
Encrypting JPEG-compressed Images

by Substituting Huffman Code Words

Marek Parfieniuk

University of Bialystok, Institute of Computer Science

ul. Konstantego Ciolkowskiego 1M, 15-245 Bialystok, Poland

Email: marek.parfieniuk@uwb.edu.pl

Abstract—This paper presents a method for encrypting JPEG-
coded images that preserves both compression ratio and format
of a bit stream. Such solutions allow for selectively hiding
information: image contents can be encrypted, while in-file meta-
data remain readable. Our algorithm is a symmetric, polygram
substitution cipher, as it replaces Huffman code words and
rearranges value bits that describe the main results of the
Discrete Cosine Transform (DCT) of a pixel block: the DC
coefficient and the first non-zero AC coefficient. Both length
and format of a file are preserved, because bits are modified
under constraints on their numbers. Such encryption is a kind
of post-processing of a compressed bit stream, and thus it can be
built on the top of an existing JPEG codec, without accessing its
internals. Compared to previous similar solutions, our approach
better hides image contours, exchanging AC for DC energy. Our
work also reveals some properties of Huffman code tables and
bit streams related to the JPEG standard.

I. INTRODUCTION

I
N RECENT years, one can notice research efforts to com-

bine the JPEG standard for image coding with data encryp-

tion [1]. Format-preserving approaches to joint encryption-

compression are less efficient, more difficult to implement, and

less secure than general-purpose ciphers. Nevertheless, they

are useful, allowing for selective encryption, i.e. for protecting

only a subset of information contained in a file [2].

In this paper, we propose a method for formant-compliant

encryption of JPEG files that is based on substituting and

restructuring pairs of variable-length code words under con-

straints on the total number of bits in a pair. These modifica-

tions are made to only code words related to the main results

of the Discrete Cosine Transform (DCT) and quantization: to

the DC coefficient and to the first non-zero AC coefficient.

As a couple of data units is replaced in accordance with

a cryptographic key, our solution is a polygram substitution

cypher. Consisting in post-processing of encoding results, it

can be built on the top of an existing JPEG codec, without

accessing its internals.

Similar known approaches, [3]–[5], modify DC coefficients

separately from AC ones. So they have little effects on image

contours, unless coefficients are exchanged among blocks of

8 × 8 pixels. Our solution is able to exchange DC for AC

energy of one image block, so as to better hide the latter,

buffering the minimum number of bits.

This paper additionally reveals some new facts on the

default Huffman dictionaries and on statistics of code words

in JPEG bit streams.

II. ENTROPY CODING OF DCT COEFFICIENTS IN THE

JPEG STANDARD

The JPEG standard specifies that an image to be compressed

is divided into blocks of 8 × 8 pixels, and each block is

converted into a vector of 64 coefficients, which then are

entropy coded. The conversion consists in computing the 2-D

DCT of the block, quantizing the resulting matrix, and taking

quantized elements in the zig-zag order.

The first of 8 × 8 DCT outputs is called the DC (direct-

current) coefficient, as it is the average value of all pixels of

a block. The remaining 63 outputs are called AC (alternate-

current) coefficients, because they reflect deviations from the

average value, of various frequencies.

For two consecutive blocks of 8 × 8 pixels, the average

pixel intensities, or the DC coefficients, often have similar

values. Therefore, it is advantageous to encode the difference

between them, by using two variable-length code words. The

first one has a length of 2 ≤ h0 ≤ 9 bits and results from

Huffman encoding of 0 ≤ v0 ≤ 11, the index of the value

category that embraces the difference value. The second code

word comprises v0 bits which point out a particular value in

the category. The first bit represents the sign of the difference,

whereas the remaining bits determine its magnitude.

Table I lists the categories and Huffman code words used to

encode DC coefficients. The lower magnitudes of the values

that comprise a category, the fewer values in this category. So,

a shorter the code word is assigned to its index, in order to

achieve data compression.

