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Abstract—Social Engagement is a novel business model trans-
forming final users of a service from passive into active compo-
nents. In this framework, people are contacted by a company
and they are asked to perform tasks in exchange for a reward.
This arises the complicated optimization problem of allocating
the different types of workforce so as to minimize costs. We
address this problem by explicitly modeling the behavior of
contacted candidates through consolidated concepts from utility
theory and proposing a chance-constrained optimization model
aiming at optimally deciding which user to contact, the amount
of the reward proposed, and how many employees to use in
order to minimize the total expected costs of the operations. A
solution approach is proposed and its computational efficiency is
investigated through experiments.

I. INTRODUCTION AND RELATED WORKS

S
OCIAL Engagement (SE) is a new business paradigm

involving the customers of a company in its operations.

More precisely, people agree to perform specific services in

exchange for a reward. This model has been enabled by the

increase of the number of users connected on the web and

technologies able to get people information [1]. This gives

to the companies the possibility to easily communicate with

candidates and then to propose tasks in exchange for a reward.

A concrete application of the SE paradigm is the so called

crowd-shipping logistics, in which the companies ask the

people to collect the packages to a certain location and deliver

it to the final user [2][3]. By doing this, companies do not only

decrease the costs, but also the environmental impact since

people accepting the delivery usually would take advantage

of travels that they have to do anyhow for other activities.

Another interesting application of SE occurs in an evolution

of the Internet of Things (IoT) concept called opportunistic

IoT (oIoT) [4]. Since the IoT development is considerably

slowed down by the difficulty and costs involved in building

telecommunication networks capable of continuously trans-

mitting large amounts of data collected by sensors, through

oIoT the citizens share (in exchange for a reward) the internet

of their devices (mobile phones, modems) so that the nearby

sensors can exploit it to communicate the gathered data. In this

work, we do not want to concentrate on a specific application

rather on a very general SE-based setting in order to embrace

all the basic characteristics of such a business model.

An effective planning of operations under the SE paradigm

yields an interesting optimization problem. The decision-

maker must decide how much he is willing to pay to a

candidate for each task, when and where to rely on employees

and on candidates, which tasks to assign to the employees and

for which tasks the candidates must be contacted, in order to

minimize the total operational costs. It is important to note

that the reward paid to a candidate is generally lower on

average than the cost that the company bears for an employee.

However, while an employee is obliged to accept and carry out

the tasks assigned to him, there is no certainty that a candidate

will accept a proposed task.

Little attention has been devoted to the development of op-

timization models aimed at effectively scheduling companies

operations that exploit SE. Just few works [5][6][7] have tried

to tackle the problem and, therefore, there is a large room for

improvement of existing approaches as well as for the design

of more innovative and complete ones (as claimed regarding

crowd-shipping in [3]). In particular, to the best of our knowl-

edge, there is no published optimization model that explicitly

accounts for individual candidate behaviour when planning

SE-based operations. As already mentioned, one characteristic

that makes challenging the optimization problems deriving

from the implementation of the SE paradigm is the fact that

candidates are not constrained a priori to respect a contract.

This means that, once contacted, the candidate may not accept

the task and, if we assume a pure rational profit-maximization

behavior of the candidate, the reject can happen because

the proposed reward is lower than the candidate expectation.

It is therefore important to integrate tools in the decision-

making process that allow monitoring the individual behavior

of potential candidates.

In this work, to account for individual behaviour, we rely

on the candidate’s willingness to accept (wta) a task, i.e., the

minimum reward expected by a candidate to accept a task.

The wta is a well consolidated concept in utility theory and

has been used since long to explain human subject preferences

in economics [8]. From the decision-maker point of view,

the candidate’s wta is not deterministically known, since it

depends on some factors that are intrinsic of the candidates.

Therefore, we consider the candidate wta as a random variable.
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Thus, the probability of acceptance for a candidate will be

equal to the probability that the offered reward is greater or

equal to the wta of the candidate. The adopted perspective is

similar to [6]. However, instead of relying on a single random

variable describing the number of candidates, we model each

single candidate behavior through a Bernoulli random variable.

The parameter of such a Bernoulli random variable, i.e. the

probability that the candidate accepts the task, is not fixed but

depends by the proposed reward.

This paper’s contribution is twofold. First, we propose a

novel mathematical model for SE-based services optimization.

