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Abstract—Denotational semantic model and its implementation
in C/C++ are presented for a virtual machine executing programs
written in the CPDev development environment according to
IEC 61131 standard. Programs written in IEC ST language
are compiled to control-oriented intermediate language designed
specifically for the machine. Architecture of the machine and
its operation are represented by formal semantic model which
assigns abstract algebraic objects to denote machine behaviour.
Execution of intermediate language instructions is described in
details by denotational semantic equations followed strictly by
C/C++ implementations to assure reliability of the machine.

I. INTRODUCTION

T
HE concept of virtual machines as platforms for software

execution had a significant impact on computer science

for almost half a century [1], [2]. A virtual machine (VM) is

understood as a kind of processor with a certain instruction set

and data types, which is implemented by software on particular

hardware platforms. A VM processes an intermediate code

generated by a compiler from a source program. The concept

of VMs has been gaining importance due to the widespread use

of the Java [3] and the .NET [4], [5]. Solutions based on VMs

have some important advantages, namely a) source program

and intermediate code are independent of target platforms, b)

one compiler is sufficient, c) programs are executed in safe

environments. The disadvantages include slower execution of

the intermediate code and the need to develop a runtime

environment suitable for the target platform.

This paper deals with the development of a runtime en-

vironment for control programs written according to the

standard IEC 61131 [6]. The IEC standard defines the pro-

gramming languages: Structured Text (ST), Instruction List

(IL), Ladder Diagram (LD), Function Block Diagram (FBD)

and Sequential Function Chart (SFC). Here, employing the

VM concept appears to be particularly justified in order to

cope with the large variety of target platforms. The CPDev

engineering environment [7] uses this concept to program

controllers according to the IEC standard. It consists of a

compiler translating ST to intermediate code and a VM-based

runtime system written in C. Initially, small and medium-scale

controllers were considered [8]. Recently, however, motivated

by applications with extensive calculations, arose the need

to extend the CPDev compiler and its VM. Therefore, some

additional assumptions were imposed, namely:

• to develop a semantic model of the machine and its

intermediate language followed by a C implementation,

• to achieve scalability of the machine depending on the

particular hardware and application requirements,

The model formalizes the VM description as an interpreter

of the intermediate code, including instruction and operand

decoding, and low-level operations while executing the in-

structions. Denotational semantics [9], [10] appropriate to

formally describe programming languages are applied [11],

[12]. For denotations the λ-notation is adequate and, therefore,

applied [9], [13].

II. VIRTUAL MACHINE ARCHITECTURE

The architecture of the VM includes [14]: code and data

memories, stacks and registers. The instruction processing

module fetches successive instructions from Code memory and

executes them acquiring values of operands either from Data

or Code memory. Results are stored in Data memory.

Registers: The program counter is kept in the CodeReg

register. The data base register DataReg is set by calls to

and returns from subprograms, including function blocks and

functions. When entering a subprogram the current values of

CodeReg and DataReg are pushed onto Code stack and Data

stack. The machine also includes the Flags register with status

flags signaling errors or unusual situations.

VMASM intermediate language: The virtual machine oper-

ates as an interpreter of assembly code called VMASM (VM

Assembler). The syntax is:

[:label] instruction [operand1][,operand2]...

Instruction set: Functions and system procedures are two

kinds of virtual machine instructions. Examples are shown in

Table I.

The compilation of the simple ST instruction

MOTOR:=(START OR MOTOR) AND NOT STOP;

is presented in Listing 1. At first, the variables START and

MOTOR are ORed and the result is stored in a temporary

variable ?LR?A03. If it is zero, JZ jumps to :?A02, where

MCD sets MOTOR to 0 interpreted as FALSE. If ?LR?A03 is

not zero, the function NOT performs logical negation of STOP

storing the result in ?LR?A05. If it is zero, JZ jumps to the
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TABLE I
SELECTED FUNCTIONS AND PROCEDURES

Mnemonic Meaning Operator

Functions

ADD Addition + (arithm.)
SUB Subtraction - (arithm.)
GT Greater >

EQ Equal =

NE Not equal <>

NOT Negation - (unary)
AND Logical and &

System procedures

JMP Unconditional jump
JZ, JNZ Conditional jumps
CALB Subroutine call
RETURN Return from subroutine
MCD Initialize data

:?A02 as before to set MOTOR to 0. If not, the first MCD

sets MOTOR to 1 (TRUE). This is followed by JMP to :?E08

from which another code begins.

