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Abstract—Distributed Stream Processing systems are becoming
an increasingly essential part of Big Data processing platforms
as users grow ever more reliant on their ability to provide
fast access to new results. As such, making timely decisions
based on these results is dependent on a system’s ability to
tolerate failure. Typically, these systems achieve fault tolerance
and the ability to recover automatically from partial failures by
implementing checkpoint and rollback recovery. However, owing
to the statistical probability of partial failures occurring in these
distributed environments and the variability of workloads upon
which jobs are expected to operate, static configurations will often
not meet Quality of Service constraints with low overhead.

In this paper we present Khaos, a new approach which
utilizes the parallel processing capabilities of cloud orchestration
technologies for the automatic runtime optimization of fault
tolerance configurations in Distributed Stream Processing jobs.
Our approach employs three subsequent phases which borrows
from the principles of Chaos Engineering: establish the steady-
state processing conditions, conduct experiments to better un-
derstand how the system performs under failure, and use this
knowledge to continuously minimize Quality of Service violations.
We implemented Khaos prototypically together with Apache
Flink and demonstrate its usefulness experimentally.

Index Terms—Distributed Stream Processing, Chaos Engineer-
ing, Quality of Service, Cloud, Parallel Profiling, QoS Modeling,
Runtime Optimization

I. INTRODUCTION

W ITH the growing necessity to quickly process large

volumes of unbounded data, Distributed Stream Pro-

cessing (DSP) systems are becoming an increasingly essential

part of data processing environments. It is here where events

must traverse a graph of streaming operators to allow for the

extraction of results, which are at their most valuable closest

to the time of data arrival. Data streams are continuously

generated in a variety of contexts such as sensors in IoT

network, network monitoring, financial fraud detection, click

stream analytics, spam filtering, and social media [1], [2].

DSP systems are not only required to offer near to real-

time processing latencies at high throughput rates, but also

to recover from the various types of failures that inevitably

occur in these environments.

DSP jobs are, in principle, required to operate indefinitely

on unbounded streams of continuous data and exhibit het-

erogeneous modes of failure as they continue to run over

long periods of time [3]. Consequently, DSP systems such

as Apache Storm [4], Apache Spark [5], or Apache Flink [6]

feature high availability modes and fault tolerance mechanisms

that allow for results to be consistent in the presence of

partial failures. However, the complexity with which these

systems are composed makes estimating how a system will

perform through manual manipulation of the configuration

sets a hard problem to solve. This is complicated by the fact

that DSP jobs operating in an environment where streaming

workloads change over time will make any static configuration

selections obsolete in short order. This is especially relevant

when considering critical jobs where the presence of Quality

of Service (QoS) constraints dictate the minimum level of

performance that is to be expected. It is therefore essential

when optimizing the fault tolerance mechanism of DSP jobs to

not only understand how configuration impacts upon recovery

times as well as end-to-end processing latencies, but to ensure

that the system is capable of reacting to changing workloads.

Checkpointing mechanisms are among the most popular and

effective techniques for achieving fault tolerance in real world

processing systems and consequently a number of methods

for auto-configuration of checkpointing have been proposed.

Most of them try to optimize the checkpoint interval by means

of predicting or utilizing failure rates [7], the Mean Time

To Failure (MTTF) [8]–[10], or recovery times [11], whereas

some approaches even employ advanced multi-level check-

pointing [12]–[17]. Yet, the majority of such methods either

assume static workloads, consider solely offline optimization,

or are primarily designed for high-performance computing

(HPC) environments, which renders them not suitable for

real-world DSP systems. Therefore, a workload-adaptive DSP

configuration optimization approach, paired with a systemati-

cally attempt to evaluating DSP failure recovery performance

executing in production-like environments, is needed.

