connected to form a network, pro-

cess scheduling and communication were implemented in the

hardware. Although Transputers were discontinued in 1990’s,

they could in some parameters compete with contemporary

computers (e.g. context switch below 1 µsec still belongs to

the fastest ever). OCCAM found its followers, e.g. OCCAM-π

[7] and Rain [8].

An OCCAM program consists of a finite number of pro-

cesses and a finite number of channels; these numbers are

known before the program starts and do not change in run-

time. A process in OCCAM is either an atomic process (:=,

assignment; ?, input from a channel; !, output to a channel;

SKIP, which does nothing and terminates), or a compound

process. Constructors of compound processes (SEQ, PAR, IF,

WHILE, ALT) combine processes into a single one. Processes

in the SEQ constructor are executed sequentially in the given

order, i.e. when a process terminates, the following one be-

comes active. SEQ terminates when its last mentioned process

terminates. The constructors IF, WHILE and the assignment

process behave in a common way, except for IF, in which the

conditions are always tested in the order they are written, and

(only) the process under the first satisfied condition becomes

active (IF terminates when this process terminates).

The replicator FOR can be used with constructors. Repli-

cation works as a macro expansion. For example, SEQ i=0

FOR 2 p expands to SEQ p p, with i = 0 in the first replica

of the process p, and i = 1 in the second one. This corresponds

to a sequential repetition of the process p in a for-loop.

The scope of a variable is limited to the process following

the variable’s declaration (e.g. INT v:), including processes

nested in that process (variables used in replicators are not

declared). Usual primitive types are available. The only com-

pound type is an array, indexed from 0.

Processes of the PAR constructor run in parallel and have

read-only access to variables which are shared in their scopes.

A process is allowed to change (using := or ?) only the

Proceedings of the of the 17th Conference on Computer

Science and Intelligence Systems pp. 515–519

DOI: 10.15439/2022F212

ISSN 2300-5963 ACSIS, Vol. 30

IEEE Catalog Number: CFP2285N-ART ©2022, PTI 515



variables which it does not share with another parallel process.

The only way how parallel processes may influence one

another is via channels which are declared as variables of type

CHAN. PAR terminates when all its processes terminate.

Channels in OCCAM are unidirectional and unbuffered.

Each channel connects exactly two parallel processes—one

reads from the channel, the other one writes to the channel.

Parallel processes can be depicted as vertices and channels

as edges of a directed graph (an edge points from the writer

to the reader). Reading from a channel (?) blocks until a !

process writes to the channel; and conversely, writing to a

channel (!) blocks until a ? process reads from the channel).

The corresponding ? and ! both terminate after the message

has been transferred across the channel from the ! process to

the ? process. A message is a finite sequence of values (of

primitive types or arrays).1

The ALT constructor multiplexes reading from several input

channels.2 While reading from each single input channel

would block, the ALT constructor blocks. When reading at

least one input channel would terminate (we say that such

a channel is readable), a message is read from one readable

channel and a process in the corresponding branch takes over.

When this process terminates, then ALT terminates.

The choice of the readable channel inside the ALT con-

structs and the scheduling of the parallel processes is not

under program’s control. The scheduler executing the program

is unpredictable (nondeterministic) in making these choices.

This does not mean that it has to be “random”. For example,

it is allowed to (but does not have to) prioritise the readable

channels in the order they are mentioned in ALT constructs.

Similarly, it is allowed to (but does not have to) prioritise

the execution of active parallel processes in the order they

are mentioned in PAR constructs. A correct program must

guarantee its intended behaviour for all possible schedules.

Processes and channels are static, i.e. they are constructed

before the execution of a program. During the execution,

each process is in one of the following states: active, passive,

blocked. The program evolves according to the rules described

above (see [18] for details). At the beginning of the execution

of a program, the first process is active, all other processes are

passive. A termination of an active process does not mean that

the process ceases to exist—it just changes its state to passive.

The program execution terminates when there are no active

processes. (We can distinguish between a “correct termination”

where all processes are inactive, and a deadlock where at least

one process is blocked.)

