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Abstract—Security Games have been used in several different
fields to randomise the division of limited resources and thus
maximise the possibility of securing a set of targets. For this
very practical purpose it is natural to consider primarily mixed
strategies, but such focus omits some theoretical properties of
the games discussed. In this paper we discuss the existence and
properties of pure Nash equilibria in security games. We give
an overview of the basic observations that can be made in this
setting. We also recognize an interesting problem in a case with
multiple players playing a security game asynchronously, propose
an algorithm for finding a strategy for any given player in the
mentioned case and prove that the strategy profile resulting from
the algorithm is in fact a Nash equilibrium and, even stronger,
a subgame perfect equilibrium. We think that these findings are
a nice supplement of the practical approach to Security Games
and allow to form new research questions.

I. INTRODUCTION

Since its conception in the previous century, Game Theory

provided a language which has been used to discuss, among

other things, how businesses compete on a given market, how

to model predator-pray interactions in the animal kingdom and,

most famously, how to behave during an interrogation. This

should come at no surprise as, at its core, game theory de-

scribes conflict between autonomous entities and such beings

can be recognized in almost any setting.

One of the most basic concepts that was necessary to define

in this field from the very beginning,is how to recognize

whether any decision made by an entity is good or not.

Typically it is decided by considering the potential outcome,

which is provided by knowing the decision process of all of the

players,and testing whether it has a desired set of properties.

One of the most known descriptions of a good strategy

profile is the Nash equilibrium [1]. While it has its own

drawbacks, it provides an reasonable set of assumptions on

the behaviour of the players and always exists in finite games

with mixed strategies.

A mixed strategy is when the decision process of a player is

given by a probabilistic function over the possible actions, and

thus is great to describe the uncertainty in decision making. In

contrast we have pure strategies, where a player chooses one

action. There is no guarantee that there is a Nash equilibrium

consisting of only of pure strategies, which makes it a very

interesting decision question, that has been studied for several

classes of games [2] [3].

An interesting type of game, for which pure strategies were

not considered, are the so called security games. Based on an

idea by Stackelberg [4], these games divide the players into

two groups, of which one declares their strategies before the

other, and tries to find a Nash equilibrium in such setting. This

approach has been successfully applied in several systems, like

the security checkpoint schedule in LAX airport [5], plan-

ing US Air Marshals flight security patterns [6], preventing

poaching [7] and other cases. While it should be obvious why

limiting yourself to just pure strategies in security games is

not the best thing to do from a practical point of view, we

found the theoretical properties of this model to be interesting

and this paper, which is based on a PhD thesis [8], provides

some insights to the approach.

The structure of this paper is the following: In section 2

we provide the basic definitions needed for the discussion

and observations that can be made about pure strategies in

security games. In next section we discuss deeper a specific

case were we have multiple defenders playing asynchronously

and recognize which game theory concepts should be used

to find the strategies in that setting. Section 4 contains the

algorithm for choosing a strategy for each player and the

proof that the resulting strategy profile is a subgame perfect

equilibrium. In the final section we will briefly summarize our

observations and recognize further possible areas of inquiry.

II. BASIC DEFINITIONS AND OBSERVATIONS

As a game in normal form we recognise a tuple (N,A, u)
where: N is a finite set of players, indexed by i; A = A1 ×
· · ·×An where Ai is a finite set of actions available to player

i. Each vector (a1, . . . , an) in A is called an action profile;

u = (u1, . . . , un), where ui : A ³ = is a valuating function

for player i. In our cases we will assume that the goal of each

player is to get the largest possible value from their valuating

function. Moreover in the games we will be discussing any

action will be corresponding to choosing an object to protect

and thus we sometimes use the expressions committing to an

action and picking an object interchangeably, hopefully not

causing too much confusion. The assignment of probabilities

by a player to his set of available actions is called a strategy

and the decision on the probabilities is called committing to a

strategy. If the assignment gives one of the actions probability

1 then it is called a pure strategy. Any other strategy is called

mixed. A strategy profile is a vector containing strategies of

all players in a given game. To formalize the concepts of good

strategies we define a best response for the player i to an action
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vector a2i (an action vector without the i-th position) is an

action a * Ai such that for all a2 in Ai we have ui(a2i, a) g
ui(a2i, a

2). A strategy a = (a1, . . . , an) is a Nash equilibrium

iff for all i in {1, . . . , n} ai is a best response to a2i.

Now we can move on to define security games, in which

we divide the players in to two groups, one of which declares

their strategies before the other. We call the first group the

defendersand the second group is called the attackers. In any

case an action done by a defender is interpreted as defending a

specific object, corridor, monument etc. and an action chosen

by the attacker is assaulting it. For it to be a security game, the

valuation function has to have an additional property: if the

attacker chose to attack an undefended target his valuation

function will be higher that if the target was defended.

