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Abstract—In this paper we apply vague quantification to fuzzy
rough sets to introduce fuzzy quantifier-based fuzzy rough sets
(FQFRS), an intuitive generalization of fuzzy rough sets. We
show how several existing models fit in this generalization as
well as how it inspires novel models that may improve these
existing models. In addition, we introduce several new binary
quantification models. Finally, we introduce an adaptation of
FQFRS that allows seamless integration of outlier detection
algorithms to enhance the robustness of the applications based
on FQFRS.

I. INTRODUCTION

F
UZZY quantification is an important part of fuzzy logic

that models quantified sentences such as “Most Dutch

people are tall” and “Nearly half of the S&P 500 stocks are

down 10%”. Quantifiers are an effective tool to describe the

quantity of elements that satisfy a certain condition. This

is especially true if the condition is of a vague nature, as

for example in the quantified sentence “Most Dutch people

are tall”, since the quantity of elements satisfying a fuzzy

condition (being tall) is hard to assess. The two most studied

types of quantifiers are unary and binary quantifiers, unary

quantifiers being of the form “Q1 elements are A” (e.g. “Some

people are tall”) and binary quantifiers being of the form

“Q2 A’s are B’s” (e.g. “Most Dutch people are tall”). The

first evaluation method for fuzzy quantified statements was

introduced by Zadeh [1]. His idea was to define a cardinality

measure for fuzzy sets to evaluate the quantity of elements

satisfying a condition. The problem with this approach is

that the cardinality measure is cumulative, implying that a

situation involving two people with a degree of tallness of

0.5 is regarded the same as one with one tall person (tallness

1) and one short person (tallness 0). An improved evaluation

method was proposed by Yager [2], which is based on the

Ordered Weighted Averaging (OWA) operator. This method

is semantically more reasonable for unary quantifiers but

still lacks soundness for binary quantifiers. To resolve these

issues, Glöckner [3] developed a general framework for fuzzy

quantification. In this framework, fuzzy quantifiers are fully

determined by how they act on classical (i.e. non-fuzzy) sets

and by the choice of a quantifier fuzzification mechanism

(QFM). A QFM thus reduces the evaluation of any quantified

statement to the evaluation of quantified statements with crisp

arguments.

Rough set theory, introduced by Pawlak [4], provides a

lower and upper approximation of a concept with respect to

the indiscernibility relation between objects. The lower and

upper approximation contain all objects that are certainly,

respectively possibly part of the concept. That is to say, an

element is a member of the lower approximation of a concept

if every element indiscernible from it belongs to the concept;

and an element is a member of the upper approximation

of the concept if there exists an element indiscernible from

it that belongs to the concept. Rough set theory was first

extended to fuzzy rough set theory by Dubois and Prade

[5], where both the concept and the indiscernibility relation

can be fuzzy. Fuzzy rough set theory has been used success-

fully for classification and other machine learning purposes,

such as feature and instance selection [6], but due to the

fact that the approximations in classical fuzzy rough sets

are determined using the minimum and maximum operators,

these approximations (and the applications based on them)

are sensitive to noisy and outlying samples. To mitigate this

problem, many noise-tolerant versions of fuzzy rough sets

(FRS) have been proposed, such as Vaguely Quantified FRS

(VQFRS) [7], β-Precision FRS [8], [9], Variable Precision

FRS [10], Variable Precision (θ, σ)-FRS [11], Soft Fuzzy

Rough Sets [12], Automatic Noisy Sample Detection FRS

[13], Data-Distribution-Aware FRS [14], Probability Granular

Distance based FRS [15], Ordered Weighted Averaging (OWA)

based FRS (OWAFRS) [16] and Choquet-based FRS (CFRS)

[17]. VQFRS and, as noted in [17], OWAFRS and CFRS

are fuzzy rough set models based on vague quantification. In

this paper, we introduce a generalization of fuzzy rough sets,

called fuzzy quantifier-based fuzzy rough sets (FQFRS), that

takes the idea behind VQFRS and CFRS one step further. It

does this by using binary and unary quantification models to

determine the lower and upper approximation of a concept,

respectively. Furthermore, we explain how to adapt FQFRS to

use normalized outlier scores [18] to boost the robustness of

the lower and upper approximations in fuzzy rough sets.

This paper is structured as follows: in Section II, we recall

the required prerequisites for (Choquet-based) fuzzy rough sets

and vague quantification. Section III discusses different binary

quantification models and introduces several new ones. In

Section IV, fuzzy quantifier-based fuzzy rough sets (FQFRS)

and confidence-based FQFRS are introduced and their relation

with existing models is discussed as well as the possible

benefits they may have. Sections V and VI conclude this paper

and describe opportunities for future research.
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II. PRELIMINARIES

A. Fuzzy logic

In this subsection, we recall the necessary notions of fuzzy

set and fuzzy logical connectives. We start with the definition

of a fuzzy set and a fuzzy relation.

Definition II.1. [19] A fuzzy set or membership function A on

X is a function from X to the unit interval, i.e. A : X ³ [0, 1].
The value A(x) of an element x * X is called the degree of

membership of x in the fuzzy set A. The set of all fuzzy sets

on X is denoted as �P(X).

Definition II.2. A fuzzy relation R on X is an element of
�P(X×X). A fuzzy relation R is called reflexive if R(x, x) = 1
for every x * X . For an element y * X and a fuzzy relation

R * �P(X ×X), we define the R-foreset of y as the fuzzy set

Ry(x) := R(x, y).