1Although OCCAM requires a declaration of types of messages which
are passed over channels (so-called protocols, e.g. CHAN OF INT; BOOL

ch:, we consistently use type-less channel declarations throughout the paper.
These correspond to CHAN OF ANY declarations in OCCAM, where the
programmer is responsible for ensuring that the sequences of values in
messages transferred over a channel from a ! process are of the same types
as the corresponding variables in a ? process (so that an incoming message
can be stored to the variables in the ? process).

2For the sake of simplicity, we do not consider ALT with boolean expres-
sions attached to the channel inputs (so-called guarded ALT).

Fig. 1 shows two OCCAM programs used as running

examples throughout the paper. The programs simulate each

other. For an arbitrary schedule, both programs terminate and

the variable m attains values 0, 1, 2, 3 in one of the following

orderings: [0, 1, 2, 3], [0, 1, 3, 2], [1, 0, 2, 3], [1, 0, 3, 2]. The

actually observed ordering depends on a concrete schedule.

For an arbitrary schedule of P1, a schedule of P2 exists such

that the orderings match, and vice versa. Moreover, there is a

bijective correspondence of processes which run in parallel in

P1 and P2, regardless of their nesting in PAR constructs (we

refer to line numbers in P1 and P2): [5, 5], [11, 12], [12, 13].

In this sense, P1 and P2 are equivalent.

Program P1

1: CHAN ch1, ch2:
2: SEQ i = 0 FOR 2
3: PAR
4: INT m:
5: SEQ j = 0 FOR 2
6: ALT
7: ch1 ? m
8: SKIP
9: ch2 ? m

10: SKIP
11: ch1 ! 2 * i
12: ch2 ! (2 * i) + 1

Program P2

1: CHAN ch1, ch2:
2: SEQ i = 0 FOR 2
3: PAR
4: INT m:
5: SEQ j = 0 FOR 2
6: ALT
7: ch1 ? m
8: SKIP
9: ch2 ? m

10: SKIP
11: PAR
12: ch1 ! 2 * i
13: ch2 ! (2 * i) + 1

Fig. 1. Two OCCAM programs (running examples)

In the sequel, we only deal with one-sided simulations in

which P ′ is constructed from P by replacing its fragments

of code. In all proofs, we give a construction of P ′ which

preserves parallelism of P (as the simulations are one-sided,

we only insist on an injective mapping of parallel processes

of P to P ′; e.g. additional parallel processes can be added

to P ′ in a simulation. A programming language L is at least

as expressive as a programming language L′, if there is an

algorithm (compiler) which translates an arbitrary program

P ′ in L′ to a program P in L which simulates P ′. Two

programming languages L and L′ are equally expressive, if

L is at least as expressive as L′, and vice versa.

III. OCCAM WITH A SINGLE TOP-LEVEL PAR

CONSTRUCTOR (OCCAM-1PAR)

Theorem 1: OCCAM with a single top-level PAR construc-

tor (OCCAM-1PAR) is as expressive as OCCAM.

Proof: We need to show that an arbitrary OCCAM

program can be simulated by an OCCAM program which

uses exactly one PAR which is the top-level process. Consider

an arbitrary OCCAM program. All channel declarations are

moved to the top-level PAR (collisions of channel names are

resolved by using fresh names). We will refer to processes

of PARs in the OCCAM program as child processes. Each

child process is moved to the top-level PAR, together with

declarations of all variables in its scope (including shared

variables used in replicators). A new local integer variable

terminate is declared in the child process; and two new

channels are declared in the top-level PAR, we will call

516 PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022



them ch.s (start) and ch.e (end). A child process is started

when it receives a message beginning with FALSE from

the channel ch.s. This message also contains values of all

the variables shared for reading between the parent and the

child. When the child finishes its original program, it sends

an acknowledgement to the channel ch.e. The parent (the

sequence which replaces the PAR) starts its children and waits

for their acknowledgements. Just before its own termination,

the parent terminates its children.

Fig. 2 shows the translation of the program P1 (Fig. 1) to

an OCCAM-1PAR program P3 with a single top-level PAR.