The formulation, which includes chance constraints [9], results

to be the first one that explicitly accounts for each individual

candidates behaviour. Second, since the complexity of the

proposed model and the explicit consideration of stochastic

parameters do not allow to obtain a simple solution, we

derive a mixed-integer quadratic programming model that

approximates the original model. This is done by making some

reasonable hypothesis on the probability distribution of the wta

of each candidate, and by exploiting the Markov inequality.

Several computational experiments validate the suitability of

our proposed model and solution approach.

The rest of the paper is organized as follows. The optimiza-

tion problem is defined and modeled in Section II. Our solution

approach is described in Section III. Section IV presents the

experimental results, while Section V concludes the paper.

II. THE SOCIAL ENGAGEMENT OPTIMIZATION PROBLEM

The social engagement optimization problem that we want

to study considers a decision-maker (in general a company)

whose goal is to use people, in the following called candidate,

in addition to employees in order to perform a set of tasks. In

particular, we consider a urban environment divided in several

geographical areas such as mobile phone cells, neighborhoods

of different markets or just geographical areas. Each of these

areas is characterized by a number of tasks to perform and each

tasks is characterized by different workloads, thus a single task

may require more candidates to be done. For example, in the

crowd shipping setting these tasks are the delivery required by

customers out of the store, while in the oIoT application these

tasks consist in sharing the internet connection with smart

sensors in the city.

Each task can either be performed by using employees or

candidates. Employee are more expensive, are available in a

small number but they execute the tasks assigned. Instead,

candidates are less expensive, their quantity is virtually un-

limited (since the number of people considered for SE is

far greater than the number of tasks) but they can refuse

to perform a task with a given probability. We assume that

the acceptance probability increases as the offered reward

increase. Please note that, in practice, am employee has greater

productivity than a candidate. The goal of the decision-maker

is to minimize the total operative costs while enforcing that

with high probability all the tasks must be performed.

Let us consider a set I of tasks and a set M of candidates.

For each task i, let Wi be the workload required, αi be the

required probability for its accomplishment, ∆m
i be a random

variable representing the wta of candidate m, and ci be the

cost of using an employee. Moreover, let B be the number

of available employees and r > 1 be the ratio between the

productivity of an employee and that of a candidate, i.e., the

workload that a single employee can afford as compared to a

candidate in the same time frame.

We define the decision variables Qm
i ∈ R

+ as the reward

offered to candidate m to accept task i and zi ∈ N as

the number of employee assigned to tasks i. Moreover, we

consider the probability for candidate m to accept task i
called xm

i ∈ [0, 1] and the random variables Y m
i distributed

according to a Bernoulli distribution of probability xm
i which

assume value 1 if candidate m accepts to perform task i. Then,

the Social Engagement Optimization Problem (SEOP ) can be

formulated as follows:

min
�

i∈I

�

m∈M

Qm
i xm

i +
�

i∈I

cizi (1)

s.t. xm
i = P[Qm

i ≥ ∆m
i ], i ∈ I,m ∈ M (2)

P[Y m
i = a] = (xm

i )a(1− xm
i )(1−a), i ∈ I,m ∈ M (3)

a ∈ {0, 1} (4)

P

�

�

m∈M

Y m
i + rzi ≥ Wi

�

≥ αi, i ∈ I (5)

�

i∈I

zi ≤ B (6)

zi ∈ N, i ∈ I, (7)

Qm
i ∈ R

+, xm
i , Y m

i ∈ [0, 1], i ∈ I,m ∈ M. (8)

The total cost in (1) is expressed as the summation between

the total expected cost offered as rewards (the reward Qm
i

is paid with probability xm
i ), and the sum of the costs paid

for employees. Constraints (2) define the variables xm
i as the

acceptance probability, while constraints (3) and (4) ensure

Y m
i to follow a Bernoulli distribution. Constraints (5) are

chance constraints enforcing a minimum probability of doing a

given task either by using employees or candidates. It is worth

noting that ensuring that each task is performed with a given

probability is less strict than requiring that all the tasks will

be performed with a given probability. Nevertheless enforcing

this second condition would lead to too conservative solutions.

Finally, constraint (6) accounts for the limited number of

employees.

III. SOLUTION APPROACH

The optimization problem in (1)-(6) is difficult to solve due

to the definition of xm
i in constraints (2), of Y m

i in constraints

(3) and (4), and the chance constraints in (5). Hence, we

approximate these constraints in order to get a model which

can be readily solved with off-the-shelf solvers.

Constraints (2) involve the cdf of the random variable ∆m
i .