We will also make use of conjunctors, implicators and

negators which extend their Boolean counterparts to the fuzzy

setting.

Definition II.3.

" A function C : [0, 1]2 ³ [0, 1] is called a conjunctor if it

is increasing in both arguments and satisfies C(0, 0) =
C(0, 1) = 0 and C(1, x) = x for all x * [0, 1]. A commu-

tative and associative conjunctor T is called a t-norm.

We will use the following notation x 'C y := C(x, y).
" A function S : [0, 1]2 ³ [0, 1] is called a t-conorm

if it is non-decreasing in both arguments, commutative,

associative, and satisfies S(0, x) = x for all x * [0, 1].
We will use the following notation x (S y := S(x, y).

" A function I : [0, 1]
2 ³ [0, 1] is called an implicator if

I(0, 0) = I(0, 1) = I(1, 1) = 1, I(1, 0) = 0 and for all

x1, x2, y1, y2 in [0, 1] the following holds:

1) x1 f x2 ó I(x1, y1) g I(x2, y1) (non-increasing

in the first argument),

2) y1 f y2 ó I(x1, y1) f I(x1, y2) (non-decreasing

in the second argument),

We will use the following notation x ³I y := I(x, y).
" A function N : [0, 1] ³ [0, 1] is called a negator if it is

non-increasing and satisfies N (0) = 1 and N (1) = 0. A

negator is called a strong negator if it is an involution.

" Suppose S is a t-conorm and N is a negator. The

mapping

I(x, y) = N (x) (S y, "x, y * [0, 1],

is called the S-implicator induced by S and N .

Example II.1. The Kleene-Dienes implicator is defined as

IKD(x, y) := max(1 2 x, y). It is the S-implicator induced

by the standard negator ¬(x) := 1 2 x and the standard t-

conorm x ( y = max(x, y).

Since t-norms are required to be associative, they can be

extended naturally to a function [0, 1]n ³ [0, 1] for any natural

number n g 2.

Definition II.4. The notation A ¦ B for two fuzzy sets A and

B, expresses that A(x) f B(x) for all x * X . The fuzzy set

A+B * �P(X) is defined by (A+B)(x) = min(A(x), B(x)).
We denote Zadeh’s Sigma count as |A| :=

�
x*X A(x) for

every fuzzy set A * �P(X), it is a conservative extension of

classical set cardinality to fuzzy sets.

Definition II.5. Given a negator N , conjunctor C, t-conorm

S , implicator I, and two fuzzy sets A,B * �P(X), we define

the following:

(¬NA)(x) = N (A(x)),

(A +C B) (x) := A(x) 'C B(x),

(A *S B) (x) := A(x) (S B(x),

(A ³I B) (x) := A(x) ³I B(x),

for all x * X .

B. OWA-based fuzzy rough sets

A downside to the classical definition of lower and upper

approximation in fuzzy rough set theory is their lack of

robustness. The value of the membership of an element in

the lower and upper approximation is fully determined by

a single element because of the minimum and maximum

operators in the definition. To solve this undesirable behaviour,

many alternative definitions of fuzzy rough sets were intro-

duced. One of these is OWA-based fuzzy rough sets [16],

which has been shown to have an excellent trade-off between

performance (robustness) and theoretical properties [20]. The

Ordered Weighted Average [21] is an aggregation operator that

is defined as follows:

Definition II.6 (OWA). Let X = {x1, x2, . . . , xn}, f : X ³
R and w = (w1, w2, . . . , wn) be a weighting vector, i.e. w *
[0, 1]n and

�n
i=1 wi = 1, then the ordered weighted average

of f with respect to w is defined as

OWAw(f) :=
n�

i=1

f(xσ(i))wi,

where σ is a permutation of {1, 2, . . . , n} such that

f(xσ(1)) g f(xσ(2)) g · · · g f(xσ(n)).

Example II.2. The maximum, mean and minimum opera-

tors can all be seen as OWA-operators with weight vectors

(1, 0, . . . , 0, 0),
�
1
n
, 1
n
, . . . , 1

n

�
and (0, 0, . . . , 0, 1) respectively.

In OWA-based fuzzy rough sets, OWA operators replace

the minimum and maximum in the lower and upper approx-

imations in classical fuzzy rough sets. To not deviate too

strongly from the original definitions, some requirements may

be enforced on the weight vectors of the OWA-operators used

[16]. In particular, the authors required that the OWA-operator

for the lower approximation is a soft minimum and for the

upper approximation a soft maximum.
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Definition II.7. The orness and andness of a weight vector

w = (wi)
n
i=1 are defined as

orness(w) =
1

n2 1

n�

i=1

((n2 i) · wi), (1)

andness(w) = 12 orness(w).

If orness(w) < 0.5, then OWAw is called a soft minimum.

If orness(w) > 0.5, OWAw is called a soft maximum.

As can be seen from Equation (1), the orness indicates how

much weight is given to the largest elements. The orness tells

us how “close” the OWA-operator is to the maximum. Using

this definition OWA-based fuzzy rough sets are then defined

as:

Definition II.8. [16] Given R * �P(X × X), weight vectors

wl and wu with orness(wl) < 0.5 and orness(wu) > 0.5
and A * �P(X), the OWA lower and upper approximation of

A w.r.t. R, wl and wu are given by:

(apr
R,wl

A)(x) = OWAwl
(I(R(x, y), A(y))) , (2)

(aprR,wu
A)(x) = OWAwu

(C(R(x, y), A(y))) , (3)

where I is an implicator, C a conjunctor and I(R(x, y), A(y))
and C(R(x, y), A(y)) are seen as functions in y.