IV. OCCAM WITH SHARED CHANNELS (OCCAM-SH)

Recall that a channel in OCCAM connects two parallel pro-

cesses. OCCAM-SH is an interesting variant in which channels

are shared, i.e. a channel can be simultaneously accessed

by arbitrarily many parallel processes for both reading and

writing. When several ! processes simultaneously write to a

channel, then they are blocked until a ? process reads from

the channel. When several ? processes simultaneously read

from the same channel, they are blocked until a ! process

writes to the channel. When one or more ? processes read

from a channel and one or more ! processes write to the

channel, then eventually one of the ? processes and one of

the ! processes are chosen for communication. This choice

is made arbitrarily (i.e. the scheduler can freely decide which

processes it chooses for communication). Then the message is

passed from the chosen ! process to the chosen ? process and

then these two processes terminate. Unlike in OCCAM, there

is no ALT constructor in OCCAM-SH. Furthermore, OCCAM-

SH programs use only one top-level PAR constructor.

It turns out that in spite of the absent ALT constructor,

OCCAM-SH is a generalisation of OCCAM. We will show

how an arbitrary OCCAM-1PAR program can be translated to

an OCCAM-SH program which simulates the former one. This

translation requires that the parallel processes and channels

have identifiers. The order in which a parallel process appears

in the single PAR constructor) will serve as its identifier.

Analogously, channels are numbered in the order they are

declared (to keep the notation simple, a channel identifier will

serve as the channel’s number). Let the numbering start with

0, let N denote the number of processes.

Theorem 2: OCCAM-SH is at least as expressive as OC-

CAM.

Proof: We have already proved that an arbitrary OCCAM

program can be simulated by an OCCAM-1PAR program.

It remains to show how the ALT constructors of OCCAM-

1PAR are simulated in OCCAM-SH. Consider an OCCAM-

1PAR program. For each parallel process p, merge all the

channels from which the process reads to a single channel

ch.inp. This shared channel will be the only one which

the process p will read, and p will be its only reader

(there may be more than one writer, though). Declare ar-

rays INT pending.ch[N] and MSG pending.msg[N]

in the scope of each parallel process, where MSG is the type of

messages transferred in the OCCAM-1PAR program. Initialise

Program P3

1: CHAN ch1, ch2:
2: CHAN ch.s1, ch.e1, ch.s2, ch.e2, ch.s3, ch.e3:
3: PAR
4: SEQ −− original top-level code
5: SEQ i = 0 FOR 2
6: BOOL ack:
7: SEQ −− replacement of parent PAR
8: ch.s1 ! FALSE; i −− start child 1
9: ch.s2 ! FALSE; i −− start child 2

10: ch.s3 ! FALSE; i −− start child 3
11: ch.e1 ? ack −− wait for end of child 1
12: ch.e2 ? ack −− wait for end of child 2
13: ch.e3 ? ack −− wait for end of child 3

14: ch.s1 ! TRUE; 0 −− terminate child 1
15: ch.s2 ! TRUE; 0 −− terminate child 2
16: ch.s3 ! TRUE; 0 −− terminate child 3

17: BOOL terminate:
18: INT i:
19: SEQ −− child 1 of PAR
20: ch.s1 ? terminate; i −− wait for parent
21: WHILE NOT terminate
22: SEQ
23: INT m:
24: SEQ j = 0 FOR 2
25: ALT
26: ch1 ? m
27: SKIP
28: ch2 ? m
29: SKIP
30: ch.e1 ! TRUE −− acknowledge parent
31: ch.s1 ? terminate; i −− wait for parent

32: BOOL terminate:
33: INT i:
34: SEQ −− child 2 of PAR
35: ch.s2 ? terminate; i −− wait for parent
36: WHILE NOT terminate
37: SEQ
38: ch1 ! 2 * i
39: ch.e2 ! TRUE −− acknowledge parent
40: ch.s2 ? terminate; i −− wait for parent

41: BOOL terminate:
42: INT i:
43: SEQ −− child 3 of PAR
44: ch.s3 ? terminate; i −− wait for parent
45: WHILE NOT terminate
46: SEQ
47: ch2 ! (2 * i) + 1
48: ch.e3 ! TRUE −− acknowledge parent
49: ch.s3 ? terminate; i −− wait for parent

Fig. 2. OCCAM → OCCAM-1PAR (P1 → P3)

the array pending.ch[N] with values -1, i.e. insert the

following sequence after the initial SEQ in each process:
SEQ i = 1 FOR NP

pending.ch[i] := -1

Replace each ch ! m of the parallel process w with

BOOL ack:
SEQ

ch.inr ! w; ch; m
ch.inw ? ack

where r is the identifier of the process which reads the

channel ch in the original OCCAM program.