In this paper we present Khaos, a novel approach for the

automatic runtime optimization of DSP fault tolerance config-

urations. Borrowing from the principles of Chaos Engineering

[18], Khaos achieves this by executing a three phase plan:

Firstly, establishing the steady-state by recording and then

analyzing the streaming workload of a targeted DSP job to

identify interesting points for failure injection; Secondly, by

taking advantage of container orchestration cloud technologies

to replicate multiple pipelines in parallel where the workload

is replayed, and then utilizing fine-grained failure injection

together with an anomaly detector trained on normal pipeline

executions to measure recovery times across a range of con-

figuration settings and throughput rates; and thirdly, by taking

the information gathered during profiling to train analytical

models to monitor for when recovery times and latencies
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would exceed user-defined QoS constraints and automatically

optimize for better fault tolerance configurations at runtime. To

determine if violations should be acted upon immediately or

deferred for later, Khaos makes use of Time Series Forecasting

(TSF) to predict future workloads. Khaos is applicable for

users willing to initially accept an increased level of resource

utilization to ensure optimized execution over the longer term.

The remainder of the paper is structured as follows: Section

II explores the related work regarding DSP systems and their

fault tolerance mechanisms as well as adaptive checkpointing

schemes. Section III presents our approach to automatically

optimizing the fault tolerance mechanism of targeted DSP

jobs operating on variable workloads; Section IV describes our

evaluation through performing two experiments; and Section

V summarizes our findings.

II. RELATED WORK

In this section we examine how fault tolerance is handled in

three popular DSP systems as well as work most related to our

own, aimed at adaptive checkpointing and failure injection.

A. Distributed Stream Processing Systems

In DSP, checkpointing is the most popular fault tolerance

mechanism for real world systems. One of the first widely

used large-scale DSP systems is Apache Storm [4], which

guarantees that in the event of failure, messages are re-

processed by using a mechanism of upstream operator backup

and message acknowledgements. Although such a mechanism

does guarantee messages are processed at least once, it also

results in duplicate messages passing through the system and,

therefore, falls short of the exactly-once processing guarantees

needed by many modern DSP jobs.

Apache Spark Streaming [5], on the other hand, is designed

around the idea of micro-batching where messages are grouped

together in an attempt to overcome the overhead caused

by message-level synchronization. Here, micro-batches either

succeed or are recomputed when failures occur. It uses periodic

checkpointing to truncate the RDD lineage graph and save both

metadata and data to reliable storage. This technique allows

for exactly-once processing of messages.

Apache Flink [6] is a well-known DSP system, which

likewise provides exactly-once processing guarantees through

periodically creating and saving a distributed snapshot of the

global state [19]. It achieves this by passing streaming barriers

through the execution graph from source to sink operators. At

the arrival of a barrier, each operator performs a checkpoint

of the local state and then passes the barrier on to all output

edges. A checkpoint is considered complete when all operators

have completed their individual checkpoints.

B. Adaptive Checkpointing

A number of approaches have been proposed that optimize

the fault tolerance configuration parameters by finding an

optimal checkpoint interval (CI) to improve performance. Our

previous work [11] focused on predicting recovery times

and then optimizing the CI with regards to a single user-

defined QoS constraint. However, this approach is aimed at

scenarios where jobs process a static workload, i.e. throughput

does not change over time. In the closely related area of

research, we published an approach which uses times series

forecasting to optimize the resource utilization of DSP jobs

executing in environments where the workload is expected

to change over time [20]. A group of approaches focuses on

determining the mean time to failure (MTTF) of cluster nodes

and then adaptively fitting a CI that minimizes the time lost

due to failure [8]–[10]. These approaches, however, are more

appropriate to high-performance computing (HPC) clusters

and batch processing jobs as they rely on jobs having a finite

execution time as part of their calculations. Specific to DSP

systems, [7] incorporates failure rates in an attempt to fit the CI

based on the MTTF. However, unlike Khaos, optimizations are

not performed at runtime and therefore dynamic workloads are

not taken into account. Additionally, it does not incorporate the

total time needed to recover to processing events at the latest

timestamp nor consider any user-defined QoS constraints for

its optimization step.

Other approaches have been proposed using multi-level

checkpointing schemes to resolve the issue of check-

point/recovery overhead [12]–[17]. Different checkpointing

levels are used, which in turn are more flexible than traditional

single-level schemes as it can consider multiple-failure types

with each having a different checkpoint/recovery cost associ-

ated. Likewise, differing checkpoint levels can be associated

with different storage types, which is usually not possible with

single-level checkpoints. In [21], a two-level checkpointing

model is proposed: checkpoint level 1 deals with errors with

low checkpoint/recovery overheads such as transient memory

errors, and checkpoint level 2 deals with hardware crashes

such as node failures. These approaches are specific to HPC

environments and need adaption before vendors can consider

implementing them in DSP systems.