Symmetrically the valuation function for the defender should

be worse when an undefended object has been attacked, then

if an defended object has been attacked.

While the properties of the valuation function play a crucial

role in finding mixed strategies in Security Games, there are

not that important when we assume that only pure strategies

are available to the players. In the case of pure strategies in

security games it is sufficient to just consider the strategies

of the defenders. Now let us think what will happen, if all of

the defenders have to commit to a strategy at the same time.

Obviously, they want their most valued object to be protected

and they have no way to coordinate with other players. If for

each of them the most valuable object is different, then we

will have a Nash equilibrium.

If two players value one object the most we have an

interesting situation: on one hand if they are rational they

should pick the most valued object, but that will lead to to a

strategy profile that is not a Nash equilibrium, as if only one of

the would switch to his second best object, he would increase

his valuation function. On the other there is no rational way for

any of those players to make a different decision as they are

risking lesser value if both of them choose their second best

option. So we would have a situation where there may exist

a pure Nash equilibrium, but there is no way for the players

to achieve it. This problem could disappear, if the defenders

themselves played in a given order, but it may not be the case,

and will be the topic of our next inquiry.

III. MULTIPLE DEFENDERS IN AN ASYNCHRONOUS GAME

Let us consider a security game with n defenders and one

attacker. Each action of a defender consists of picking an

object to defend. The defenders commit to their pure strategies

in a given order. The valuation function for each player is given

as the sum of all values of the objects picked by all of the

players. This model describes a sequential game which can be

described a a game in Extended Form. Full formal definitions

of an Extended Form game, Nash equilibrium and a sub-game

perfect equilibrium in such games can be found in handbooks

like [9] or [10]) We will describe the basic intuitions behind

those concepts.

We can represent a game in Extended Form as a tree in

which: each vertex represents the state of the game at the

moment, the root being the game before any move was made,

and each leaf describing each possible outcome of the game,

each edge represents an action that the current player can

choose and connects the vertex corresponding to the game

state before that action to the vertex with the game state after

that action. With this representation any sub-tree that starts in

a vertex and consists of all the edges and vertices below is

also a game and is called a sub-game.

Any game in extended form can be translated into normal

form and thus we can use the definitions of Nash equilibrium

and best response in this context. There is a problem however,

as the Nash equilibrium does not have to be optimal on sub-

games. A sub-game perfect equilibrium is a Nash equilibrium

that is also a Nash equilibrium on all of their sub-games.

Now if we have the complete game tree, it is easy to see

that we can find an best response for any player simply by

backtracking the expected results from the leaves to the current

situation. This is unfeasible, as the whole game tree will

grow exponentially with respect to the number of players and

possible actions. To get rid of this problem, instead of trying

to find a whole strategy, we will try to identify a good move

and argue that there exists a sub-game perfect equilibrium in

which this was the best response.

Consider a game G with the set of actions A and a strategy

profile s for G. A sequence (a1, ..., an) * An is a result of

strategy s if, and only if starting in the root of the game tree

and moving down an edge only if it is the action indicated by

the strategy s, the actions the edges traveled through form the

sequence (a1, ..., an).
We say a sequence of actions (a1, ..., an) is called reason-

able if there exists a strategy profile that is a sub-game perfect

equilibrium, such that (a1, ..., an) is a result of s.

Thus we can simplify our problem and instead of finding

a strategy profile which should describe actions taken in any

possible situation, just find an sequence of actions and argue

that they are a result of a good strategy profile.

IV. MAIN RESULT

We will present now the algorithm for finding good move

for each player. The algorithm in itself is fairly simple and

easily works in polynomial time.

A. Algorithms for decisions

The basic algorithm

Input: A - set of available actions; V - the valuation matrix;

i - the index of the player making the decision;

Output: (ai, ..., an) the predicted choices of actions for

players i to n.

1) Delete all columns for actions that have already been

chosen.

2) Define k as the number of rows in the matrix.

3) Find in the last row the column in which there is the

most valuable object for the k-th player (if more then

one pick at random).

4) Mark this object as ak.

5) Remove the last row from the matrix.
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6) Repeat steps 1-4 until ai is defined.

The modified algorithm

Input: A - set of available actions;

V - the valuation matrix;

i - the index of the player making the decision;

(a1, ..., an) - sequence of choices of actions predicted by the

original algorithm;

Output: (a2
i
, ..., a2

n
) the predicted choices of actions for

players i to n.