TOMAS PLACHETKA: CHANNEL-LESS PROCESS COMMUNICATION 517



Replace each

ALT
ch0 ? m

b0

. . .
chk ? m

bk

of the parallel process r with the sequence

INT w, ch:
BOOL consumable:
SEQ

consumable := FALSE
WHILE NOT consumable

SEQ
w := 0 −− look for a consumable message
WHILE (w < NP) AND (pending.ch[w] 6= ch0) . . .

AND (pending.ch[w] 6= chk)
w := w + 1

IF
w < NP

SEQ −− found a consumable message
m := pending.msg[w]
ch := pending.ch[w]
consumable := TRUE

TRUE −− otherwise save another message
SEQ

ch.inr ? w; ch; m
pending.ch[w] := ch
pending.msg[w] := m

IF −− execute the corresponding branch of ALT
ch = ch0

SEQ
ch.inw ! TRUE
pending.ch[w] := -1
b0

. . .
ch = chk

SEQ
ch.inw ! TRUE
pending.ch[w] := -1
bk

Treat each ch ? m as

ALT
ch ? m

SKIP

and use the translation above.

Hence, each ! subsequently blocks until it is acknowledged

by the ALTing process. The ALTing process reads all incoming

messages, but acknowledges only those which have been

consumed by the ALT of the OCCAM-1PAR program.

Theorem 3: OCCAM is at least as expressive as OCCAM-

SH.

Proof: We present a construction which replaces shared

channels with directed channels which connect exactly two

processes. Let N denote the number of parallel processes

in the OCCAM-SH program. For each shared channel ch,

an additional parallel process sh.ch is created which relays

the communication on the shared channel using OCCAM

channels. These sh.ch processes terminate when all the other

parallel processes terminate. A process sh.ch is connected via

three channels with each parallel process p (p = 0, . . . , N−1)

of the OCCAM-SH program: ch.rsh.ch[p], ch.wsh.ch[p] and

ch.dsh.ch[p]. All these channels are declared as global. The

first two channels are oriented towards sh.ch, the third one

towards the parallel process p,
The program of a process sh.ch is:

BOOL terminate:
INT out, t.count:
MSG m:
SEQ

t.count := 0
WHILE t.count < N

SEQ
ALT −− pick a reader

ch.rsh.ch[0] ? terminate
out := 0

. . .
ch.rsh.ch[N - 1] ? terminate

out := N − 1

IF
terminate

t.count := t.count + 1
TRUE −− otherwise

ALT −− pick a writer, deliver m to the reader
ch.wsh.ch[0] ? m

ch.dsh.ch[out] ! m

. . .
ch.wsh.ch[N - 1] ? m

ch.dsh.ch[out] ! m

Replace each ch ? m of the parallel process r in the
OCCAM-SH program with the sequence

SEQ
ch.rsh.ch[r] ! FALSE
ch.dsh.ch[r] ? m

Replace each ch ! m of the parallel process w with

ch.wsh.ch[w] ! m.

Insert ch.rsh.ch[p] ! TRUE at the end of each parallel

process p of the OCCAM program.

V. CHANNEL-LESS OCCAM (OCCAM-CL)

OCCAM-SH1 is a stricter variant of OCCAM-SH in which

each parallel process p is allowed to read only from one

channel ch.inp, whereby p is the only process which reads

from the channel ch.inp. We call this variant channel-less,

because the identifiers of channels unify with the identifiers

of processes. The processes can be numbered in the order they

appear in the single PAR constructor.

Theorem 4: OCCAM-SH1 and OCCAM-SH are equally

expressive.

Proof: An OCCAM-SH1 program is also an OCCAM-

SH program. Conversely, consider an arbitrary OCCAM-SH

program. Translate it to OCCAM and then back to OCCAM-

SH using compilers from the proofs of Theorem 3 and

Theorem 2. This yields an OCCAM-SH1 program.

OCCAM-CL syntactically removes the redundancy related

to channels from OCCAM-SH1. An arbitrary OCCAM-SH1

program can be rewritten to OCCAM-CL as follows:

• Remove all channel declarations.

• Replace each ch ? m with ? m.

• Replace each ch ! m with p ! m, where p is the

identifier of the process which reads the channel ch.