We approximate it by means of a piece-wise linear function

with J breakpoints. In particular, instead of constraints (2) we

add a set of constraints of the form

xm
i ≤ kjQ

m
i + qj , j = 1, . . . , J, i ∈ I,m ∈ M, (9)
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where kj and qj are obtained by imposing proper conditions

(e.g. the passage in J points of the cdf). This choice is equiv-

alent to enforce xm
i ≤ min[1,m1Q

m
i + q1, . . . ,mJQ

m
i + qJ ],

where the first term of the minimum comes from the definition

of xm
i . Since the approximation proposed in (10) just lead

to concave functions (being the pointwise minimum of affine

functions) and since the a general cdf may be convex in some

portion of the domain, the proposed approximation is not

guarantee to converge to the cdf for all the distributions. In the

following, for the sake of simplicity, we consider just J = 1
and we impose the passage for the point (0, 0) meaning that

with 0 reward the probability that the candidate will perform

the task is 0, and for the point (Q̄m
i , 1) where Q̄m

i is a reward

for which the candidate m is willing to perform the task i with

a probability that we may approximate to be 1. By making this

choice, the obtained final approximation of Constraints (2) is:

xm
i ≤ Qm

i /Q̄m
i , i ∈ I,m ∈ M. (10)

Now let us consider the constraints in (5), note that these

constraints can be written as:

P

�

�

m∈M

Y m
i ≥ Wi − rzi

�

≥ αi, i ∈ I. (11)

By using the Markov inequality, for each i ∈ I, it holds:

E[
�

m∈M
Y m
i ]

Wi − rzi
≥ P

�

�

m∈M

Y m
i ≥ Wi − rzi

�

≥ αi. (12)

Hence, since E
�
�

m∈M
Y m
i

�

=
�

m∈M
E[Y m

i ] =
�

m∈M
xm
i ,, Eq. (12) leads to the following constraint:

�

m∈M

xm
i ≥ αi(Wi − rzi), i ∈ I. (13)

Eq. (13) is enforcing that the expected workload form the

candidates must be greater than the αi percent of the people

needed. Moreover, by considering the bound provided by Eq.

(13), we are reducing the feasible set, thus the condition in

(11) will be satisfied for greater value of αi.

Then, the resulting approximation of the SEOP (SEOPap)

is the following mixed integer quadratic model:

min
�

i∈I

�

m∈M

Qm
i xm

i +
�

i∈I

cizi (14)

s.t. xm
i ≤

Qm
i

Q̄m
i

, i ∈ I,m ∈ M (15)

�

m∈M

xm
i ≥ αi(Wi − rzi), i ∈ I (16)

�

i∈I

zi ≤ B (17)

zi ∈ N, i ∈ I, (18)

Qm
i ∈ R

+, xm
i ∈ [0, 1], i ∈ I,m ∈ M. (19)

IV. EXPERIMENTAL RESULTS AND ANALYSIS

We now present CPU experiments validating the proposed

solution approach. All the experiments were performed on a

Intel(R) Core(TM) i7-5500U CPU@2.40GHz computer with

16GB of RAM and running Ubuntu v20.04. The exact solver

used was Gurobi v9.1.1 via its Python3 APIs. The instances,

according to realistic crowd-shipping scenarios, were gen-

erated considering |I| = {5, 10, 20, 50, 100}, |M| = 4|I|,
wi = 7 ∗ (0.8 + 0.4 · U(0, 1)), B = 2, and αi = ᾱ, ∀i ∈ I
with ᾱ drawn from U(0.6, 0.9). Finally, the random variables

∆m
i were drawn from a Gumbel distribution, while Q̄m

i was

set to be equal to the 99 percentile of ∆m
i .

A. CPU results

We first study the CPU solving time with respect to the

dimension of the SEOPap. In particular, versus the growth of

|I| and |M|, we evaluate the CPU time (sec), the time-to-best

(sec) (the number of seconds from the start of the execution

of Gurobi to the time in which it founds the best solution of

the run), and the MIP gap (%) (computed as the percentage

difference between the lower and upper objective bound. In

particular, we consider the least gap value that Gurobi has to

reach before stopping its execution). The average and standard

deviation on 10 instances are shown in Table I. In all the runs

we set the solver time limit to 1 hour.

TABLE I
AVERAGE [µ] AND STANDARD DEVIATIONS [σ] OF THE CPU TIME, TIME

TO BEST, AND MIP GAP FOR DIFFERENT VALUES OF I AND M.