Listing 1. Example of VMASM mnemonic code

OR ?LR?A03, START, MOTOR

JZ ?LR?A03, :?A02

NOT ?LR?A05, STOP

JZ ?LR?A05, :?A02

MCD MOTOR, #01, #01

JMP :?E08

:?A02

MCD MOTOR, #01, #00

:?E08

III. SCALABILITY

The data types and instructions of the VMASM language are

defined in XML-formatted library configuration files (LCF).

Types and instructions: A portion of type definitions is

shown in Listing 2. By applying deny-type one can restrict

some data types. Aliases to existing types and special types

not specified in the IEC standard can be defined, too.

Listing 2. Type definition

<deny-type name="LREAL" />

<type name="USINT" implement="alias">

<alias name="BYTE"/>

</type> ...

Functions: The definition of one in the group of ADD

functions is presented in Listing 3. The virtual machine code

vmcode consists of two bytes, with the first one 01 identi-

fying the group, whereas the second *2 indicates a flexible

number of inputs (*) and identifies the data type (2) processed.

The two components of vmcode are called group and type

identifier, and are denoted by ig and it. By choosing an

appropriate it, type-specific functions such as ADD:SINT,

ADD:INT, etc. are defined.

Listing 3. Function definition

<function name="ADD" vmcode="01*2" return="INT">

<operands>

<op no="*" name="a*" type="INT"/>

</operands>

</function> ...

Procedures: All system procedures are identified by

ig=1C. The second byte it of vmcode indicates a particular

procedure. The definitions of JNZ and CALB are shown in

Listing 4. JNZ executes a conditional jump to :gclabel,

CALB calls the subprogram at :gclabel.

Listing 4. Procedure definitions

<sysproc name="JNZ" vmcode="1C01">

<op no="0" name="cnd" type="BOOL"/>

<op no="1" name="clbl" type=":gclabel"/>

</sysproc>

<sysproc name="CALB" vmcode="1C16">

<op no="0" name="inst" type=":rdlabel"/>

<op no="1" name="clbl" type=":gclabel"/>

</sysproc>

Operand types: The following types are available:

• :gclabel :gdlabel – global pointer (address) to

Code/Data memory,

• :rclabel :rdlabel – address relative to actual con-

tent of code/data register,

• :imm – immediate value (direct, constant).

IV. SEMANTIC MODEL

Semantic models provide formal descriptions of program-

ming languages [11], [15]. In case of VMASM, the model

consists of domains describing the virtual machine’s states,

memory functions, value interpreters relating memory to

VMASM types, limited range operators, and a universal se-

mantic function.

Semantic domains: The domain BasicTypes consists of

four sets reflecting the memory sizes of the VMASM types.

The domain Address specifies 16- or 32-bit implementation.

The general domain Memory is a function mapping Address

to Byte1. Stack models a sequence (∗) of Address domains

(Kleene closure).

BasicTypes = Byte1 +Bytes2 +

+Bytes4 +Bytes8

Address = if AddressSize = 2 then

Bytes2 else Bytes4

Memory = Address → Byte1

CodeMemory = Memory

Stack = Address∗

CodeStack = Stack

CodeReg = Address

F lags = Bytes2

State: The purpose of program execution is to change the

current state into a new one. The state of the VM is a Cartesian

product of memory domains, stacks, registers and flags, i.e.

State = CodeMemory ×DataMemory ×
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× CodeStack ×DataStack ×

× CodeReg ×DataReg × Flags

Model functions: The functions presented below model low-

level operations executed on memory, stacks and flags.