C. Failure injection

Here we present approaches which use failure injection as a

means of gaining a greater insight into how systems perform

when things go wrong. Failure injection for distributed systems

is realized in [22] using virtualization at a low level. Both

machines and networks are virtualized, and a failure injection

is performed by uncontrolled shutdown of machines. The

authors whole approach is accurately described as an emu-

lation platform. In contrast, Khaos utilizes modern container

orchestration technologies for deploying DSP pipelines and

thus eases the emulation furthermore. In another work, fault in-

jection is used in [23] to assess the effectiveness of partial fault

tolerance techniques in DSP applications. The authors identify

four metrics that can be used to evaluate the impact of faults

in different stream operators with respect to predictability and

availability. To reduce the number of required fault injection

targets when evaluating a target application, their framework

pre-analyzes the data flow graph. An approach that combines

fault injection and data analytics is motivated in [24]. Here,
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a database of failures is populated during a profiling phase,

and queried during execution of production DSP jobs. The

database is specifically used to help identify root causes of

failures observed by providing injected faults that generated

similar processing flows.

Netflix injects failures into its production system using

its Chaos Automation Platform (ChAP) and Failure Injection

Testing (FIT) tools [25]. ChAP performs Chaos experiments

on a small, randomly selected percentage of live traffic. ChAP

deploys two scaled-down clusters of the Netflix service, one

to serve as the performance baseline, the other to serve as a

canary group. FIT injects either error responses or increases

latency to simulate failure scenarios [26] for the canary group

and the results are compared against the baseline. Results of

the Chaos experiment are evaluated by performing anomaly

comparisons to detect statistically significant deviations be-

tween the normal state and Chaos experiment [25].

III. APPROACH

This section describes in detail the various phases of our

approach Khaos, right after a general overview.

A. Idea Overview

The configuration of a fault tolerance mechanism has a

direct impact both on the performance and availability of any

running DSP job. Khaos borrows from the principles of Chaos

Engineering and takes advantage of the massively paralleliz-

able capabilities of container orchestration cloud technologies

to provide an automated runtime approach for tuning the fault

tolerance configuration of targeted DSP jobs. It achieves this

by first conducting parallel profiling runs where failures are

injected into short-lived profiling jobs, each testing a variation

of the configurations, and gathering metrics related to the

latencies and recovery times. These results are then used to

train two multivariate runtime models that, when combined,

provide a mechanism whereby user-defined performance and

availability constraints are monitored for violations. Should

this occur, the system can be automatically reconfigured to

provide the best trade-off between constraints.

The cost of reconfiguration should likewise be taken into

account, as it requires a full restart of the job with several

current DSP implementations, albeit without having to repro-

cess any messages that might have accumulated during the

downtime. This is because controlled restarts perform a system

save immediately before making the change and therefore no

consumer lag can build up. In order to do this we make use

of TSF to determine if a reconfiguration should be performed

at the current point in time, or if the decision can be deferred

to the next optimization cycle. The logic behind this is that

if the workload is expected to decrease substantially, then a

reconfiguration is not necessary. Overall, such an optimization

approach is imperative when operating in an environment

where the workload changes dynamically over time and any

static configurations are essentially made obsolete immedi-

ately. In order to achieve this, our approach is subdivided into

three distinct phases that are executed sequentially. Next we

describe each of these phases and provide formal definitions.