Instance CPU time(sec) time-to-best (sec) MIP gap (%)

|I| |M| µ σ µ σ µ σ

5 20 0.09 0.01 0.09 0.01 0 0

10 40 1569.56 175.83 614.31 235.43 0 0

20 80 2780.84 573.26 2634.94 897.98 0 0

50 200 3600.00 0.00 1054.31 562.25 56 47

100 400 3600.00 0.00 1679.57 720.77 100 0

Instances with |I| = 5, and |M| = 20 are solved almost

instantaneously with 0 gap. The time-to-best is equal to the

CPU time since the difference are below the hundredths of a

second. For instances with |I| = 10, |M| = 40, and |I| =
20, |M| = 80, the CPU time increases, but the solver is still

able to find the optimal solution inside the time limit. For the

instances with |I| = 10, |M| = 40 the time to best is near

one half of the total CPU time but solutions with gap below

the 5% are found by the solver already in the first minutes of

the run. Instead, for the instance with |I| = 20, |M| = 80,
the time-to-best is close to the whole computation time and no

solution with gap below the 5% is found in the first minute of

the run. For instances of greater dimensions, the solver is not

able to find the optimal solution in the given time limit, for this

reason the CPU time is equal to 3600 seconds with a standard

deviation of 0. Nevertheless, for instances with |I| = 50, and

|M| = 200, several times, the final gaps are are smaller than

10%, while for instances with |I| = 100, and |M| = 400,
the solver is not able to find a good bound in the allocated

computational time, hence, a 100% MIP gap with 0 standard

deviation is reported.
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B. Approximation analysis

We now analyze the goodness of the SEOPap approx-

imation. Since ∆m
i is distributed as a Gumbel distribution

with concave cdf, the approximation proposed converges to

the exact function and several techniques for developing

good piece-wise approximation are available [10]. Thus, we

are interested in quantifying how much conservative is the

Markov inequality with respect to Eq. (5). Hence, we compute

the optimal solution of SEOP and we use it to calculate

α̂ := P[
�

m∈M
Y m
i + rzi ≥ Wi]. This can be done easily by

noting that the Y m
i are independent with respect to the index m

since the knowledge about candidate m performing a task does

not provide any information related to the execution of the

same task by other candidates. Thus,
�

m Y m
i is a sum of in-

dependent random variable distributed according to Bernoulli

distribution of parameter xm
i . Central Limit Theorems for non

identically distributed random variables are available and, in

particular, by applying the Lyapunov Central Limit Theorem

it is possible to prove [11] that for large values of |M| (in

practice |M| ≥ 30), it holds that:

�

m∈M

Y m
i ∼ N

�

�

m∈M

xm
i ,
�

m∈M

xm
i (1− xm

i )

�

, i ∈ I.

(20)

By using (20), we can compute α by solving:

αi = 1− Φ

�

Wi − rzi −
�

m∈M
xm
i

�
�

m∈M
xm
i (1− xm

i )

�

, i ∈ I, (21)

where Φ is the cdf of a standard normal distribution. We

report the value of the α ∈ [0.5, 1] in SEOPap versus

the α̂ computed with Eq. (21) in Figure 1. All the results

are averaged over 10 runs and the standard deviation of the

observation is represented as an uncertain area. We compute

the results for |I| = 10 and |M| = 40 since we are able to get

the optimal solution in a reasonable amount of time. Moreover,

with |M| = 40 there are enough candidates to apply results

in (20)–(21).
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Fig. 1. Values of α set in the model vs real value of α.

As we expected, the curve is above the line α̂ = α since

by using the Markov inequality we are considering an upper

bound on the probability. Nevertheless, the results are close

to the exact value being on average 10% higher than the α
set in the model. Thus, in the real field, the decision-maker

may lower by 10% the values of the αs and get a solution

compliant with the wanted probability of execution.

V. CONCLUSIONS AND FUTURE WORKS

We proposed a new probabilistic model for SE-based ser-

vices optimization encompassing the wta of the candidate

involved in the business model. We prove, by means of CPU

experiment that, despite the difficult formulation, the model

can be approximated into a nice tractable form able to provide

timely solution for crowd-shipping applications. However,

being the SE a very seminal topic within the optimization field,

we believe that a full-fledged experimental design to explore

all the solution characteristics is needed. Some questions to

answer are related to the performance of the method in the case

in which non-concave distributions for the wta are considered

or how the solutions of the model are related to the number

of breakpoints used by the piece-wise wta approximation.
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