A non-zero quantized AC coefficient is usually preceded

by a series of zero-valued ones. Thus its value is encoded

together with the number of the latter, by using two code

words. For the kth non-zero coefficient, in the zig-zag order,

the first word comprises 2 ≤ hk ≤ 16 bits and is obtained by

Huffman encoding of the (rk, vk) pair, where 0 ≤ rk ≤ 15 is

the number of the zero-valued AC coefficients that precede

this non-zero one, and 1 ≤ vk ≤ 10 is the index of the

category that embraces the value of this coefficient. The second

word comprises vk bits, which determine a value in the vkth

category. As zero-valued quantized AC coefficients often occur

in long runs, and non-zero ones often have small magnitudes,

compression can be achieved by assigning shorter words to

(rk, vk) pairs that describe such occurrences.

Two special Huffman code words occur without value bits.

Proceedings of the of the 17th Conference on Computer

Science and Intelligence Systems pp. 545–549

DOI: 10.15439/2022F217

ISSN 2300-5963 ACSIS, Vol. 30

IEEE Catalog Number: CFP2285N-ART ©2022, PTI 545

TABLE I
VALUE CATEGORIES AND HUFFMAN CODE WORDS FOR ENCODING

DIFFERENCES BETWEEN DC COEFFICIENTS OF IMAGE LUMINANCE

v0 Value range Huffman code word h0

0 0 00 2

1 ±1 010 3

2 -3,-2, 2, 3 011 3

3 ±(4, . . . , 7) 100 3

4 ±(8, . . . , 15) 101 3

5 ±(16, . . . , 31) 110 3

6 ±(32, . . . , 63) 1110 4

7 ±(64, . . . , 127) 11110 5

· · · · · · · · · · · ·

11 ±(1024, . . . , 2047) 111111110 9

The EOB (End-of-Block) word is placed after the codes of the

last non-zero AC coefficient, so as to tell that the remaining

ones are zero. The ZRL (Zero-run-length) word represents

a series of 16 zero AC coefficients between non-zero ones.

III. ENCRYPTING JPEG BIT STREAMS BY SUBSTITUTING

HUFFMAN CODE WORDS

A. Substitution idea and constraints

Polygram substitution ciphers replace several symbols of

a text with the same number of other letters. Following this

idea, we have shown in [6] that Huffman-encoded data can

be encrypted by substituting pairs of code words. Herein, we

adapt this approach to JPEG bit streams, in which Huffman

code words are interleaved with value bits, and thus they need

to be substituted somewhat tricky. Moreover, it is pointless to

modify all code words, as the contents of an image is described

primarily by the main quantized coefficients of the DCT of an

8× 8 pixel block: the DC one and the first non-zero AC one.

So, we propose to encrypt JPEG-encoded images by pro-

cessing them block-by-block, by substituting Huffman code

words that describe categories of the aforementioned coef-

ficients and by moving bits between the code words that

describe coefficient values. As the cipher should not enlarge

files, we allow only such substitutions that

h0 + h1 = h0 + h1 and v0 + v1 = v0 + v1 (1)

where underlines denote the lengths of code words that replace

the original ones. These constraints ensure that a substitution

changes neither the total length of Huffman code words nor the

total number of value bits, h0+h1+v0+v1 = v0+v1+h0+h1.

The constraints can be explained by using Table II. It lists

12-bit, equal-length combinations of DC- and AC-related code

words and value bits. The combinations have been grouped

with respect to the total number of the value bits, v0 + v1.

A combination can be substituted for each other of the same

group, but not for one of another group.

B. Encryption procedure

Both encryption and decryption of our cipher can be ex-

plained by using the data flow shown in Fig. 1.