B. Phase 1: Establishing the Steady State

The first phase focuses on capturing and establishing the

steady state that describes job performance under failure-

free conditions. A graphical overview of this phase can be

seen in Figure 1(a). Consider a production-level DSP job

a user would like to have adaptively optimized. The job

is executing in a containerized environment, consuming a

variable workload from a streaming platform, and metrics are

gathered in a time series database. On initialization, Khaos

connects to the streaming platform and begins recording the

incoming event stream. It does this for a finite amount of

time k as defined by the user and ideally should contain the

maximum range of throughput rates as expected under normal

processing loads across that period. For best results, DSP

jobs processing a stationary data stream would best fit our

approach. When considering any single timestamp ti within

this recording period, we can define the set of arriving events

as E(ti) = {e
(ti)
1 , e

(ti)
2 , . . . , e

(ti)
n−1, e

(ti)
n }, where n denotes the

number of arriving events in that timestamp. Consequently, the

full set D of events arriving across all timestamps during the

recording period is defined as

D = {E(t1), E(t2), . . . , E(tk−1), E(tk)}. (1)

As Khaos is concerned with injecting failures into a running

system to gain an understanding of how recovery times differ

across various configurations, it needs to select a set of points

over the full range of observed throughput rates where failures

can be injected when the dataset is replayed. Therefore,

a continuous function W of time t is extracted from D
representing the workload over time and is defined by

W (t) = |E(t)| (2)

This function is analyzed to find a set of equidistantly

spaced throughput rates between the minimum and maximum

observed workloads and their corresponding timestamp values.

Importantly an averaging window is used to smooth the

workload function and remove outliers. Formally, we identify

tmin = arg min0≤j≤kW (j)

tmax = arg max0≤j≤kW (j)
(3)

as the points in time with minimum and maximum work-

load. Subsequently, we find m equidistant points and arrive at

a set F of timestamps representing the failure points, i.e.

F = {tmin, tmin+h, . . . , tmax−h, tmax},

h = (tmax − tmin)/(m− 1).
(4)

Since F is a set of timestamps, the corresponding set of

throughput rates TR can be defined as

TR = {W (f)|f ∈ F}. (5)
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(c) Phase 3: Modeling and Runtime Optimization.

Fig. 1: Overview of Khaos.

On the conclusion of phase 1, the steady state of the

production DSP job has been explored and the dataset D,

failure points F and corresponding throughput rates TR are

available for use in the next phase.

C. Phase 2: Experimentation and Profiling

The second phase focuses on performing experiments in an

environment that is as similar as possible to production with

the goal of gathering metrics data using the same DSP job

but executed across a closed range of configuration settings.

In order to do so we take advantage of container orchestra-

tion cloud technologies to rapidly replicate multiple profiling

pipelines in parallel, record their operational latencies under

differing throughput rates, and then use fine-grained failure

injection together with an anomaly detector A to measure

recovery times. Figure 1(b) provides a graphical overview of

this phase and illustrates the interactions between components.

Concerning configuration of the fault tolerance mechanism,

we are most concerned with the checkpoint interval, defined as

the frequency with which the checkpoint process is initiated.

It is by varying the CI that we are able to configure the fault

tolerance mechanism, where higher values represent possible

longer recovery times and, conversely, lower values represent

faster recovery times. Varying the checkpoint interval will have

an impact on both the overall performance and availability

of the system. For the CI, we seek to investigate a range of

z equidistantly spaced values given a minimum value and

a maximum value. We effectively obtain a set of concrete

configurations C with z = |C| analogue to the procedure for

F . Thus, we can test all configurations in C at the same time,

i.e. arriving at as many deployments as configuration values.

After the parallel profiling jobs have been instantiated, each

timestamp in the failure points F is registered with a built-

in failure injector. This is so that when the timestamp, and

therefore the associated throughput rate, is realized, Khaos

will inject a failure concurrently into each one of the parallel

deployments. Once this has been completed, Khaos will begin

replaying the dataset D at the same rate at which it was

recorded. All parallel profiling jobs will read from the same

source to which the data is being replayed. It is important to

note that this is a separate messaging queue to the one being

consumed by the production job. At the point before injecting

the failure, an average latency measurement is taken for each

of the parallel deployments forming the set L with

L = {l
(j)
i |1 ≤ i ≤ m, 1 ≤ j ≤ z}, (6)

where l
(j)
i is the average latency measurement correspond-

ing to the i-th failure injection into the j-th deployment.

Although the full recorded dataset can be replayed, to reduce

resource utilization during profiling, the user can specify a

time interval where events just prior to and after the points of

failure injection can be replayed thus limiting time spent in

this phase. At the same time, performance metrics are gathered

across all parallel deployments in order to measure recovery

times. The metrics we are most concerned with include:

• Input Throughput: Measured in events per second, this

value represents the sum of the events entering the source

operators of the DSP job per second.