C. The Choquet integral

The Choquet integral induces a large class of aggregation

functions, namely the class of all comonotone linear aggrega-

tion functions [22]. Since we will view the Choquet integral as

an aggregation operator, we will restrict ourselves to measures

(and Choquet integrals) on finite sets. For the general setting,

we refer the reader to e.g. [23].

Definition II.9. Let X be a finite set. A function µ : P(X) ³
[0, 1] is called a monotone measure if:

" µ(') = 0 and µ(X) = 1,

" ("A,B * (P(X))(A ¦ B =ó µ(A) f µ(B)).

A monotone measure is called:

" additive if µ(A*B) = µ(A)+µ(B) when A and B are

disjoint,

" symmetric if µ(A) = µ(B) when |A| = |B|.

Definition II.10. [23] Let µ be a monotone measure on X
and f : X ³ R a real-valued function. The Choquet integral

of f with respect to the measure µ is defined as:

�
f dµ =

n�

i=1

µ(A7
i ) ·
"
f(x7

i )2 f(x7
i21)
"
,

where (x7
1, x

7
2, . . . , x

7
n) is a permutation of X =

(x1, x2, . . . , xn) such that

f(x7
1) f f(x7

2) f · · · f f(x7
n),

A7
i := {x7

i , . . . , x
7
n} and f(x7

0) := 0.

The class of aggregation operators induced by the Choquet

integral contains the weighted mean and the OWA operator. In

fact, the weighted mean and OWA operator are the Choquet

integrals with respect to additive and symmetric measures,

respectively.

Proposition II.11. [22] The Choquet integral with respect

to an additive measure µ is the weighted mean Mw with

weight vector w = (wi)
n
i=1 = (µ({xi}))

n
i=1. Conversely, the

weighted mean Mv, with weight vector v = (vi)
n
i=1 is a

Choquet integral with respect to the uniquely defined additive

measure µ for which (µ({xi}))
n
i=1 = (vi)

n
i=1.

Proposition II.12. [22] The Choquet integral with respect to a

symmetric measure µ is the OWA operator with weight vector

w = (wi)
n
i=1 = (µ(Ai)2µ(Ai21))

n
i=1, where Ai denotes any

subset with cardinality i. Conversely, the OWA operator with

weight vector v = (vi)
n
i=1 is a Choquet integral with respect

to the symmetric measure µ defined as

("A ¦ X)(µ(A) :=

|A|�

i=1

vi).

D. Glöckner’s framework for fuzzy quantification

Glöckner’s framework for fuzzy quantification deals with

defining vague quantifiers in two steps. The first step is the

specification of the vague quantifier on crisp sets, i.e. to specify

the “underlying” semi-fuzzy quantifier. The second step is to

extend this description to fuzzy arguments, i.e. applying a

quantifier fuzzification mechanism.

Definition II.13. [3] An n-ary semi-fuzzy quantifier on X ;= '
is a mapping Q : (P(X))n ³ [0, 1]. An n-ary fuzzy quantifier

on X ;= ' is a mapping �Q :
�
�P(X)

�n
³ [0, 1].

Definition II.14. [3] A quantifier fuzzification mechanism

(QFM) F assigns to each semi-fuzzy quantifier Q :
(P(X))n ³ [0, 1] a corresponding fuzzy quantifier F(Q) :
(P(X))

n ³ [0, 1] of the same arity n * N and on the same

universe X .

Glöckner defined an axiomatic framework for plausible

models of fuzzy quantification which he called the Determiner

Fuzzification Scheme (DFS) axioms. Since introducing DFS

would take up too much space we refer the reader to chapter

three, four, and five of [3].

We now take a look at Zadeh’s and Yager’s traditional

approaches, where they describe fuzzy quantifiers using fuzzy

sets of the unit interval.

Definition II.15. [1] A fuzzy set Λ * �P([0, 1]) is called a

regular increasing monotone (RIM) quantifier if Λ is a non-

decreasing function such that Λ(0) = 0 and Λ(1) = 1.

Example II.3. The following RIM quantifiers represent the

quantifiers “more than 100 7 k%” and “at least 100 7 k%”:

Λ>k(p) =

�
1 if p > k
0 elsewhere

Λgk(p) =

�
1 if p g k
0 elsewhere

.

These RIM quantifiers also include (a representation of) the

universal and existential quantifier, Λ" := Λ>0 and Λ# :=
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Λg1. Linguistic quantifiers such as “most” and “some” can

be modelled using Zadeh’s S-function (0 f α < β f 1) :

Λ(α,β)(p) =

ù
üüüú
üüüû

0 p f α
2(p2α)2

(β2α)2 α f p f α+β
2

12 2(p2β)2

(β2α)2
α+β
2 f p f β

1 β f p

,

for example, we could use Λ(0.3,0.9) and Λ(0.1,0.4) to model

“most” and “some”, respectively.