1) Delete all columns for objects that have already been

chosen.

2) Define k as the number of rows in the matrix.

3) Find in the last row the column in which is the most

valuable object for the k-th player (if more than one

and ak is available pick ak else pick at random).

4) Mark this object as a2
k
.

5) Remove the last row from the matrix.

6) Repeat steps 1-4 until a2
i

is defined.

B. Proofs of reasonability

To prove that the sequence provided by the basic algorithm

is reasonable we will use the following lemma, which shows

that if we have a sequence predicted by the basic algorithm

and we remove one object from the set of possible objects,

then using the modified algorithm for a player will have an

output which will differ from the original output at most at

one choice.

Lemma 4.1: Let (a1, ..., an) be the result of using the basic

algorithm on the game G with the set of actions A. By running

the modified algorithm for the game G, sequence (a1, ..., an)
and set of objects A\{a}, where a * A, will give a sequence

(a2
1
, ..., a2

n
) which will differ from (a1, ..., an) in at most one

element and only if a * {a1, ..., an}.

Case 1: First let us consider the case in which a ;*
{a1, ..., an}. In this case the resulting sequence will be iden-

tical to the original. As in step 4 of the modified algorithm

for the k-player the action ak will still be available and the

valuation of objects has not changed, it will be chosen by the

k-th player.

Case 2: Now consider the case in which a * {a1, ..., an}.

Let us assume that a = ak for some 1 g k g n. Since none

of the values have changed and the players form k + 1 to n

will still have their previous choices available, the algorithm

will pick those objects. Of course player k cannot choose ak
because it is not in the set of possible actions. The modified

algorithm finds a new object for him which we will mark as a2.

It cannot be that a2 = ai for i > k because these objects are

already unavailable for the algorithm by now. If a2 ;= ai for all

i < k then this will be the only change result of the algorithm,

because then all of the objects the modified algorithm has to

pick in case of ties are available as in case 1. If a2 = ai
for some i < k, then it will be assigned to player k, but we

have a problem with the assignment for player ai. Running

the modified algorithm for players from i + 1 to k 2 1 will

give the same result as the original, by the same reasoning

as before. For player i we can repeat the same reasoning as

we did for the player k. As in each such repetition the index

will get smaller and the sequence is finite, such replacement

will happen only a finite number of times and will result in a

sequence which differs only in one element from the original

sequence.

Theorem 4.2: Let (a1, ..., an) be the result of using the

algorithm on the game G with the set of objects A. Then

(a1, ..., an) is reasonable.

We will prove this by assigning a move each vertex in

the game tree and arguing that we can construct a sub-game

perfect equilibrium for the game G for which (a1, ..., an) is the

result. The proof goes by induction on the number of players.

The case of n = 1 is trivial.

n = 2: We have one vertex corresponding to the decision

of player 1 from which descent m edges corresponding to all

possible actions for player 1. We put a2 on all vertices of

player 2 except the one connected to the edge a2. There we

can use the modified algorithm on the sequence (a1, a2) and

the set of objects A\{a2} to find one to put on this vertex. We

put a1 on the root. It should be easy to see that this assignment

will produce a sub-game perfect equilibrium with the sequence

(a1, a2) as a result.

n 2 1 ó n: Now we assume that we can assign moves

tree for any game G with n 2 1 players a given set of

objects A which constructs a sub-game perfect equilibrium

and a sequence given by the algorithm is the result. We will

show how to use this to assign moves in a tree for any

game with n players and a sequence (a1, ..., an) given by the

algorithm. We start from a tree for the game G with all vertices

empty. For every vertex connected to the root we will run the

modified algorithm on the game G without player 1, sequence

(a2, ..., an), and set of objects A\{a}, where a is the label of

the edge between this vertex and the root. By our inductive

assumption, we can construct a full strategy on the subtree

starting from that vertex, which has the desired properties

and has (a2
2
, ..., a2

n
), given by the modified algorithm, as a

result. We can see that by discarding the object a for this

whole subtree we can be sure that, as long as we pick the

proper object for the root, the whole strategy will stay a perfect

subgame equilibrium. What is left is to show that there are no

better actions to put at the root than a1. Consider first edges a

which are not in the set {a2, ..., an}. If player one was to pick

one of them the result of playing the subtree under that edge,

by the lemma, is exactly the sequence (a2, ..., an), so it only

could be beneficial for him if va
1
> va1

1
which is contrary to

the way we picked a1. Suppose now that player 1 could benefit

from committing to an action a form the set {a2, ..., an}. By

the lemma the resulting sequence (a, a2
2
, ..., a2

n
) differs in at

most one element from the sequence (a1, ..., an). If it differs,

then for it to be beneficial it had to be the case that this one

action has a greater value for player 1 than a1, which is in

contrary with the way a1 was chosen. So there is no action

which grants a better result for player 1 than choosing a1.