• Average Consumer Lag: Measured in number of

events, this value represents the number of events accumu-

lated at the messaging queue waiting to be consumed by the

source operators of the DSP job.

In order to measure how long it takes for the DSP job

to recover after experiencing a failure, the aforementioned

metrics are used to train an anomaly detection algorithm on

positive executions, i.e. let the function s : X → X perfectly

represent the metrics data stream such that for any given data

point x ∈ X the prediction is always s(x) = x. Assuming

most data collected in the recording period is normal, the

algorithm can learn to detect deviations from the expected

normal behaviors and therefore will report an anomalous

behavior if a configurable threshold based on a window of
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past errors is hit. Measuring the length of time the system was

in an anomalous state is therefore equivalent to the recovery

time. In order to accomplish this, we utilize an online ARIMA

method motivated in [27] for our implementation.

It is important to note that in this context, the recovery time

is not only referring to the time the system is in an inconsis-

tent state before processing resumes. For systems employing

checkpoint and rollback recovery strategies, processing will

start at a previous saved offset and then attempt to catch up to

the latest offset, all while new events are continuously arriving.

It is this length of time, from when the failure occurs to the

point at which processing is once again producing results at

the latest offset, that we are interested in measuring, as it is

a more accurate reflection of availability. Thus, we define the

set of recovery times as measured by the anomaly detector as

R = {r
(j)
i |1 ≤ i ≤ m, 1 ≤ j ≤ z}. (7)

Consequently, the lengths of the observed recovery times in

R are influenced by two main factors: the variable nature of

the workload, i.e. the changing number of messages arriving

per second over time; and the point at which the failure occurs

relative to the next checkpoint completed successfully. As we

intend to create a prediction model in the next phase using

the recovery time observations, these factors need to be con-

sidered as they introduce variance influencing comparability,

thus making our models unusable without further adaptions.

Concerning the workload, we make the assumption that over

these shorter time periods where recovery takes place, i.e. less

than 15 minutes, the changing throughput rates would average

out over time. Therefore, a constant workload can be assumed

However, the point at which the last checkpoint completed

successfully will differ across failures and will directly impact

the number of messages that need to be reprocessed, thus

increasing or decreasing the recovery time. Therefore, for

the purposes of our work, we only consider the worst-case

scenario, i.e. we assume failures occur at the point right

before the next checkpoint completes successfully. As such,

for profiling runs, we measure the distance in time until the

next checkpoint is scheduled to start, and inject the failure just

prior to this point.

At the conclusion of the profiling runs, the parallel deploy-

ments are deleted and the resources are released, with the

profiling sets C, TR, L, and R being passed into the third and

final phase addressing modeling and runtime optimization.

D. Phase 3: Modeling and Runtime Optimization

The third and final phase is intended to execute indefi-

nitely while continuously optimizing the targeted DSP job by

monitoring for violations of two user-defined QoS constraints:

lconst which defines an upper bound on the average end-to-end

latency; and rconst which defines an upper bound on predicted

recovery time. A violation of either constraint triggers a

reconfiguration of the system where a new CI is chosen. Care

must be taken when choosing a new CI value, as increasing the

frequency with which checkpoints are performed will result

in better recovery times but could likewise negatively impact

latencies and vice versa. Therefore, we formulate this as an

optimization problem where the objective is to select a CI that

minimizes for both performance and availability. A graphical

representation can be seen in Figure 1(c).

In order to achieve this, we train two multiple regression

models using the data gathered in the preceding two phases.

The performance model ML aims at finding a mapping such

that ML : C, TR → L, whereas the recovery time model

MR is configured as MR : C, TR → R. Once both models

have been trained with our observed values, metrics from the

targeted DSP job are continuously gathered and evaluated. For

performance violations, Khaos compares the current average

end-to-end latency to the performance constraint lconst. As end-

to-end latencies tend to be quite volatile, our previously fitted

models likely contain noise for which we need to account

when making actual predictions. Thus, we employ a correction

approach for the prospective prediction error to localize pre-

dictions to the current cluster conditions. Khaos keeps track of

the latency observations over the past k optimization iterations,

averages across the k pairwise fractional differences given the

current latency, and then uses this estimated rescaling factor

p to rescale the predicted value obtained from our model. For

recovery time violations, it determines the average throughput

rate and together with the current CI uses MR to predict the

recovery time considering the worst case scenario.