518 PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022



Figure 3 illustrates the correspondence between OCCAM-SH1

and OCCAM-CL.

1: Program P4

2: CHAN ch0, ch1, ch2:
3: PAR
4: INT m:
5: SEQ −− process 0
6: SEQ i = 0 FOR 2
7: SEQ j = 0 FOR 2
8: ch0 ? m
9: ch11 ! TRUE

10: ch2 ! TRUE
11: BOOL ack:
12: SEQ −− process 1
13: SEQ i = 0 FOR 2
14: SEQ
15: ch0 ! 2 * i
16: ch1 ? ack
17: BOOL ack:
18: SEQ −− process 2
19: SEQ i = 0 FOR 2
20: SEQ
21: ch0 ! (2 * i) + 1
22: ch2 ? ack

1: Program P5

2:

3: PAR
4: INT m:
5: SEQ −− process 0
6: SEQ i = 0 FOR 2
7: SEQ j = 0 FOR 2
8: ? m
9: 1 ! TRUE

10: 2 ! TRUE
11: BOOL ack:
12: SEQ −− process 1
13: SEQ i = 0 FOR 2
14: SEQ
15: 0 ! 2 * i
16: ? ack
17: BOOL ack:
18: SEQ −− process 2
19: SEQ i = 0 FOR 2
20: SEQ
21: 0 ! (2 * i) + 1
22: ? ack

Fig. 3. Hand-made translations of the OCCAM program P1 (Fig 1) to
OCCAM-SH1 (left) and OCCAM-CL (right)

VI. CONCLUSIONS

We proposed a programming language OCCAM-CL which

differs from OCCAM (only) in having no nested PAR pro-

cesses, no ALT constructors, and—most importantly—no

channels. In spite of this, OCCAM-CL is as expressive as

OCCAM. We proved this using several OCCAM variants

and compilers which translate programs from one variant

to any other one. These compilers preserve parallelism of

programs as well as their message complexity (up to a constant

multiplicative factor). A similar result was published in [25]

for a lambda calculus with typed asynchronous channels and

a lambda calculus with typed actors.

When it comes to writing an actual compiler, the choice be-

tween OCCAM-CL and OCCAM is not just a matter of taste.

Apparently, writing a parser for OCCAM-CL is easier, but

there are more subtle reasons for favouring OCCAM-CL. For

example, OCCAM requires that each channel connects exactly

two parallel processes (one reader, one writer). However, its

syntax does not prevent the programmer from violating this

requirement. It is up to the compiler or a run-time system to

detect such a violation.

The channel-less approach can be found in actor models

[26] as well as in contemporary programming languages, e.g.

Erlang and Akka. A subsequent extension of Akka with the

channel concept is in the light of our results a backward step. It

does not increase expressiveness, unnecessarily increases the

complexity of the language and the compiler, and increases

the structural complexity of programs which mix the channel

and channel-less paradigms.

REFERENCES

[1] C. A. R. Hoare, Communicating Sequential Processes. Prentice Hall,
1985.

[2] R. Milner, “Elements of interaction,” Communications of the ACM,
vol. 36, no. 1, pp. 70–89, 1993, Turing Award lecture.

[3] M. Ahuja, A. D. Kshemkalyani, and T. Carlson, “A basic unit of
computation in distributed systems,” in International Conference on

Distributed Computing Systems (ICDCS). IEEE Computer Society,
1990. doi: 10.1109/ICDCS.1990.89327 pp. 12–19.

[4] J. Biernacki, “Alvis models of safety critical systems state-base verifi-
cation with nuXmv,” in FedCSIS, ser. Annals of Computer Science and
Information Systems, vol. 8. IEEE, 2016. doi: 0.15439/2016F264 pp.
1701–1708.

[5] SGS Thomson Ltd., Occam 2.1 Reference Manual. Prentice Hall, 1988.
[6] A. Ripke, A. A. Allen, R. Alastair, and Y. Feng, “Distributed computing

using channel communications in Java,” in Communicating Process

Architectures 2000. IOS Press, 2000, pp. 49–62.
[7] P. H. Welch and F. R. M. Barnes, “Communicating mobile processes:

Introducing OCCAM-π,” in Communicating Sequential Processes, ser.
LNCS. Springer, 2005, vol. 3525, pp. 712–713.