In Zadeh’s model, unary sentences of the form “Λ X’s are

A’s” and binary sentences of the form “Λ A’s are B’s”, where

Λ is a RIM quantifier and A,B * �P(X), are evaluated as

�ZΛ(A) = Λ

�
|A|

|X|

�
, (4)

�Z2
Λ(A,B) = Λ

�
|A +B|

|A|

�
, (5)

respectively, while in Yager’s OWA model, the unary sen-

tence “Λ X’s are A’s” is evaluated as

�YΛ(A) := OWA
w

Λ(A), (6)

where

wΛ
i := Λ

�
i

n

�
2 Λ

�
i2 1

n

�
. (7)

For the binary sentence “Λ A’s are B’s”, there is no definite

evaluation, although there are two that are most common in

literature (cf. [24], [25]). The first one evaluates the sentence

as

�Y I
Λ (A,B) := �YΛ(I(A,B)) = OWA

w
Λ(I(A,B)), (8)

where I is an implicator, while the second one evaluates it as:

�Y 2
Λ (A,B) := OWAv(I(A,B)), (9)

where

vi := Λ

��i
j=1 A(x

7
j )

|A|

�
2 Λ

��i21
j=1 A(x

7
j )

|A|

�
, (10)

with A(x7
i ) being the ith smallest A(x) for x * X and�0

j=1 A(x
7
j ) =

�
x*' x = 0. Note that both �ZΛ and �YΛ

extend the semi-fuzzy quantifier

QΛ(A) := Λ

�
|A|

|X|

�
. (11)

E. Choquet-based fuzzy rough sets

Choquet-based fuzzy rough sets (CFRS) [17] have been

introduced by noting that by Proposition II.12, we can rewrite

OWAFRS as follows:

(apr
R,µl

A)(y) =

�
I (R(x, y), A(x)) dµl(x),

(aprR,µu
A)(y) =

�
C(R(x, y), A(x)) dµu(x),

where µl and µu are two symmetric measures. Allowing non-

symmetric measures gives us the definition of CFRS:

Definition II.16. [17] Given R * �P(X × X), monotone

measures µl and µu on X and A * �P(X), then the Choquet

lower and upper approximation of A w.r.t. R, µl and µu are

given by:

(apr
R,µl

A)(y) =

�
I(R(x, y), A(x)) dµl(x) (12)

(aprR,µu
A)(y) =

�
C(R(x, y), A(x)) dµu(x), (13)

where I is an implicator and C is a conjunctor.

Example II.4. Suppose we have a crisp set O containing all

the instances that are outliers, unreliable or inaccurate, then

a useful pair of quantifiers could be “for all except (maybe)

elements of O” and “there exists an element in X \ O”.

These quantifiers can be modelled by the partial minimum

and maximum, which in turn are Choquet-integral operators

with respect to non-symmetric measures (cf. [17]).

Using these non-symmetric measures in Equation (12) and

(13), we get that the degree of membership of an element y
to the lower approximation is equal to the truth value of the

proposition “All trustworthy elements that are indiscernible to

y are in A”. An analogous interpretation holds for the upper

approximation.

As we will see in Subsection II-F, it is possible to extend

this approach of the previous example to fuzzy sets O and

quantifiers representing “most of the trustworthy objects”. The

following examples show how such fuzzy sets O can be

constructed in practice.

Example II.5. Suppose we have a decision system (X,A *
{d}) where d is a categorical attribute. Then we can define

O(x) as the normalized outlier score [18] of x (obtained

from a certain outlier detection algorithm) when compared to

other elements of [x]d (based on the conditional attributes).

An outlier score measures the degree to which a data point

differs from other observations, and normalization transforms

this score in such a way that it can be interpreted as a degree

of outlierness.

Example II.6. Suppose X consists of patients from several

different hospitals, A is the subset of patients that have a

disease and R is a similarity relation between patients based

on a set of symptoms. Then a confidence score ci can be

attached to each hospital i based on the accuracy of the

tests performed to trace the disease (and the symptoms). The

membership degree of a patient x of hospital i to O can then

be defined as O(x) = 12 ci.

F. Examples of non-symmetric measures

As described in the previous subsection we can accom-

modate non-symmetry by introducing a fuzzy set O in X
that represents the lack of confidence. The value O(x) could,

for example, be seen as an outlier score in [0, 1] (Example

II.5) or it could represent the unreliability or inaccuracy of

the observation (Example II.6). We now recall several non-

symmetric measures that were introduced in [17] using the

fuzzy set O.
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1) Fuzzy removal: the first option that was proposed to

define a non-symmetric measure using O is as follows:

µ"x*X \O(S) =

ù
üüú
üüû

1 if S = X
0 if S = '
T (O(x))� �� �

x*X\S

elsewhere , (14)

where T is a t-norm (e.g. minimum) and S * P(X). This

measure is called the fuzzy removal measure, since in the

case O is crisp, the Choquet integral with respect to this

measure is equal to the partial minimum. The vague quantifier

interpretation of the fuzzy removal measure could thus be “for

all except (maybe) elements of O”.

2) Weighted ordered weighted average: the second idea for

a non-symmetric measure was:

µ¬O
Λ (S) := Λ

�
|¬O + S|

|¬O|

�
= Λ

�
�

xi*S

pi

�
, (15)

where Λ is a RIM quantifier and p a weight vector describing

the confidence, reliability, accuracy or non-outlierness of each

observation:

pi =
12O(xi)

n2
�n

j=1 O(xj)
. (16)

The measure in Equation (15) corresponds to the Weighted

Ordered Weighted Averaging (WOWA) operator [26], [27],

which is a generalization of the OWA and the weighted

mean. The RIM quantifier Λ determines the OWA part of the

WOWA and the weight vector p the weighted mean part. The

WOWA operator is also equivalent with Yager’s importance

weighted quantifier guided aggregation [2]. These measures

could be interpreted as quantifiers of the form “Λ of the

trustworthy/reliable objects”.