However, reconfiguration is not without its own cost and

requires a full restart of the job. Therefore, when violations

of the constraints are detected, Khaos will determine whether

or not a reconfiguration should be performed immediately or

if this decision should be deferred until the next optimization

cycle. In order to achieve this, a TSF model is trained on

the incoming message rate and a multi-step ahead forecast is

performed should a violation be detected. If the prospective

incoming message rate is expected to decrease significantly,

i.e. more than 10%, from the current point in time until

the next optimization run is executed, then the decision to

reconfigure can be delayed. Otherwise, the reconfiguration can

proceed as per normal. The goal of reconfiguration is to select

a CI value that results in the furthest distance from the two

upper bounds that satisfies both. Formally, this multi-objective

optimization problem can be formulated as

min
C

QR +Q∗
L + |QR −Q∗

L|

s.t. QR < rconst,

Q∗
L < lconst,

QR, Q
∗
L > 0.

(8)

Here, QR is the fraction
MR(C,TRavg)

rconst
between the prediction of

the recovery time model and the corresponding constraint. The

same applies to the latency model, except that Q∗
L describes

the fraction after rescaling, i.e. Q∗
L = p · QL. Given our

configuration set C and the current average throughput rate

TRavg, we aim at finding a value for the CI that satisfies both

objectives individually. If minimizing the above expression
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finds a new value for the CI, which is predicted to be

more performant, then the system is reconfigured should the

expected workload not decrease and monitoring continues.

IV. EVALUATION

Now we show that Khaos is both practical and beneficial

for DSP through experimentation. The prototype, data, and

experiment artifacts can be found in the following repository1.

A. Experimental Setup

Resource Details

OS Ubuntu 18.04.3
CPU Quadcore Intel Xeon CPU E3-1230 V2 3.30GHz

Memory 16 GB RAM
Storage 3TB RAID0 (3x1TB disks, linux software RAID)

Network 1 GBit Ethernet NIC
Software Java v1.11, Flink v1.12, Kafka v2.6, ZooKeeper

v3.6, Docker v19.3, Kubernetes v1.18, HDFS v2.8,
Redis v5.0, Prometheus v2.25

TABLE I: Cluster Specifications

Our experimental setup consisted of a co-located 50-node

Kubernetes [28] and HDFS [29] cluster as well as a 3-node

Apache Kafka2 cluster configured to have 8 partitions and a

replication factor of 3. Node specifications and software ver-

sions are summarized in Table I. A single switch connected all

nodes. Each experiment consisted of a Kubernetes namespace

containing: an Apache Flink3 native session cluster with all

jobs set to have a parallelism of 4; and a single Prometheus4

time series database was used for the gathering of metrics. The

Yahoo Streaming Benchmark (YSB) experiment additionally

made use of a Redis5 database. Regarding end-to-end latency

measurements, averages were taken over the 99th percentile

in order to filter outliers during normal failure free operations.

The timeout interval for Flink taskmanager nodes is 50s as

per the default settings. Importantly, for both experiments

QoS constraints for performance and availability were set at

1000ms for end-to-end latencies and 240s for recovery times

respectively. Each experiment was conducted 5 times with the

median selected for our results and discussion.

B. IoT Vehicles Experiment

We created a simulation that mapped the streets and inter-

sections of an area of central Berlin, Germany. In this area

a number of vehicles were generated travelling along various

routes and providing an update message every 1 second. Each

update message contained the vehicle ID, vehicle type, ge-

olocation, speed, direction, and event time. This IoT Vehicles

streaming dataset was generated using Sumo [30] and the

number of concurrent vehicles, i.e. the workload, is based on

1https://github.com/dos-group/khaos
2https://kafka.apache.org/, Accessed: May 2022
3https://flink.apache.org/, Accessed: May 2022
4https://prometheus.io, Accessed: May 2022
5https://redis.io/, Accessed: May 2022

TABLE II: IoT Vehicles Experiment Results.