Assuming that the method is applied to an existing JPEG bit

stream, the first step is to scan the stream in order to determine

the Huffman code words and value bits that describe the DC

and AC coefficients of interest of a subsequent block of 8× 8

TABLE II
ALL 12-BIT COMBINATIONS OF DC- AND (AFTER "-") AC-RELATED

HUFFMAN CODE WORDS AND VALUE BITS (DENOTED AS "X", BEING 0
OR 1), GROUPED WITH RESPECT TO THE TOTAL NUMBER OF VALUE BITS

DC-AC code words h0 h0 v0 v1 r1 v0 + v1 h0 + h1

00-111111000x 2 9 0 1 8

00-111111001x 2 9 0 1 9 1 11

00-111111010x 2 9 0 1 10

00-11111001xx 2 8 0 2 2

010x-1111010x 3 7 1 1 5 2 10

010x-1111011x 3 7 1 1 6

00-1111001xxx 2 7 0 3 1

011xx-111010x 3 6 2 1 3 3 9

011xx-111011x 3 6 2 1 4

011xx-11011xx 3 5 2 2 1 4 8

100xxx-11100x 3 5 3 1 2

00-11010xxxxx 2 5 0 5 0

011xx-1011xxx 3 4 2 3 0 5 7

101xxxx-1100x 3 4 4 1 1

pixels. If the method has to be integrated with a JPEG encoder,

than it can be applied to quantized coefficients before forming

a bit stream. Knowing the code words, or coefficient values,

one can determine (h1+h0) and (v1+v0) and decide whether

substitution is possible. If so, then these bit counts point out the

group of N >= 2 pairs of code words that can be exchanged

for each other in accordance with (1).

Let us assume that the members of the substitute group

are ordered, so that they form an array and can be indexed

by the numbers from 0 to (N − 1). If ioriginal is the index of

the pair of original code words, than by adding (modulo N)

a pseudorandom offset we obtain the index of a substitute pair:

isubstitute = mod(ioriginal + randi(N), N) (2)

The ”mod” function gives the reminder after division, and

is used to ensure that 0 ≤ isubstiture < N , like ioriginal. The

”randi” produces a pseudorandom integer from the discrete

uniform distribution over [1, N]. This function is assumed to

use a pseudorandom number generator whose output can be

controlled by using the cryptographic key as the seed.

The Huffman code words determined by isubstitute are sub-

mitted to the output (encrypted) bit stream, followed by the

original value bits, rearranged in accordance with v0 and v1
that match the substitutes. The cipher does not affect bits that

describe the rest of AC coefficients of the given pixel block.

C. Decryption procedure

By detecting and analysing a pair of DC- and AC-related

code words of the encrypted bit stream, one can determine

the substitute group and isubstitute. The original code words are

pointed by the inverse of (2)

ioriginal = mod(isubstitute − randi(N), N) (3)

provided that, at both encryption and decryption sides of a flow

of JPEG-compressed pictures, (i) members of a substitute

group are ordered in the same way, (ii) the same cryptographic

key is used as the seed of the pseudorandom generator behind

the "randi" function, when the processing of a bit stream starts,

and (iii) 8× 8 pixel blocks are processed in the same order.

Obviously, in addition to recovering the Huffman code

words, it is necessary to accordingly rearrange the value bits.

546 PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022

DC-related code words AC-related code words

(begining of a block-related substream)

Category code word Value bits Run-category code word Value bits

101 | 1111 | 1100 | 0 | ...

00 | | 11010 | xxxxx

011 | xx | 1011 | xxx

101 | xxxx | 1100 | x

011 | 11 | 1011 | 110 | ...

(4b+1b) (2b+3b)

Category code word Value bits Run-category code word Value bits

DC-related code words AC-related code words

h h

for h0+h1=7 and v0+v1=5, N=3

vv

h h vv

#0

#1

#2

Fig. 1. Encryption of JPEG bit streams by length-constrained substitution of
Huffman code words and rearrangement of value bits.

IV. SUBSTITUTION LIMITATIONS

For most images and quality settings, code words can

be substituted sufficiently often to make it impossible to

recover a readable, quality image from an encrypted bit stream,

without knowing the cryptographic key. However, when an

image in encoded with low-quality settings, pixel blocks might

occur to which the proposed cipher cannot be applied. The

default Huffman dictionaries determine not so many pairs of

code words that have no substitutes, but the majority of the

replaceable combinations of bits occur only occasionally when

compressing natural images.