We put a1 on the root getting a proper assignment to the tree

which can construct a perfect su-game equilibrium with the

result (a1, ..., an) thus completing the construction.
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With multiple preferred objects it could happen that the

whole outcome of the game is very different from what the

players predicted and in fact the outcome does not have to be

a sub-game perfect equilibrium, which would undermine the

validity of the reasonable move as a good strategy concept.

The next theorem proves that no matter how often the players

were wrong in their predictions the whole outcome will be in

fact reasonable.

Theorem 4.3: Let G be a game with n players and the set

A of available objects. Player 1 uses the basic algorithm to

obtain the sequence (a1
1
, ..., a1

n
) and picks a1

1
. Then player

2 uses the basic algorithm on the set A\{a1
1
}, obtains the

sequence (a2
1
, ..., a2

n21
) and commits to a2

1
. The following

players continue in a similar fashion cutting the set of objects.

Then the sequence (a1
1
, a2

1
, ..., an

1
) is reasonable.

The proof goes by induction on the number of players. The

case n = 1 is trivial.

n = 2: As in the previous proof we have one vertex

corresponding to the decision of player 1 from which descent

m edges corresponding to all possible actions for player 1. W

put a1
1

on the one vertex of player 1. We put a2
1

on all vertices

of player 2 except the one connected to the edge a2
1
. We use

the modified algorithm for the sequence (a1
1
, a2

1
) and the set

of objects A\{a2
1
} to find what to place on the last vertex.

This strategy will have (a1
1
, a2

1
) as a result. As to show that

the assignment can be used to construct a sub-game perfect

equilibrium it suffices to notice that even if a2
1
;= a1

2
both

must be equally valued by player 2 because the algorithm

gave those two elements as a possible move of player 2 on two

different occasions, while both those actions where available

to the player.

n 2 1 ó n: We assume that we can build a strategy tree

for any game G with n2 1 players and a given set of actions

A which is PSE and the proper sequence is the result. To

show the result for n players we start with a game tree with

all vertices empty. For every vertex connected to the root we

run the modified algorithm on the game G without player 1,

sequence (a2
1
, ..., an

1
) and the set of actions A\{a}, where a is

the label of the edge between this vertex and the root. By the

inductive assumption the sequence(a2
1
, ..., an

1
) is reasonable for

the proper sub-game, so the result of the modified algorithm

is also reasonable and a sub-game perfect equilibrium can

be constructed on this subtree. It remains to argue that after

putting a1
1

in the root the strategy we get a similar result. It

is important to notice that the sequence (a1
1
, a2

1
, ..., an

1
) is a

possible result of using the regular algorithm for the game G

with n players and set of objects A. Thus we can use the

lemma for all the subtrees. So we can use the exact same

argument as in the proof of the previous theorem to show that

player 1 cannot benefit from changing committing to another

move than a1
1
.

We can notice that this proof provides more than just the

answer to this specific case. First of we didn’t explicitly stated

if there always exists a pure Nash equilibrium in the case of

simultaneous moves by the defenders. We can see that any

sub-game perfect equilibrium provided by our algorithm will

remain a Nash equilibrium, if all of the moves are made at

the same time and so we see that a pure Nash equilibrium

always exists in this case. If we would like to consider a case

in which some of the defenders have the resources to defend

more than one object we can simulate that by adding copies

of that player’s valuations to the valuation matrix and dividing

one defender with n resources into n players with one resource

and identical valuations.

V. SUMMARY

In this paper we have discussed the properties of pure

strategies in security games. We recognized which part of

the model can be omitted in this situation and which can be

redefined to simplify the model. We introduced a situation

in which the defenders pick actions in a sequential order,

we proved that a pure strategy equilibrium exists in such

setting, that we can find a move corresponding to such an

equilibrium in polynomial time, and used this construction to

prove the existence to a pure Nash equilibrium in the general

case of synchronous play of the defenders, as well as when

the defenders have more that one resource to use.

As for future directions, the problem discussed in this

paper assumed no possibility of communication between the

defenders and we think that any query in that direction could

be interesting. Also we can see that the result of the game

in our case could depend heavily on the order in which the

players were able to commit to their strategy. As so, we think

that that finding out how much trying to coordinate the players,

via an additional player or otherwise, could affect the possible

result, or even finding out exactly how many different results

can be achieved from a given game in any ordering, could

pose also an interesting challenge.
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