(a) Error Analysis.

Performance Availability

Avg. Percent Error 0.099 0.131

(b) IoT Vehicles Experiment Results.

Configuration Khaos 10s 30s 60s 90s 120s

Avg. Latency (ms) 737 1086 729 796 697 692

Lat Violations (%) 0.087 0.153 0.062 0.110 0.073 0.060

Recovery Time (s) 2071 2757 1681 2064 2505 2904

Rec Violations (s) 197 1188 147 227 555 826

the TAPASCologne scenario6. For this experiment, a 7-day

streaming dataset was generated using random seeds to create

variability across the various days. Throughput rates over time

can be seen in Figure 2(a).

A DSP job was created that processes the streaming vehicle

data. It consisted of the following streaming operations: read

an event from Kafka; deserialize the JSON string; filter update

events not within a certain radius of a designated geo-point

where vehicles are to be monitored; take a 3s sliding window

with a slide of 1s where all update events are of the same

vehicle ID and calculate the vehicle’s average speed; generate

a notification for vehicles that have exceeded the speed limit;

enrich notification with vehicle type information from data

stored in system memory and write it back out to Kafka.

C. YSB Experiment

This experiment is based on the Yahoo Streaming Bench-

mark7. It implements a simple streaming advertisement job

where there are a number of advertising campaigns and a

number of advertisements for each campaign. The authors

of the benchmark created a Kafka Producer application that

would generate a constant stream of events containing, among

other things, an event time, an event type, and an ad id. We

created a generator that was combined with a click-through

rate dataset8 to create the workload for this experiment. This

workload can be in Figure 2(b).

The job of the benchmark is to read various JSON events

from Kafka, identify relevant events, and store a windowed

count of these events per campaign in Redis. The job con-

sists of the following operations: read an event from Kafka;

deserialize the JSON string; filter out irrelevant events (based

on type field), take a projection of the relevant fields (ad id

and event time), join each event by ad id with its associated

campaign id stored in Redis; take a 10s windowed count of

events per campaign and store each window in Redis along

with a timestamp of when the window was last updated. For

6https://sumo.dlr.de/docs/Data/Scenarios/TAPASCologne.html; Accessed:
May 2022

7https://yahooeng.tumblr.com/post/135321837876/
benchmarking-streaming-computation-engines-at, Accessed: May 2022

8https://www.kaggle.com/c/avazu-ctr-prediction, Accessed: May 2022
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Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7
50k

60k

70k

80k

90k

In
pu

t
Th

ro
ug

hp
ut

(b) YSB Experiment Dataset.
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(c) IoT Vehicles Experiment. Failure injections and reconfigurations.
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(d) YSB Experiment. Failure injections and reconfigurations.

Fig. 2: Overview of datasets, their throughput rates, utilized failure injection points, and CI reconfigurations triggered by Khaos.

TABLE III: YSB Experiment Results.

(a) Error Analysis.

Performance Availability

Avg. Percent Error 0.122 0.0728

(b) YSB Experiment Results.

Configuration Khaos 10s 30s 60s 90s 120s

Avg. Latency (ms) 653 691 660 637 576 527

Lat Violations (%) 0.059 0.061 0.069 0.058 0.033 0.024

Recovery Time (s) 2319 2182 2126 2548 3093 3532

Rec Violations (s) 9 117 32 77 401 764

the purposes of our experiments, we modified the Flink bench-

mark by enabling checkpointing and replacing the handwritten

windowing functionality with the default Flink implementa-

tion. Although doing so decreases the update frequency to

the length of each window, results should be accurate and

more interesting for our experiments due to the accumulated

windowing operator state at each node.

D. Experimental Results & Discussion

The results of both experiments will now be presented and

discussed in further detail. The effectiveness of our approach

was evaluated against 5 baseline runs, which were executed

in parallel to ensure cluster conditions were commensurate.

For baseline runs, a range of static CI values were selected

and streaming jobs started using these configurations. Each

job consumed the same stream of events. Static CI values

included 10, 30, 60, 90, and 120 seconds respectively. Over
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(a) IoT Vehicles Experiment.
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(b) YSB Experiment.