A. Substitution limitations by Huffman code tables

The JPEG standard specifies the default dictionaries of

Huffman code words. The tables for luminance contain 12
words for encoding differences between DC coefficients and

161 words for encoding AC coefficients. These words can be

combined into 12 × 161 = 1932 DC-AC pairs, which can

be grouped with respect to both the total length of Huffman

code words and the total number of the value bits that must

accompany them. If a resulting group comprises two or more

pairs of code words, then these DC-AC pairs can be substituted

for each other in accordance with (1).

The sizes of the groups can be visualized by colors as in

Fig. 2. The bit numbers related to the axes determine a group,

and are coordinates of the small square whose color reflects the

number of pairs in this group, in accordance with the legend.

Groups exist such that a pair of code words has as many as

several dozen of substitutes. But some groups comprise only

one combination of Huffman code words, which cannot be

substituted. The great majority of the pairs, 1892 (98%) of

them, have at least one potential substitute.

Table III lists the DC-AC pairs of code words that cannot be

substituted. Moreover, the cipher cannot be applied to blocks

for which all quantized AC coefficients are zero, i.e. when the

DC-related bits are followed by the EOB special code word.

0 5 10 15 20 25

5

10

15

20

25
0

1

2

3-4

5-8

9-16

17-32

33-64

65-128

Fig. 2. Numbers of DC-AC pairs of default code words that can be substituted
in accordance with (1).

TABLE III
PAIRS OF DC- AND (AFTER "-") AC-RELATED DEFAULT CODE WORDS

THAT CANNOT BE SUBSTITUTED IN ACCORDANCE WITH (1)

DC- and AC-related h0 v0 h0 + v0
code words and value h0 v0 h1 v1 r1 + + +

bits (denoted as "x") h1 v1 h1 + v1
1 00-00x 2 0 2 1 0 4 1 5

2 00-01xx 2 0 2 2 0 4 2 6

3 010x-00x 3 1 1 2 0 5 2 7

4 011xx-1100x 3 2 4 1 1 7 3 10

5 100xxx-1100x 3 3 4 1 1 7 4 11

6 011xx-100xxx 3 2 3 3 0 6 5 11

7 100xxx-100xxx 3 3 3 3 0 6 6 12

8 110xxxxx-01xx 3 5 2 2 0 5 7 12

9 100xxx-1011xxxx 3 3 4 4 0 7 7 14

10 100xxx-11010xxxxx 3 3 5 5 0 8 8 16

11 1111110xxxxxxxxx-00x 7 9 2 1 0 9 10 19

12 101xxxx-1111000xxxxxx 3 4 7 6 0 10 10 20

B. Substitution limitations by image contents

The essence of the JPEG standard lays in the adjustment

of entropy codes to statistics of quantized DCT coefficients

of an average, natural image. By lowering the quality set-

tings, one quantizes DCT coefficients more roughly, and thus

decreases differences between DC coefficients, increases the

number and seriality of zero-valued AC coefficients, and

decreases magnitudes of non-zero ones. The reconstructed

image looks worse, but it is described by a shorter bit stream.

Shortening of code words results in an increased probability

that they cannot be replaced in accordance with our cipher.

Moreover, it decreases the number of substitutes, when code

words can be replaced. Both these issues can be explained

by using Table IV and Fig. 3, which show properties of bit

streams that result from JPEG-encoding of the Lena image for

various quality settings.

In Table IV, one can see that decreasing quality increases

the number of pixel blocks which are described by only DC-

related bits, followed by the EOB code word, so that our cipher

cannot be applied. Such situations do not occur for higher-

quality settings, Q > 75%, but become frequent for Q < 50%.

In Fig. 3, the color of a small square shows how many

blocks of an image are described by code words and value

bits, whose lengths and numbers, respectively, are given by

the coordinates of the square. When the quality is decreased,

the distribution of code words shifts toward the origin: shorter

ones occur more frequently, while longer ones disappear.