• Get data from memory (read)

G1BM = (Address×Memory) → Byte1

G2BM = (Address×Memory) → Bytes2

G4BM = (Address×Memory) → Bytes4

G8BM = (Address×Memory) → Bytes8

• Get address from memory

GetAddress = (Address×Memory) → Address

• Memory update (write)

U1BM = (Address×Memory ×Byte1) → Memory

U2BM = (Address×Memory ×Bytes2) → Memory

U4BM = (Address×Memory ×Bytes4) → Memory

U8BM = (Address×Memory ×Bytes8) → Memory

• Memory move (copy)

MemMove = (Address×Memory ×Address×

×Memory ×Byte1) → Memory

The two Addresses represent source and target, respec-

tively with Byte1 denoting number of bytes being moved.

• Stack functions
Push = (Stack ×Address) → Stack

Pop = Stack → (Address× Stack)

Value interpreters: The following sample functions provide

numerical interpretations of memory chunks.

BoolOf = Byte1 → BOOL

FromBool = BOOL → Byte1

IntOf = Bytes2 → INT

FromInt = INT → Bytes2

DIntOf = Bytes4 → DINT

FromDInt = DINT → Bytes4

LIntOf = Bytes8 → LINT

FromLInt = LINT → Bytes8

Limited range operators: The virtual machine executes

arithmetic operations in limited ranges, dependent on the

particular types. For signed integers addition ⊕ is defined by

a⊕ b = if (a+ b) >= 0

then (a+ b) mod (−MinRange(a))

else (a+ b) mod (−MinRange(a) + 1)

where MinRange for SINT, INT, DINT and LINT means

−128, −32768, −231 or −263, respectively. For unsigned

integers USINT, UINT etc. we have

a⊕ b = (a+ b) mod (MaxRange(a))

where MaxRange means 256, 65536 etc.

Unification: The operator := used in expression unifies

both sides. If the right side is an expression, then the left side

is a variable with the value of the right side (assignment). If

the left side is a tuple and the right side a variable, then the

variable is split into the tuple’s components.

Universal semantic function: To jointly express the concept

of decoding group and type, followed by execution of a

particular instruction, one may define a universal function

covering all instructions

U:any_instruction; = State → State (1)

Internally, after decoding ig and it, this function calls a

specific function of the form

C:instruction; = State → State (2)

Instruction decoding: Instruction decoding can formally be

expressed by the denotational semantic equation shown in

Listing 5. According to [9] or [13], the λ-expression has

the form of λs.body, where s denotes the current state and

body determines the value returned by the function. The body

consists of a sequence of operations, the first of which splits

current state s into a tuple composed of model components.

The other operations decode the values of identifiers ig and it,

update the code register to cr2 and, by means of match ... with

statements, call particular C functions. The result provided by

C defines the new state s1 returned by the function U .

Listing 5. Denotational equation for the function U

U:any_instruction; =
λs.(cm, dm, cs, ds, cr, dr, f lg) := s
ig := G1BM(cr, cm)
cr1 := cr ⊕ 1
it := G1BM(cr1, cm)
cr2 := cr1 ⊕ 1
s1 := match ig with

| 01 → match it with
| 22 → C:ADD:INT:r:op1:op2;

(cm, dm, cs, ds, cr2, dr, f lg)
| 32 → C:ADD:INT:r:op1:op2:op3

;(cm, dm, cs, ds, cr2, dr, f lg)
| ...
end

| ...
end

s1

V. DENOTATIONS AND IMPLEMENTATIONS

Denotational equations modeling the VMASM instructions

have the common form C:...; = λs.body where the dots on

the left side are replaced by the descriptor of a particular

instruction. Splitting current state s into components through

unification

(cm, dm, cs, ds, cr, dr, f lg) := s (3)

is the first operation in body.