Fig. 3: Latency (L.) violations, normalized recovery times

(R.T.), and normalized recovery time violations.
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the course of each experiment, 12 failures were injected at

similar times across all jobs. Failure selection was based

on different throughput levels which can be seen for both

experiments in Figure 2(c) and Figure 2(d). To ensure results

were comparable, failures were injected at the end of the CI.

This is inline with our assumption of the worst case scenario,

i.e. a failure occurs just before the next checkpoint completes

successfully and therefore maximizing recovery times.

Concerning the predictive models trained as part of the pro-

filing phase for each experiment, the results of a post execution

error analysis can be seen in Table II(a) and Table III(a). These

results measured the average percent error between predicted

and actual observations for both latencies and recovery times

across the full duration of the experiments. Latency values

were collected as part of the optimization loop and recovery

times were measured when failures were injected. The results

show that on average latency predictions were within 9% and

12% of expected and recovery time predictions were within

13% and 7% of expected. Considering the presence of this

error within our predictions, we conclude that it was accurate

enough for the optimization step to make good CI selections.

We previously described our failure injection procedure high-

lighted in Figure 2(c) and Figure 2(d), we will now describe

the bottom section of this figure. Associated results for these

experiments can be seen in Table II(b) and Table III(b). During

optimization, Khaos triggers reconfigurations of the CI in order

to account for changes in latency and prospective recovery

times. We observed in total three reconfigurations for the

IoT Vehicles Experiment, and two reconfigurations for the

YSB Experiment. It can be seen that the CI is often set

to a lower value with increasing throughput rates. This is

expected, as formulated recovery time constraints can likely

not be fulfilled when maintaining a high CI value. In general,

the few reconfigurations result from our method requiring

one of the constraints to be fulfilled in order to conduct an

optimization step. Consequently, reconfigurations are applied

sparsely, and CI configurations in-between observed violations

are not guaranteed to be optimized if both constraints are

intermittently jointly violated. An example for this can be

seen in Figure 3(a) with recovery time violations for Khaos,

indicating that CI updates were aborted at some point.

Regarding the violation of formulated performance and

availability constraints, we report in Figure 3 the fraction of

time the latency constraint was not fulfilled, and normalize the

measured recovery times accordingly such that the resulting

bars are aligned for Khaos. This allows us to better assess

the relation of both objectives for the utilized static CI values,

i.e. our baselines. It can be clearly showed that the CI has an

impact on latencies, i.e. with more frequent checkpoints being

performed, latencies are higher and vice versa with recovery

times. This often leads to violations of the respective formu-

lated constraints. In our conducted experiments, this is less

problematic for smaller CI values, which is also what Khaos

often defaults to (see Figure 2). An exception to this is the

10s CI illustrated in Figure 3(a), which performs poorly due

to a failure injection during catch-up from a previous failure.

However, while certain static CI configurations show compara-

bly good results, this is restricted to our exemplary streaming

jobs only, i.e. the discovered CIs are not a general solution.

Based on the results presented in Table II(b) and Table III(b),

we can surmise that Khaos produces better average latencies

overall than the high frequency CI configurations. Likewise

the percentage of latency violations were commensurate with

these configurations. At the same time, Khaos produced fewer

recovery time violations indicating that it provides a balance of

both within the user-defined constraints. It is important to note

that while individual static configurations might marginally

outperform Khaos for a specific job and workload, the benefits

of such a selection will not generalize if the jobs and/or

workloads change.

V. CONCLUSION

In this paper we presented Khaos, an approach which

borrows from the principles of Chaos Engineering to allow

for the automatic runtime optimization of DSP fault tolerance

configurations. It makes use of parallel profiling runs and

failure injection to capture metrics, which are in turn used

to model the performance and availability of targeted DSP

jobs executing on variable workloads. It does this in order to

monitor for runtime violations of user-defined QoS constraints

and, should a violation be detected, can search for and select

near-optimal CI configurations, which provide a balance of

both. Through our experiments we showed that Khaos is able

to optimize the CI configuration variable in order to minimize

both latency and recovery time violations while outperforming

most static configurations. For future work we intend to

investigate the feasibility of a continuous optimization routine

which takes periods of low utilization into consideration.
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