[8] N. C. C. Brown, “Rain: A new concurrent process-oriented programming
language,” in Communicating Process Architectures. IOS Press, 2006,
pp. 237–251.

[9] R. Loogen, “Eden—parallel functional programming with Haskell,” in
Central European Functional Programming School, (CEFP), Budapest,

Hungary, ser. LNCS, vol. 7241. Springer, 2011. doi: 10.1007/978-3-
642-32096-5_4 pp. 142–206.

[10] G. D’Angelo, S. Ferretti, and M. Marzolla, “Time warp on the Go,”
in Proc. of the International ICST Conference on Simulation Tools and

Techniques, ser. SIMUTOOLS ’12. ICST, Brussels, Belgium, 2012.
doi: 10.5555/2263019.2263057 pp. 242–248.

[11] M. W. Heath, W. P. Burleson, and I. G. Harris, “Synchro-tokens: A
deterministic GALS methodology for chip-level debug and test,” IEEE

Transactions on Computers, vol. 54, no. 12, pp. 1532–1546, 2005. doi:
http://doi.ieeecomputersociety.org/10.1109/TC.2005.203

[12] M. A. Rahimian, S. Mohammadi, and M. Fattah, “A high-throughput,
metastability-free GALS channel based on pausible clock method,” in
Asia Symposium on Quality Electronic Design. IEEE, 2010. doi:
10.1109/ASQED.2010.5548259 pp. 294–300.

[13] P. Hajder, L. Rauch, M. Nycz, and M. Hajder, “A heterogeneous parallel
processing system based on virtual multi-bus connection network,”
in FedCSIS (Position Papers), ser. Annals of Computer Science and
Information Systems, vol. 19, 2019. doi: 10.15439/2019F356 pp. 9–17.

[14] ISO/IEC 9945-1: 1990 Information Technology. Portable Operating Sys-

tem Interface (POSIX), Part 1: System Application Program Interface.
[15] J. Galletly, OCCAM 2. Including OCCAM 2.1. UCL Press, 1996.
[16] A. W. Roscoe, “Denotational semantics for OCCAM,” in Seminar on

Concurrency, Carnegie-Mellon University. London, UK: Springer,
1985, pp. 306–329.

[17] A. Eliëns, “Semantics for OCCAM,” Centre for Mathematics and
Computer Science (CWI), Amsterdam, Tech. Rep. 6255, 1986.

[18] Y. Gurevich and L. S. Moss, “Algebraic operational semantics and
OCCAM,” in Proceedings of the 3rd Workshop on Computater Science

Logic, ser. CSL ’89. London, UK: Springer, 1990. doi: 10.1007/3-540-
52753-2_39 pp. 176–192.

[19] A. W. Roscoe, M. H. Goldsmith, and B. G. O. Scott, “Denotational
semantics for OCCAM 2, part 1,” Transputer Communications, vol. 1,
pp. 65–91, 1994.

[20] ——, “Denotational semantics for OCCAM 2, part 2,” Transputer

Communications, vol. 2, pp. 25–67, 1994.
[21] MPI Forum, MPI-4.0. HLRS, 2021.
[22] F. Cesarini and S. Thompson, ERLANG Programming. O’Reilly, 2009.
[23] D. Wyatt, Akka Concurrency. Artima Incorporation, 2013.
[24] I. Graham and T. King, The Transputer Handbook. Prentice Hall, 1990.
[25] S. Fowler, S. Lindley, and P. Wadler, “Mixing metaphors: Actors as

channels and channels as actors,” in 31st European Conference on

Object-Oriented Programming, ECOOP 2017, Barcelona, Spain, ser.
LIPIcs, vol. 74. Schloss Dagstuhl—Leibniz-Zentrum für Informatik,
2017. doi: 10.4230/LIPIcs.ECOOP.2017.11 pp. 11:1–11:28.

[26] C. Hewitt, P. Bishop, and R. Steiger, “A universal modular actor formal-
ism for artificial intelligence,” in Proceedings of the 3rd International

Joint Conference on Artificial Intelligence, ser. IJCAI’73. Morgan
Kaufmann, 1973, pp. 235–245.

TOMAS PLACHETKA: CHANNEL-LESS PROCESS COMMUNICATION 519