The problem becomes clear after comparing the plots in

Fig. 3 to that in Fig. 2. The former overlap little with the

MAREK PARFIENIUK: ENCRYPTING JPEG-COMPRESSED IMAGES BY SUBSTITUTING HUFFMAN CODE WORDS 547

0 10 20

5

10

15

20

25

0 10 20 0 10 20 0 10 20 0 10 20

0-0

1-1

2-2

3-4

5-8

9-16

17-32

33-64

65-128

129-256

257-512

Fig. 3. Occurrence frequencies of DC-AC pairs of code words for the Lena image (512× 512 pixels).

TABLE IV
PROPERTIES OF JPEG BIT STREAMS OF THE LENA IMAGE

Quality Ratio PSNR Percentage of blocks with the DC coefficient

[%] [bpp] [dB] followed by N nonzero AC coefficients [%]

N = 0 N = 1 N = 2 N = 3 N ≥ 4
100 4.93 47.34 0 0 0 0 100

90 1.78 39.92 0 0 0 0.02 99.98

75 0.98 37.40 0.29 1.46 4.27 6.98 86.98

50 0.63 35.55 6.22 11.49 13.62 10.88 57.76

25 0.43 33.57 22.31 19.11 13.28 8.10 37.18

TABLE V
PERCENTAGES OF 8× 8 PIXEL BLOCKS FOR WHICH THE DC-AC CODE

WORDS CAN BE SUBSTITUTED IN ACCORDANCE WITH OUR CIPHER

Lena Baboon Barbara Boat

Quality [%] Percentage of blocks [%]

100 84.49 88.84 85.81 84.17

90 84.47 88.33 85.37 78.83

75 81.98 80.85 80.46 71.02

50 69.60 73.04 69.82 55.93

25 51.63 68.60 57.39 43.77

latter even for higher-quality compression. For lower-quality

settings, the overlap is even smaller, and, what is even worse,

it occurs at the region, in Fig. 2, that is related to code words

that cannot be substituted or belong to substitute groups that

comprise very few pairs of code words.

So, in order to evaluate the probability that our cipher

can be applied to a pixel block of a given image, for given

quality settings, one should determine the corresponding data

distributions like those illustrated in Fig. 3 and combine it with

that that is shown in Fig. 2.

Table V shows summaries of such evaluations for several

well-known test images. In particular, it lists the percentages

of 8× 8 blocks to which our cipher can be applied. They are

satisfactory: for reasonable quality settings, our cipher is able

to modify considerable areas of an image.

A related measure of security is the average number of

substitutes per block. For these images, it varies from 1.3–

1.9 to 2.9–3.0, for quality settings from 25% to 100%,

respectively. By raising these numbers to the power of the

number of blocks in an image, one can estimate the number

of substitution combinations that must be reviewed in a brute

force attack on our cipher. Obviously, it is virtually impossible

to recover a quality image, without knowing the secret key.

V. CIPHER EVALUATION

A. Conceptual contribution

Our idea is related to encrypting data by altering Huffman

tables in accordance with a cryptographic key [7], [8]. How-

ever, we noticed no similar solutions, which would be based on

modifying both Huffman code words and value bits, of DC and

AC DCT coefficients. In most works, AC- and DC-related code

words are transformed independently, so encryption-related

changes to the bit stream are less deep than in our cipher,

unless coefficients are exchanged among blocks of 8×8 pixels,

which requires complicated data buffering.

By modifying together DC and AC coefficients of one pixel

block, our method is able to more affect the latter, or image

contours, without referring to other blocks.

A value of our works is also in providing arguments to

question the claims of [9], in which Huffman coding has been

evaluated as being unsuitable to encryption aimed at format

compliance and file size preservation.

B. Cipher manifestation in images and its strength

Figure 4 shows the Lena test image, and results of straight-

forward (without decryption) decoding of a corresponding

JPEG bit stream that had been encrypted using our method.

The reconstructed image is unreadable, mainly because of

rapid changes in average intensity of pixel blocks.

Unfortunately, an attacker can easily retrieve contours of

images from encrypted files. It is sufficient to only set all

DC coefficients to zero, and then to decode a picture without

care about decryption. Fig. 5 shows results of such decoding

of the Lena image from original and encrypted bit streams.