III. BINARY QUANTIFICATION MODELS

We now take a deeper look at binary quantifiers (i.e. 2-ary

fuzzy quantifiers), and in particular, proportional quantifiers

such as “Most A’s are B’s”. To focus our attention we will

make use of Zadeh’s approach of using RIM-quantifiers to

model these quantifiers in their bare form.

A. QFM-based binary quantification models

To define binary fuzzy quantifiers using QFM’s, we first

need semi-fuzzy quantifiers. The following definition proposes

the two most viable options for semi-fuzzy quantifiers that

model “Λ A’s are B’s”, with Λ a RIM-quantifier.

Definition III.1. Given a RIM-quantifier Λ, we define the

following semi-fuzzy quantifiers:

Q2
Λ(A,B) := Λ

�
|A +B|

|A|

�
,

Q³
Λ (A,B) = Λ

�
|A ³ B|

|X|

�
:= Λ

�
|¬A|+ |A +B|

|X|

�
,

for crisp sets A,B * P(X).

The first one is the most intuitive definition, but the second

one is (as we will see) used a lot in practice, perhaps due to

its simplicity as we shall see later in this section (Corollary

III.6). The semantical difference between Q2
Λ and Q³

Λ is that

of “Most A’s are B’s” and of “For most X’s, if they are in A,

they are in B”. This is a very subtle difference and in day to

day life both mean the same. In the first one only elements of

A matter, while for the second one all elements matter. The

following example demonstrates how important the difference

is.

Example III.1. Let us look at the difference between “Most

Belgian people are not Belgian” and “For most people in the

world, if they are Belgian, they are not Belgian”. Most people

would say both sentences are plainly wrong. Let X denote the

set of all people and B * P(X) the subset of Belgian people,

if we evaluate the first sentence using QΛ and the second one

using Q³
Λ , we get the following:

Q2
Λ(B,¬B) = Λ

�
|'|

|B|

�
= 0,

Q³
Λ (B,¬B) = Λ

�
|¬B|

|X|

�
j 1,

because the percentage of Belgians in the world is minuscule.

So the second one is still correct, since for most people it

holds that if they are Belgian, then they are not Belgian, since

they are simply not from Belgium.

If F is a QFM, we can use F(Q2
Λ) and F(Q³

Λ ) to evaluate

sentences of the form “Λ A’s are B’s” for A,B * �P(X).
We now take a look at the differences between the two. The

first difference is the monotonicity. In the second argument

both QΛ and Q³
Λ are non-decreasing, hence so are F(QΛ)

and F(Q³
Λ ) for a DFS F (argument monotonicity [3]). The

difference between the two is in the first argument; let us

add an element a to A and suppose Λ is a strictly increasing

RIM-quantifier, if a * B, then Q2
Λ(A,B) will strictly increase,

while Q³
Λ (A,B) stays unchanged, if a /* B, then Q2

Λ(A,B)
and Q³

Λ (A,B) will strictly decrease. So in summary, Q³
Λ is

non-increasing in the first argument (hence F(Q³
Λ ) is as well),

while Q2
Λ is not monotone in the first argument.

Proposition III.2. We have the following inequality:

Q³
Λ (A,B) g Q2

Λ(A,B),

for every A,B * P(X).

Proof.

Λ

�
|¬A|+ |A +B|

|X|

�
g Λ

�
|A +B|

|A|

�

ñó
|¬A|+ |A +B|

|¬A|+ |A|
g

|A +B|

|A|

ñó (|¬A|+ |A +B|) 7 |A| g |A +B| 7 (|¬A|+ |A|)

ñó |¬A| 7 |A| g |A +B| 7 |¬A|

ñó |A| g |A +B|
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Corollary III.3. We have the following inequality for every

DFS F:

F(Q³
Λ )(A,B) g F(Q2

Λ)(A,B),

for every A,B * �P(X).

Proof. Every DFS satisfies quantifier monotonicity [3].

We will now show that evaluating the binary quantifier

F(Q³
Λ ) for fuzzy sets A,B and a DFS F simply amounts

to evaluating the fuzzy set A³̃B using the unary quantifier

F(QΛ), where ³̃ is the implicator induced by the DFS F (cf.

[3]).

Definition III.4. Let �Q : ( �P(X))n ³ [0, 1] be a fuzzy

quantifier, then the fuzzy quantifier �Q³̃ : ( �P(X))n+1 ³ [0, 1]
is defined as:

�Q³̃(A1, . . . , An+1) := �Q(A1, . . . , An21, (An³̃An+1)).

For a semi-fuzzy quantifier Q the semi-fuzzy quantifier Q ³
is defined analogously.

Proposition III.5. For every semi-fuzzy quantifier Q and DFS

F we have:

F(Q ³) = F(Q)³̃.

Proof. This follows from

Q ³ = Q¬ + ¬

and the fact that a DFS is compatible with internal meets and

internal negations [3].

Corollary III.6. Let F be a DFS and QΛ the unary quantifier

from Equation (11), then:

F (Q³
Λ ) (A,B) = F(QΛ)(A³̃B),

for every A,B * �P(X).

Applying this to one of the most used QFM’s, Glöckner’s

Fowa [3], we can write one of Yager’s binary quantification

models as a QFM-based model:

Corollary III.7.