Assume that while calling a particular function C by the

universal function U , the code register cr points to the first

operand. (actually cr2 in Listing 5). If the operand is a variable
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or label, then its value, i.e. address, is acquired from code

memory cm by

operand := GetAddress(cr, cm) (4a)

In case of a global variable or label, operand stands for

a direct address in data or code memory. If, however, the

operand is a local variable of a subprogram, then the value

operand means an address relative to the current value of

data base register dr, which was set earlier by a subprogram

call. Therefore, the address of a local variable is obtained by

adding

operandaddr := dr ⊕ operand (4b)

The value of a variable, here shown for a Boolean, in data

memory dm is read out and interpreted by composition

BoolOf(G1BM(operandaddr, dm)) (5)

If an instruction has another operand, the code register cr

is incremented to point to the next memory location by

cr1 := cr ⊕AddressSize (6)

Defining the new state s1 as the tuple

s1 := (cm, ...) (7)

is the last operation in body, with the dots being replaced by

new values of the data memory (if updated), stacks, etc.

Basic procedures: The denotational equation of the uncon-

ditional jump JNZ is presented in Listing 6 and subprogram

call CALB in Listing 7.

Listing 6. Denotation of JNZ procedure

C:JNZ:cnd:clbl; = λs.
(cm, dm, cs, ds, cr, dr, f lg) := s
cnd := GetAddress(cr, cm)
cndaddr := dr ⊕ cnd
cr1 := cr ⊕AddressSize
clbl := GetAddress(cr1, cm)
cr2 := cr1 ⊕AddressSize
ctl := BoolOf(G1BM(cndaddr, dm))
s1 := match ctl with

| true → (cm, dm, cs, ds, clbl, dr, f lg)
| false → (cm, dm, cs, ds, cr2, dr, f lg) end

s1

Listing 7. Denotation of CALB procedure

C:CALB:inst:clbl; = λs.
(cm, dm, cs, ds, cr, dr, f lg) := s
inst := GetAddress(cr, cm)
iad := dr ⊕ inst
cr1 := cr ⊕AddressSize
clbl := GetAddress(cr1, cm)
cr2 := cr1 ⊕AddressSize
s1 := (cm, dm,Push(cs, cr2), Push(ds, dr), clbl, iad, flg)
s1

The equation of JNZ has two operands, the conditional

variable cnd in data memory and the code label clbl as

before. The address cndaddr is determined according to (4a)

and (4b) (with the content dr of the data base register equal

to zero in case of a global variable). The code register is

incremented to cr1 to obtain the address clbl and, then, to

cr2 pointing to the next instruction. The Boolean value ctl

controlling execution is determined as in (5). Depending on

ctl, the code register of s1 includes either clbl or cr2.

The first operand of CALB is the label of an instance

in data memory for which the subprogram beginning at the

label clbl is executed. The instance address iad and the

subprogram address clbl are determined as before. cr2 points

to the next instruction. Since the contents of cr2, dr must be

remembered for the subprogram return, they are pushed onto

corresponding stacks.

Listing 8 shows C implementation of the JNZ and CALB.

All system procedures having the common group identifier 1C

are handled by a single general function IG_SYSCPROC_1C,

with type identifier it as its parameter. The command

switch selects a particular procedure. Each of the code

segments sets codeReg to a new value depending on the

respective meaning. CALB also modify dataReg.

Listing 8. Implementations of JNZ and CALB procedures

void IG_SYSPROC_1C(BYTE it) {

switch(it) {

case 0x01: /* JNZ conditional jump */ {

ADDRESS cndaddr = dataReg + GetCodeAddress();

ADDRESS clbl = GetCodeAddress();

BOOL ctl = BOOLOf(G1BMData(cndaddr));

if (ctl) codeReg = clbl;

} break;

case 0x16: /* CALB call a function block */ {

ADDRESS iad = dataReg + GetCodeAddress();

ADDRESS clbl = GetCodeAddress();

push_CodeStack(codeReg);

push_DataStack(dataReg);

dataReg = iad;

codeReg = clbl;

} break;

... /* other procedures */

default: /* unknown code */

flags |= FAULT;

break; }

Selected functions: The semantics of function NOT pre-

sented in Listing 9 negates the value stored at op1. The

addresses raddr, op1addr are determined as before, followed

by the Boolean value bv obtained as in (5). By means of the

function U1BM (Sec. IV) the value at raddr in data memory

dm is then updated. That value is determined from bv by the

FromBool and match ... with construct. um denotes the new

state of the data memory. The C implementation of the NOT

function presented in Listing 10 corresponds directly to its

semantics.