Even though edges are reconstructed incorrectly, they appear

in correct blocks, forming contours.

This weakness is not specific for our cipher. It charac-

terizes virtually all JPEG-compliant and file-size-preserving

approaches to joint compression-encryption, being related to

the JPEG coding principle of processing images block-by-

block. A cipher cannot modify the contour location without

moving information from block to block. So most publications

about extending JPEG coding with encryption describe some

method of exchanging pixels or (encoded) DCT coefficients

among blocks [3], [5]. They destroy contours but at the costs

of buffering an entire image and of increasing file size. Our

solution could as well be combined with such a method.

548 PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022

Fig. 4. Lena image and corresponding picture decoded without taking into
consideration that JPEG bit streams have been encrypted.

Fig. 5. Non-DC contents of the Lena images: original and decoded without
taking into consideration that JPEG bit streams have been encrypted.

C. Inconsistencies in DC and AC coefficients

Our cipher might produce files that are logically inconsis-

tent. In Fig. 4, artifacts result mainly from that encrypted code

words might describe differences that sum up to values of the

DC coefficient that are outside the allowed range ±211, for

luminance. A decoder silently converts an incorrect value into

a number in the range, by overflow, or saturation.

The issue is known, and some methods have been proposed

to handle it [3], [10], but they are based on simultaneously

processing many blocks of 8 × 8 pixels. The problem seems

to be neglected in some works, in which DC-related Huffman

code words are left untouched, and only value bits are modified

simply, by pseudorandomly changing only value sign or by

XOR-ing more bits with pseudorandom patterns [11], [12].

In most of works that modify the DC coefficient, the file

size is not preserved [13]–[15].

A related problem is that encrypted AC code words might

describe so long runs of zero-valued AC coefficients, that the

64-element vector is too short to put all coefficients into it. We

noticed no publications which would discuss this, even though

the issue can be caused by some known ciphers, like those of

[4] and [16] that shuffle AC-related code words inside a block

and among blocks, respectively.

D. Computational load and memory consumption

Considerable computations or memory are necessary to

determine substitutes of code words. A slower but memory-

efficient approach is to determine a substitute on-the-fly, by

scanning Huffman tables provided by a JPEG codec. Alter-

natively, an array of arrays can be prepared that stores infor-

mation about substitute groups. It would occupy an additional

memory much larger than that of the Huffman dictionary, but

substitutions could be realized quickly by using (h1 + h0) or

(v1 + v0) as an index into the array of code-word groups.

VI. CONCLUSION

From the point of view of practice, our cipher rather

only slightly outperforms the known approaches to combining

JPEG compression with encryption. However, it can be evalu-

ated as conceptually subtle and sophisticated, being based on

nuances related to JPEG Huffman dictionaries of code words

and to distributions of quantized DCT coefficients. To the best

of our knowledge, this is the first paper that demonstrates and

analyses these nuances, via unique plots and tables.

REFERENCES

[1] P. Li and K.-T. Lo, “Survey on JPEG compatible joint image compres-
sion and encryption algorithms,” IET Signal Process., vol. 14, no. 8, pp.
475–488, 2020. doi: 10.1049/iet-spr.2019.0276

[2] A. Massoudi, F. Lefebvre, C. De Vleeschouwer, B. Macq, and J.-J.
Quisquater, “Overview on selective encryption of image and video:
Challenges and perspectives,” EURASIP J. Inf. Secur., vol. 2008, pp.
5:1–5:18, Jan. 2008. doi: 10.1155/2008/179290

[3] J. He, S. Huang, S. Tang, and J. Huang, “JPEG image encryp-
tion with improved format compatibility and file size preservation,”
IEEE Trans. Multimedia, vol. 20, no. 10, pp. 2645–2658, 2018. doi:
10.1109/TMM.2018.2817065

[4] S. Auer, A. Bliem, D. Engel, A. Uhl, and A. Unterweger, “Bitstream-
based JPEG encryption in real-time,” Int. J. Digital Crime Forensics,
vol. 5, no. 3, pp. 1–14, jul 2013. doi: 10.4018/jdcf.2013070101