Fowa(Q
³
Λ )(A,B) =

�
IKD(A,B) dµΛ = �Y IKD

Λ (A,B)

Proof. Follows from the fact that Fowa is a standard DFS

(thus the induced implicator is IKD) [3] and

Fowa(Q)(A) =

�
A dQ,

for every A * �P(X) and every semi-fuzzy quantifier Q that

is also a monotone measure [3].

Remark III.2. We can apply the exact same reasoning as

in the previous corollary to the standard DFS MCX [3], to

obtain

MCX(Q³
Λ )(A,B) = (S)

�
IKD(A,B) dµΛ,

where (S)
�

denotes the Sugeno integral [23].

B. Integral-based binary quantification models

We start off with rewriting Zadeh’s and Yager’s models

using the Choquet integral to get a unifying view of these

models.

Proposition III.8. Let Λ be a RIM-quantifier, A,B * �P(X)
and I an implicator. We can rewrite Zadeh’s and Yager’s

evaluation models as follows:

�ZΛ(A) = Λ

��
A dµid

�

�Z2
Λ(A,B) = Λ

��
A +B dµid�
A dµid

�

�YΛ(A) =

�
A dµΛ

�Y I
Λ (A,B) =

�
I(A,B) dµΛ

�Y 2
Λ (A,B) =

�
I(A,B) dµ2

Λ,

where

µΛ(S) := Λ

�
|S|

|X|

�

µ2
Λ(S) := Λ

��|S|
j=1 A(x

7
j )

|A|

�
,

with A(x7
i ) being the ith smallest A(x) for x * X and S *

P(X).

Proof. Follows from Propositions II.11 and II.12.

So both models can be written using integrals, but whereas

Zadeh’s model first integrates and then applies the RIM quan-

tifier, Yager’s model already incorporates the RIM quantifier

in the measure used for integration.

Looking at Yager’s model �Y I
Λ we can see that an element

not in A contributes as much to the truth value as an element

that is in A and in B, therefore the model has the same

issues as mentioned in Example III.1. Quantifiers based on

the semi-fuzzy quantifier Q2
Λ and a DFS do not suffer from

this issue, but are computationally more complex. Therefore

we now introduce a new binary quantification model that does

an extra weighting on elements of A to compensate for the

issues of �Y I
Λ :

Definition III.9. Let Λ be a RIM-quantifier, I an implicator

and A,B * �P(X). We define the fuzzy quantifier  W I
Λ :

�P(X) ³ [0, 1] as:

 W I
Λ (A,B) :=

�
I(A,B) dµA

Λ , µA
Λ(S) := Λ

�
|S +A|

|A|

�
,

where S * P(X).

Remark III.3. By replacing the Choquet integral in the pre-

vious definition with the Sugeno integral, or even general pan-

integrals (for more information about these integrals see [23]),

we obtain other novel quantifiers that are worth studying.

Because Glöckner’s model MCX corresponds to the Sugeno
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integral (Remark III.2), this can give us a good compromise

(between computational simplicity and semantical soundness)

for the MCX(Q2
Λ) model.

This quantifier indeed resembles �Y I
Λ (A,B) but with an

extra weighting on A. The quantifier �Y 2
Λ also does this but in a

less intuitive and elegant way, by doing an extra ordering of the

elements. Comparing the two, we see that the new definition

uses a weighted ordered weighted averaging (WOWA) with

Λ for the OWA part and pi = A(xi)/|A| for the weighted

mean part, while the quantifier �Y 2
Λ uses an OWA operator

with weights given by Equation (10).

The following proposition describes how all of these fuzzy

quantifiers act on crisp sets, i.e., what their underlying semi-

fuzzy quantifiers are.

Proposition III.10. The following equalities hold:

 W I
Λ (A,B) = QΛ(A,B),

�Y 2
Λ (A,B) = QΛ(A,B),

�Z2
Λ(A,B) = QΛ(A,B),

�Y I
Λ (A,B) = Q³

Λ (A,B),

for all crisp sets A,B * P(X).

Proof. We will only prove the first and second equality, the

rest are analogous or trivial. Let A,B * P(X) be two crisp

sets, then:

U
�
 W I

Λ

�
(A,B) =

�
I(A,B) dµA

Λ = µA
Λ(I(A,B))

= µA
Λ (¬A *B)

= Λ

�
|A +B|

|A|

�
= QΛ(A,B),

which proves the first equality. For the second equality:

U
�
�Y 2
Λ

�
(A,B) =

�
I(A,B) dµ2

Λ = µ2
Λ(I(A,B))

= µ2
Λ (¬A *B)

= µ2
Λ (¬A * (A +B))

But for crisp sets A the measure µ2
Λ reduces to:

µ2
Λ(S) =

�
0 if |S| f |¬A|

|S|2|¬A|
|A| if |S| > |¬A|

,

from which we get the desired

U
�
�Y 2
Λ

�
(A,B) = µ2

Λ (¬A * (A +B))

= Λ

�
|¬A * (A +B)| 2 |¬A|

|A|

�

= Λ

�
|A +B|

|A|

�
.

The previous proposition thus shows that both �Y 2
Λ and  W I

Λ

apply the correct weighting on A such that for crisp arguments

the quantifiers act intuitively.

IV. FUZZY QUANTIFIER-BASED FUZZY ROUGH SETS

Let us take another look at OWAFRS and rewrite its

approximations as follows:

(apr
R,µl

A)(y) =

�
I (R(x, y), A(x)) dµl(x),

= �Y I
Λ (Ry,A) (17)

(aprR,µu
A)(y) =

�
C(R(x, y), A(x)) dµu(x)

= �YΥ(Ry +C A), (18)

where µl and µu are symmetric measures, and Λ and Υ are

their corresponding RIM-quantifiers (cf. Section 3.4 in [17]).