In the case of the function EQ (Listing 11) two LINT

operands op1, op2 are checked for equality. The Boolean

value cmp follows from comparison (=) of the LINT numbers

determined by LIntOf . The updated data memory in s1 is

the result of invoking U1BM . The byte stored at raddr is

given by FromBool(cmp). The function IG_EQ_12 from

Listing 12 implements the comparison EQ for all relevant data

types (group) via a parameterized macrodefinition EQ_TYPE.
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The value of an operand of a particular TYPE is deter-

mined in EQ_TYPE by the function TYPE##Of with given

sizeof(TYPE).

Listing 9. Denotation of NOT function

C:NOT:r:op1; = λs.
(cm, dm, cs, ds, cr, dr, f lg) := s
r := GetAddress(cr, cm)
raddr := dr ⊕ r
cr1 := cr ⊕AddressSize
op1 := GetAddress(cr1, cm)
op1addr := dr ⊕ op1
cr2 := cr1 ⊕AddressSize
bv := BoolOf(G1BM(op1addr, dm))
um := U1BM(raddr, dm,FromBool(match bv with
| true → false
| false → true end))
s1 := (cm, um, cs, ds, cr2, dr, f lg)
s1

Listing 10. Implementation of NOT function

ADDRESS raddr = dataReg + GetCodeAddress();

ADDRESS op1addr = dataReg + GetCodeAddress();

BOOL bv = BOOLOf(G1BMData(op1addr));

U1BM(raddr, FromBOOL(

bv ? FALSE : TRUE ));

Listing 11. Denotation of EQ function

C:EQ:LINT:r:op1:op2; = λs.
(cm, dm, cs, ds, cr, dr, f lg) := s
r := GetAddress(cr, cm)
raddr := dr ⊕ r
cr1 := cr ⊕AddressSize
op1 := GetAddress(cr1, cm)
op1addr := dr ⊕ op1
cr2 := cr1 ⊕AddressSize
op2 := GetAddress(cr2, cm)
op2addr := dr ⊕ op2
cr3 := cr2 ⊕AddressSize
cmp := LIntOf(G8BM(op1addr, dm))
= LIntOf(G8BM(op2addr, dm))

s1 := (cm,U1BM(raddr, dm,
FromBool(cmp)), cs, ds, cr3, dr, f lg)
s1

Listing 12. Implementation of EQ function

#define EQ_TYPE(TYPE) \

case IT_EQ_##TYPE & 0x000F: {\

ADDRESS raddr = dataReg + GetCodeAddress(); \

ADDRESS op1addr = dataReg + GetCodeAddress(); \

ADDRESS op2addr = dataReg + GetCodeAddress(); \

TYPE op1 = TYPE##Of(GetMemData(op1addr, sizeof(TYPE)

)); \

TYPE op2 = TYPE##Of(GetMemData(op2addr, sizeof(TYPE)

)); \

BOOL cmp = op1 == op2; \

U1BM(raddr, FromBOOL(cmp));\

break;

void IG_EQ_12(BYTE it) {

switch (it & 0x0F) {

EQ_TYPE(SINT);

EQ_TYPE(INT);

EQ_TYPE(DINT);

EQ_TYPE(LINT);

... /* other types */

default: /* unknown code */

flag |= FAULT;

}

return; }

VI. CONCLUSION

Architecture, VMASM intermediate language, and deno-

tational semantic model have been presented for a virtual

machine executing IEC control programs. The machine’s

scalability covers the address size, available data types and

instructions. A semantic model was developed to enhance

software quality. Denotational equations modeling VMASM

instructions are directly followed by C implementations.
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