[5] K. Kurihara, M. Kikuchi, S. Imaizumi, S. Shiota†, and H. Kiya, “An
encryption-then-compression system for JPEG/Motion JPEG standard,”
IEICE Trans. Fundam. Electron. Commun. Comput. Sci., vol. E98.A,
no. 11, pp. 2238–2245, nov 2015. doi: 10.1587/transfun.E98.A.2238

[6] M. Parfieniuk and P. Jankowski, “Encrypting Huffman-encoded data by
substituting pairs of code words without changing the bit count of a
pair,” in Proc. 3rd Int. Conf. Cryptography Security Syst. (CSS), Lublin,
Poland, 22-24 Sep. 2014. doi: 10.1007/978-3-662-44893-9_2 pp. 12–22.

[7] M. S. Kankanhalli and T. T. Guan, “Compressed-domain scrambler/de-
scrambler for digital video,” IEEE Trans. Consum. Electron., vol. 48,
no. 2, pp. 356–365, May 2002. doi: 10.1109/TCE.2002.1010142

[8] C.-P. Wu and C.-C. J. Kuo, “Fast encryption methods for audiovisual
data confidentiality,” in Multimedia Syst. Appl. III, ser. Proc. SPIE, vol.
4209, Boston, MA, Nov. 2000. doi: 10.1117/12.420829 pp. 284–295.

[9] S. Li, On the Performance of Secret Entropy Coding: A Perspective

Beyond Security. Berlin, Heidelberg: Springer, 2012, pp. 389–401.
[10] W. Li and Y. Yuan, “A leak and its remedy in JPEG image encryption,”

Int. J. Computer Mathematics, vol. 84, no. 9, pp. 1367 – 1378, Sep.
2007. doi: 10.1080/00207160701294376

[11] K. Yi and K. Kim, “Encryption method of compressed images with
JPEG compliance by shuffling information both in spatial and frequency
domains,” in Advanced Multimedia and Ubiquitous Engineering, J. J.
Park, H. Jin, Y.-S. Jeong, and M. K. Khan, Eds. Singapore: Springer,
2016. doi: 10.1007/978-981-10-1536-6_86 pp. 661–667.

[12] S. Li and Y. Zhang, “Quantized DCT coefficient category address
encryption for JPEG image,” KSII Trans. Internet Inf. Syst., vol. 10,
no. 4, pp. 1790–1806, Apr. 2016. doi: 10.3837/tiis.2016.04.018

[13] Y. Mao and M. Wu, “A joint signal processing and cryptographic ap-
proach to multimedia encryption,” IEEE Trans. Image Process., vol. 15,
no. 7, pp. 2061–2075, Jul. 2006. doi: 10.1109/TIP.2006.873426

[14] S. Lian, J. Sun, and Z. Wang, “A novel image encryption scheme based-
on JPEG encoding,” in Proc. 8th Int. Conf. Inf. Vis. (IV), London, UK,
16 Jul. 2004. doi: 10.1109/IV.2004.1320147 pp. 217–220.

[15] X. Niu, C. Zhou, J. Ding, and B. Yang, “JPEG encryption with file size
preservation,” in Proc. Int. Conf. Intell. Inf. Hiding Multimedia Signal

Process. (IIHMSP), Harbin, China, 15-17 Aug. 2008. doi: 10.1109/IIH-
MSP.2008.207 pp. 308–311.

[16] B. Yang, C.-Q. Zhou, C. Busch, and X.-M. Niu, “Transparent and
perceptually enhanced JPEG image encryption,” in Proc. 16th Int.

Conf. Digital Signal Process., Santorini, Greece, 5-7 Jul. 2009. doi:
10.1109/ICDSP.2009.5201075 pp. 1–6.

MAREK PARFIENIUK: ENCRYPTING JPEG-COMPRESSED IMAGES BY SUBSTITUTING HUFFMAN CODE WORDS 549