Thus, the lower and upper approximations of OWAFRS are

evaluated by evaluating vaguely quantified propositions using

Yager’s quantification model (�Y ³
Λ and �YΛ). We now introduce

fuzzy quantifier-based fuzzy rough sets (FQFRS) by allowing

general (binary for lower approximation and unary for upper

approximation) quantification models.

Definition IV.1 (( �Ql, �Qu)-fuzzy rough set). Given a reflex-

ive fuzzy relation R * F(X × X), fuzzy quantifiers �Ql :
( �P(X))2 ³ [0, 1] and �Qu : �P(X) ³ [0, 1], and A * F(X),
then the lower and upper approximation of A w.r.t. R are given

by:

(apr
R, �Ql

A)(y) = �Ql (Ry,A) ,

(apr
R, �Qu

A)(y) = �Qu(Ry +C A),

where C is a conjunctor.

Suppose �Ql and �Qu represent the (linguistic) quantifiers

“most” and “some“, respectively. Then the degree of mem-

bership of an element y to the lower approximation of A
is equal to the truth value of the statement “Most elements

similar to y are in A”. The degree of membership of y to the

upper approximation is equal to the truth value of the statement

“Some elements are similar to y and are in A”.

A. Examples of FQFRS models

1) ( �Z2
Λ,
�ZΥ)-FRS: let us take a look at the model derived

from the most simple quantification model, the one from

Zadeh. Let Λ and Υ be two RIM-quantifiers, then the lower

and upper approximation for ( �Z2
Λ,
�ZΥ)-fuzzy rough sets are

defined as:

(apr
R,Λ

A)(y) := �Z2
Λ(Ry,A) = Λ

�
|Ry +A|

|Ry|

�
,

(aprR,ΥA)(y) := �ZΥ(Ry +A) = Υ

�
|Ry +A|

|X|

�
.

This closely resembles the Vaguely Quantified Fuzzy Rough

Sets (VQFRS) model [7], which uses the following lower and

upper approximations:

(aprVQFRS

R,Λ
A)(y) := Λ

�
|Ry +A|

|Ry|

�
= �Z2

Λ(Ry,A),

(aprVQFRS
R,Υ A)(y) := Υ

�
|Ry +A|

|Ry|

�
= �Z2

Υ(Ry,A).
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For both models the lower approximations are identical, but

whereas for VQFRS the lower and upper approximation only

differ in their used RIM-quantifier, ( �Z2
Λ,
�ZΥ)-FRS evaluates

the upper approximations using Zadeh’s unary quantifier �ZΥ.

Comparing the upper approximations of these two models, we

can see that VQFRS will always be larger (|X| g |Ry| and Υ
is a RIM-quantifier). In some cases the upper approximation

of VQFRS might be too large. For example, as soon as an

element does not have a similar element (Ry = ') it is in

the upper approximation of any concept A, even if there are

many elements that are not that similar to y (e.g. (Ry)(x) =
0.01) but are in A (and not many elements similar to y) it

will be in the upper approximation (cf. next example). Thus

if one wants to discard the outlying elements from the upper

approximation, this is problematic. This happens to a lesser

extent with ( �Z2
Λ,
�ZΥ)-FRS, but it is still susceptible to it due

to the accumulative nature of the Σ-count, as the following

example shows.

Example IV.1. Suppose there are 10 elements in A with a

similarity of 0.1 to y /* A and the rest of the elements are

not similar to y at all (|Ry +A| = 1 and |Ry| = 2), then

the upper approximation would always be 1 in the VQFRS

approach:

(aprVQFRS
R,Υ A)(y) = �Z2

Υ(Ry,A) = Υ (0.5) := 1,

since Υ should represent “some”. In ( �Z2
Λ,
�ZΥ)-FRS we get a

less extreme result:

(aprR,ΥA)(y) = �ZΥ(Ry +A) = Υ

�
1

|X|

�
.

So in conclusion, with VQFRS the outliers will always

belong more to the upper approximation than with ( �Z2
Λ,
�ZΥ)-

FRS. Lastly we note that using the existential quantifier

(i.e. Υ = Λ#) the two upper approximations are equivalent

(|Ry| g 1 since R is reflexive).

2) (�Y ³
Λ , �YΥ)-FRS: since Yager’s model is generally ac-

cepted as a better model compared to Zadeh’s, we now take

a look at (�Y ³
Λ , �YΥ)-fuzzy rough sets. As shown in Equations

(17) and (18), (�Y ³
Λ , �YΥ)-FRS corresponds to OWAFRS which

is preferred over VQFRS [20]. So this justifies the im-

provement from a fuzzy quantifier perspective why OWAFRS

are better than VQFRS. To justify even more why this is

a good model we know from Corollary III.7 that when

using the Kleene-Dienes implicator, OWAFRS are equal to

(Fowa (Q
³
Λ ) ,Fowa (QΥ))-FRS. So OWAFRS use a DFS

mechanism, which is known to be semantically sound.

3) Other FQFRS: a problem with OWAFRS from a fuzzy

quantifier perspective is that it makes use of the semi-

fuzzy quantifier Q³
Λ , which is not that intuitive. There-

fore (Fowa

�
Q2

Λ

�
,Fowa (QΥ))-FRS are preferable, since they

make more sense on crisp sets (semi-fuzzy quantifiers), and

are thus better suited for explainability when used for clas-

sification e.g. “Most people similar to y are not able to pay

off their mortgage”. Instead of Fowa other DFS could also be

used like the MCX model [3], which is known to be a standard

DFS with many good properties, or the FA a non-standard

DFS [28]. For a compromise between semantical soundness

and computational efficiency, one could also use the quantifier
�Y 2
Λ ,  W 2

Λ or  W 2
Λ using another integral (Remark III.3).

Example IV.2. Evaluating “Λ Ry are A” using Q³
Λ gives

us:

Λ

�
|Ry ³ A|

|X|

�
= Λ

�
|¬Ry|+ |Ry +A|

|X|

�
.

Thus the smaller the cardinality of Ry, the more true the

statement is. This is not really what one would expect, because

this causes the lower approximation to be large. Let y /* A be

an instance that is an outlier (Ry only contains y), then the

membership of y to the lower approximation of A is always

very high (regardless of A). Using Q2
Λ instead would not result

in this problem.

So this example suggests that using quantifiers with Q2
Λ as

underlying semi-fuzzy quantifier might be preferable.

4) Choquet-based fuzzy rough sets: Choquet-based fuzzy

rough sets correspond to (CI
µl
, Cµu

)-FRS with the fuzzy

quantifiers CI
µl
, Cµu

being defined as

CI
µl
(A,B) :=

�
I(A,B) dµl,

Cµu
(A) :=

�
A dµu,

for every implicator I and monotone measures µl and µu.

When the measures µu and µl are symmetric these quantifiers

are quantitative (i.e. each element is regarded as the same) and

reduce to Yager’s quantifiers like mentioned before. Note that

all quantifiers mentioned in this section up until this point are

quantitative. The interesting part of CFRS, when compared to

OWAFRS, was that it allowed non-symmetric measures. We

will now take a look at this from a FQFRS perspective for the

non-symmetric measures discussed in Section II-F.

" Fuzzy removal measure Equation (14):

If µl = µ", then the quantifier CI
µl

represents “for all

except (maybe) elements of O”, thus it can be seen as

the quantifier �Y I
Λ∀

but not regarding elements of O.

" WOWA measure Equation (15):

If µl = µ", then the quantifier CI
µl

represents “Λ elements

except (maybe) elements of O”, thus it can be seen

as the quantifier �Y I
Λ but not regarding elements of O.

Do note that for Λ = Λ" this quantifier represents the

same quantifier as the fuzzy removal measure, but the

evaluation is different.

B. Confidence-based FQFRS

In the previous section we have seen that we are able

to seamlessly incorporate outlier information in FQFRS by

making use of non-quantitative quantifiers (an implicit way).

But it is also possible to do this using quantitative quantifiers

(a more explicit way):

Definition IV.2. Given a reflexive fuzzy relation R * F(X ×

X), O * F(X), fuzzy quantifiers �Ql :
�
�P(X)

�3
³ [0, 1] and
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�Qu :
�
�P(X)

�2
³ [0, 1] and A * F(X), then the lower and

upper approximation of A w.r.t. R, Ql and Qu are given by:

(apr
R, �Ql

A)(y) = �Ql (O,Ry,A) ,

(apr
R, �Qu

A)(y) = �Qu (O,Ry +C A) .

For example, let CS be a fuzzy set describing the accuracy/-

confidence of the instances in X , �Ql a quantifier modelling

“Most elements except maybe non confident elements” and
�Qu a quantifier modelling “Some confident elements”, then

an element y is “in” the lower approximation if most accu-

rate/confident elements indiscernible from y are in A, and an

element y is “in” the upper approximation if there are some

accurate/confident elements that are indiscernible to y and are

“in” A.

Example IV.3. Using a binary quantifier �Ql (e.g. representing

"Most") and a unary quantifier �Qu (e.g. representing "Some")

we can do this as follows:

(apr
R, �Ql

A)(y) = �Ql ((¬̃O) +C Ry,A) ,

(apr
R, �Qu

A)(y) = �Qu ((¬̃O) +C Ry +C A) .

V. CONCLUSION

We have introduced fuzzy quantifier-based fuzzy rough sets

(FQFRS), a general definition of fuzzy rough sets based on

fuzzy quantifiers. FQFRS allows to position existing models

and compare them on the basis of their associated fuzzy

quantifiers. In addition, this general model can lead to im-

proved models in terms of performance and interpretability.

Currently, there are only a few models that make explicit

use of quantifiers, but these can be improved by using

more semantically sound evaluation models. Furthermore, we

have introduced novel binary quantification models based on

integrals, that might give us a good compromise between

computational efficiency and semantical soundness. Finally,

we have introduced confidence-based FQFRS that are able to

perform active outlier/noise reduction, i.e., taking into account

outlier information (e.g., obtained by an outlier detection

algorithm), in a more explicit and general way compared to

CFRS.

VI. FUTURE WORK

From a theoretical perspective, it is interesting to find

out how the properties of the used quantifiers translate to

properties of the corresponding fuzzy rough sets, and vice

versa. Also, it is possible to study the new fuzzy quantifiers

including the quantifiers corresponding with the fuzzy removal

and WOWA measures, and comparing them with existing

quantifiers. Lastly we plan to perform an experimental study of

the performance of the different fuzzy quantifier-based fuzzy

rough sets by testing it in fuzzy rough set based classifiers

similar to those considered by Lenz et al [29].
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